

 Operating System Simulator Project

 1. Introduction

 This project is designed to be completed within approximately 10 weeks.

 You will learn much from this project if the proper time and thought is

 invested. Some of the learning objectives and goals are the following:

 (a) to learn and implement some of the basic concepts of event-driven

 simulation;

 (b) to learn fundamental issues of resource allocation and management

 in multiprogramming operating systems;

 (c) to learn and implement the mechanism of context switching and

 interrupt handling;

 (d) to learn and implement the basic flow of control within an opera-

 ting system;

 (e) to learn and implement different resource management algorithms;

 (f) to learn and implement fundamental data structures of an operating

 system;

 (g) to develop and practice good programming and debugging habits;

 (h) to gain some experience implementing a complex program;

 (i) to develop and sharpen your skills as a C programmer;

 The value of this project as a learning experience is directly pro-

 portional to the time you give it. It will be very time consuming,

 there is no mistake about that. However, this project can give you

 an edge when you enter the work force after graduation - it should be

 documented on your resume'. I'll be glad to give you some pointers

 if you wish.

 2. Project Overview.

 The program you will write (hereafter called the "simulator") is

 designed to simulate the action of both hardware and software

 components of a simple time-sharing computing system. Your simulator

 will be organized so that C functions will model the behavior of

 hardware components as well as components of the operating system

 itself. In particular, simulator components will be written to model

 CPU and MEMORY hardware, interrupt handlers, the CPU scheduler, and

 process management functions of the system. Other components of the

 simulator will be provided to you at the beginning of the project.

 One of the input files (CONFIG.DAT) to the simulator contains data

 describing the exact configuration of the system being simulated; for

 example, the number of interactive terminals, the number and character-

 istics of peripheral devices, the speed of the CPU, and the size of

 MEMORY, to name a few. The part of the simulator designed to read this

 file and initialize the simulation environment will be given to you at

 the outset.

 Several other input files are needed to run the simulator. The LOGON.DAT

 file contains a description of user logon events by specifying the

 time they will occur and the ids of users logging on. To model the

 activity or behavior of each interactive user, a file called SCRIPT.DAT

 is input to the simulator. This file contains a "process script"

 identifying the sequence of programs run by each user during an

 interactive session. To model the behavior of each program designated

 in the process script, a "program script" must be input. There are five

 types of programs your simulator will model: EDITOR, PRINT Spooler,

 COMPILER, LINKER, and arbitrary USER programs. For each of these

 program types a file will be input containing a script for each program

 "instance" of that type; eg, the EDITOR may be executed a total of five

 times by all users, therefore five EDITOR scripts will be input via

 EDITOR.DAT. Details on these files will be described later.

 Program scripts will be "executed" by your CPU module to generate, in

 time sequence, the SVC calls made by that program. These calls become

 events processed by the interrupt hardware placing the operating

 system in execution under control of the Interrupt Handler(another

 function you will write). The Interrupt Handler calls the appropriate

 service routine, which may call the Scheduler, etc. Finally, when

 interrupt service is complete, control returns to the interrupted

 program and "execution" of that program continues until it terminates

 via an END SVC.

 Other types of events can occur during simulation: EIO events gener-

 ated by some device, and TIMER events generated by the system interval

 timer. These events also trigger the interrupt servicing mechanism

 described above.

 Simulation terminates when all interactive users have "logged off" and

 all I/O events have been serviced. A user "logs off" when the

 corresponding process reaches the end of its process script. Thus,

 when all process scripts have been exhausted, and all I/O activity

 ceases, the simulator can terminate.

 Output from the simulator will be to a single file called "name.OUT",

 where "name" is your last name (truncated to 8 characters). One of

 the CONFIG parameters is the name of your output file. In addition to

 a summary of all CONFIG.DAT parameters read as inputs, your output

 file will contain a log of all events processed during simulation.

 Furthermore, images of loaded process and program scripts will be echoed

 to this file. Finally, debug output and simulation statistics will be

 written to this file.

 As an aid during the development of your simulator, you will have

 access to the "instructor's version" called OSSIM. OSSIM will be

 available on the LAN. Running or using OSSIM can be beneficial in

 two ways:

 (1) it provides a guide and a benchmark for your output;

 (2) it provides a working example to enhance your understanding

 of the dynamics of the simulation.

 You should learn to use OSSIM as soon as possible.

 3. The System Model.

 The system being simulated is a single processor, time-sharing system

 with the following hardware and software components.

 Hardware: N interactive terminals. One central processor.

 Processor memory. An arbitrary number of peripheral devices.

 Software: Interrupt handlers for LOGON, I/O completion, I/O-wait

 SVCs, I/O-Request SVCs, Program-end SVCs, Program-Abends;

 Memory manager; Loader; Scheduler; Editor; Compiler; Linker;

 and arbitrary user programs.

 All input parameters describing the system being simulated are entered

 through the file CONFIG.DAT.

 4. Simulator Specification

 The simulation begins by processing events. The first event

 that occurs is an interrupt from a user terminal signaling a request

 to logon. The interrupt hardware changes the CPU and MEMORY states and

 gives control to the Interrupt Handler(IH). The IH examines the source

 and cause of the interrupt and calls the Logon Service routine.

 The Logon Service routine creates a process control block (PCB) for

 the new terminal user and reads a process script from SCRIPT.DAT. It then

 allocates and loads the first program in the user's process script. Next,

 the service routine places the PCB in the CPU ready queue and signals the

 scheduler. When the very first logon event is serviced, the CPU will be

 idle. Consequently, the scheduler will assign the newly created PCB to

 the CPU. Then, the Dispatcher is called to give control to the new

 process. The Dispatcher prepares the program for execution and calls the

 CPU. The CPU interprets instructions contained in the program script until

 it encounters the next SVC call. It then creates an event corresponding

 to the SVC request and adds it to the event list. The CPU then terminates

 releasing control to the interrupt hardware to service the next hardware

 event.

 The servicing of other events (interrupts) is similar. For example,

 when an SVC to start an I/O operation is serviced, an I/O request block

 (IORB) is allocated and queued for the requested device. An attempt is

 then made to start a new operation on the requested device. If the device

 is not busy, the next waiting IORB is de-queued and its request is

 initiated. The device operation is simulated by simply computing how long

 the I/O will take (based on byte count and device speed). The computed

 duration of the I/O transfer is then used to create an EIO event for the

 device which is added to the event list.

 As you can see, the servicing of one event creates new future events.

 Eventually, as programs reach their end and I/O devices complete their

 requests, the event list will empty and the simulator will terminate.

 The remainder of this section serves not only to amplify on the details

 of the simulation highlighted above, but to serve as a specification for

 the program you are to implement. Section 4.1 introduces the notion of

 Process Script, the model of how interactive users behave. Section 4.2

 follows with the definition and discussion of Program Script, our model of

 how a typical program behaves from the Operating System's point of view.

 Section 4.3 describes the input files to the simulator, while Section 4.4

 describes the output file.

 4.1 The Process Model

 The behavior of every terminal user must adhere to the process

 model,although the number and sequence of programs executed

 by each user will vary. A "process script" is any sequence of programs

 defined by the regular expression given in (1) that conforms to the tran-

 sitions of the process model. It defines the system and user programs an

 interactive user will run during an interactive session. Each program

 specified in the process script must be allocated memory, loaded and run.

 The process script, in effect, defines the work load for the operating

 system determined by a given user.

 (1)logon {editor, user, linker, compiler, printer}* logoff

 Examples of valid process scripts:

 Example 1: LOGON, EDITOR, PRINTER, LOGOFF

 Example 2: LOGON, EDITOR, COMPILER, LINKER, USER, LOGOFF

 Example 3: LOGON, PRINTER, EDITOR, PRINTER, LOGOFF

 Process scripts are input via the file SCRIPT.DAT. Each time a user

 logon event occurs, a complete script is read from this file. This script

 defines the behavior of that user during the simulation. Consequently,

 the number of process scripts in this file must equal the number of LOGON

 events. See Section 4.3 for a more detailed description of SCRIPT.DAT

 and LOGON.DAT.

 4.2 The Program Model

 Each program in a process script will have a behavior defined by a

 "program model" for the corresponding program type. A separate model

 COULD be provided for the editor, compiler, linker, loader, printer, and

 user program classes. Each program model produces a "program script"

 consisting of a sequence of instructions from the set {SIO, dev, WIO, REQ,

 END }. A detailed explanation of these instructions will be given later in

 this section. The sequence of instructions in every program script must

 belong to the set generated by the grammar in figure 1, and must satisfy

 certain "additional constraints".

 <SCRIPT> --> <BODY> END

 <BODY> --> <SIO-PAIR> <BODY>

 --> <JMP-PAIR> <BODY>

 --> <SIO-PAIR> <BODY> <WIO-PAIR>

 --> <BODY> <BODY>

 --> null

 <SIO-PAIR> --> SIO dev

 <WIO-PAIR> --> WIO REQ

 <JMP-PAIR> --> SKIP JUMP

 Additional Constraints:

 - An REQ instruction must address a previous dev instruction.

 - No two REQ instructions may address the same dev instruction.

 - It is not necessary to have an REQ instruction for every dev

 instruction.

 - A "dev" instruction must identify a valid device.

 [Figure 1. Program Script Grammar and Additional Constraints.]

 When a program script is executed, a sequence of events is generated

 corresponding to three types of SVC calls: request to Start I/O (SIO),

 request to Wait for I/O (WIO), and a request to terminate (END). In add-

 ition, a program may abnormally terminate due to some kind of error. For

 the purposes of this project, we will simulate only abnormal termination

 due to Memory addressing faults.

 A detailed description of the instructions types used in the genera-

 tion of program scripts is given below.

 INSTRUCTION: SIO | SIO | t |

 SIO - Defines a CPU burst that ends with an SVC request to start an

 I/O operation. The I/O operation is described by the next dev

 instruction. SIO instructions differ from WIO instructions by

 permitting the current job to continue processing rather than

 possibly being blocked, and having to wait.

 t - Defines the length of the CPU burst in instruction cycles.

 INSTRUCTION: dev | dev | bytes |

 dev - Defines the device to be used in the specified I/O operation.

 It must be the 4-character id of a device specified in the

 system device table.

 bytes - Defines the byte count of the data transferred. Given the speed

 of the device, the time required for the I/O operation may be

 computed using the byte count.

 INSTRUCTION: WIO | WIO | t |

 WIO - Defines a CPU burst that ends with a request to wait for an I/O

 operation identified by the REQ instruction that follows. This

 means the program can not continue until the identified I/O has

 operation has completed. If the I/O operation completes before

 a WIO is made, the program may continue processing; otherwise,

 the program must be blocked and removed from the CPU.

 t - defines the length of the CPU burst.

 INSTRUCTION: REQ | REQ | addr |

 REQ - Identifies the dev instruction of an I/O operation that must be

 completed before the program can continue. REQ instructions

 always appear immediately following WIO instructions.

 addr - Is the logical address (segment, offset) of a dev instruction.

 This device instruction address must uniquely identify the

 operation to the system.

 INSTRUCTION: SKIP | SKIP | n |

 SKIP - This instruction is used to build conditional branching and

 iteration. The operand denotes a "skip count". If the skip

 count is positive, its value is decremented and the next

 instruction is skipped. If the skip count is zero, it remains

 unchanged and the next instruction is executed. For our pur-

 poses, SKIP instructions will always be followed by a JUMP

 instruction.

 n - The skip count (unsigned int).

 INSTRUCTION: JUMP | JUMP | addr |

 JUMP - This instruction is an unconditional transfer of control (jump)

 to the location specified by the logical "addr".

 addr - Specifies the logical transfer address (segment, offset).

 INSTRUCTION: END | END | t |

 END - Defines the last CPU burst in a normal program execution.

 t - Defines the length of that CPU burst in instruction cycles.

 An example of a valid program script and a brief explanation of the

 meaning of the program instructions is given below.

 Example 4: An EDITOR program script.

 ADDRESS INSTRUCTION MEANING

 ------- ----------- -------

 [0,0] SIO 5 The program begins by executing 5 instructions

 followed by an SVC interrupt to start an I/O

 operation and continue processing.

 [0,1] DISK 500 This is a dev instruction specifying the disk

 as the device on which to initiate I/O - 500

 bytes of data are to be transferred.

 [0,2] SIO 20 The program continues executing for 20 instruc-

 tions and then requests another I/O operation.

 Note the total program execution time is 25 CPU

 cycles at this point.

 [0,3] PRNT 100 100 bytes of information are to be transferred

 to the printer.

 [0,4] WIO 0 The program needs to wait for an earlier I/O

 operation to complete before it may continue

 processing - 0 specifies the number of CPU

 cycles the program executes before making the

 request to wait (in this case, none).

 [0,5] REQ [0,1] The REQ instruction addr specifies the program

 is waiting for the operation initiated by the

 dev instruction at address [0,1] which is a disk

 operation. If the I/O has completed, the program

 may continue execution, otherwise it must be

 blocked (and the CPU will be rescheduled).

 [0,6] WIO 15 The program executes for 15 CPU cycles (bringing

 the total to 40), then requests to wait for I/O.

 [0,7] REQ [0,3] The I/O being requested was initiated by the dev

 instruction at logical address [0,3] - it is the

 printer operation.

 [0,8] SIO 10 The program executes for 10 CPU cycles and then

 produces a request to initiate I/O - notice the

 program will end without ever requesting to wait

 for this operation.

 [0,9] PRNT 200 200 bytes are to be transferred to the printer.

 [0,10] END 5 The program will execute for 5 CPU cycles and

 then terminates normally.

 Example 5: A program script illustrating loops and conditionals.

 ADDRESS INSTRUCTION MEANING

 ------- ------------- -------

 [0,0] SKIP 5 Start loop with 5 iterations.

 [0,1] JUMP [0,8] When skip count 0, exit the loop.

 [0,2] SIO 5 Start I/O on DISK.

 [0,3] DISK 128

 [0,4] WIO 25 Wait for Disk to complete.

 [0,5] REQ [0,3]

 [0,6] SKIP 0 Execute next instruction.

 [0,7] JUMP [0,0] Jump to start of loop.

 [0,8] END 200

 4.3 Input Files.

 The following input files are required by the simulator. The format

 and content of each is described below.

 CONFIG.DAT: This file contains system configuration parameters,

 scheduling parameters, and debug options. Your simulator

 will only have to support

 the following parameters.

 LNAME= Ignore this field and don't edit this line!!!

 DEVICES= No. of devices (size of device table). Immediately

 following this parameter are the device descriptions;

 one pair of parameters for each device.

 ID= aaaa RATE= dddddd -+ Device Id must be 4 alphanumeric chars.

 ID= bbbb RATE= dddddd | Device Rate must be in bytes/second.

 |

 ID= xxxx RATE= dddddd -+

 TIME= Defines the relative time units associated with LOGON

 events. The possible values are: NSEC,mSEC,MSEC,SEC.

 TERMINALS= Maximum no. of interactive users.

 MEMSIZE= Memory size in words.

 CPURATE= Speed of CPU in nanoseconds/instruction

 MAXSCRIPT= Maximum length of a process script, including LOGOFF.

 MAXSEGMENTS= Maximum number of program segments.

 SCHED= Scheduling algorithm: FCFS, SJN, HPRN, RNDRBN

 1/BETA= Scheduling parameter for SJN and HPRN

 (ave. CPU service burst in no. of instructions)

 RHO= Smoothing factor for SJN or HPRN (0.0 <= RHO <= 1.0)

 RRQUANTUM= Time slice for Round Robin scheduling.

 DEBUG_EVTQ= --+

 DEBUG_MEM= | Debugging flags: ON or OFF

 DEBUG_PCB= |

 DEBUG_RBLIST= |

 DEBUG_RBQ= |

 DEBUG_CPUQ= --+

 Each parameter should be specified on a separate line in exactly the

 form shown above. At least one space should separate the parameter

 name from its value. The order parameters are listed is not important

 except for device descriptions, they must follow DEVICES=.

 Most parameters should have default values. Exceptions are: LNAME,

 DEVICES, and device descriptions(ID and RATE). Consequently, most

 parameters are optional. Default values of these parameters are

 specified in the source file SIMULATOR.C.

 EXAMPLE

 LNAME= OSSIM

 DEVICES= 2

 ID= PRNT RATE= 10

 ID= DISK RATE= 300

 TIME= NSEC

 TERMINALS= 4

 MEMSIZE= 1000

 CPURATE= 500

 MAXSCRIPT= 2

 MAXSEGMENTS= 1

 SCHED= FCFS

 DEBUG_EVTQ= OFF

 DEBUG_MEM= OFF

 DEBUG_PCB= OFF

 DEBUG_RBLIST= OFF

 DEBUG_RBQ= OFF

 DEBUG_CPUQ= OFF

 ===

 LOGON.DAT: This file normally contains only LOGON events. During the

 first part of the project, this file will be used to enter

 events of all types. Each line of the file defines a single

 event. The format is the following:

 Event Agent_Id Time

 The "Event" field must be one of the following: LOGON, SIO,

 WIO, END, and EIO. Your program should be able to handle

 event names in upper or lower case, or a mix.

 The "Agent_Id" field must designate a user or a device.

 User designations have the form "Uddd" or "uddd" where ddd

 is a 3-digit user number that must be <= TERMSIZE (the size

 of the terminal table). Otherwise, Agent_Id must be a valid

 device Id (again, insensitive to case).

 The "Time" field must be an unsigned long decimal integer

 denoting a time relative to the beginning of simulation.

 The units associated with this time is determined by the

 CONFIG parameter TIME=. (Refer to the simulator function

 Convrt_time() in SIMULATOR.C when converting from external

 time units to internal "simtime".)

 EXAMPLE

 LOGON U001 0

 LOGON U005 23

 Logon U002 400

 LOGON U003 13

 SIO disk 127

 end U003 100

 ===

 SCRIPT.DAT: This file contains all process scripts need for the simula-

 tion. There must be one complete script for each LOGON event

 in LOGON.DAT. The order in which LOGON events occur during

 simulation determines the order scripts will be read from

 this file and the user process with which they are associated.

 For the sample LOGON.DAT file illustrated above, the first

 process script would be associated with U001, the second with

 U003, the third with U005, and the last with U002.

 The format of the SCRIPT file is free form. Each script

 must be composed of a sequence of valid program names

 separated by blanks and ending with LOGOFF. The valid pro-

 gram names are: EDITOR, PRINTER, COMPILER, LINKER, USER.

 To be fail safe, your program should accept these names in

 either upper or lower case (or a mix). IMPORTANT: as you

 read a script, you should convert the names to UPPER CASE;

 this is necessary for looking up these names in a table.

 EXAMPLE

 EDITOR

 EDITOR PRINTER

 LINKER LOGOFF COMPILER LOGOFF PRINTER

 user LinKer LOGOff

 first script = EDITOR EDITOR PRINTER LINKER LOGOFF

 Secnd script = COMPILER LOGOFF

 third script = PRINTER USER LINKER LOGOFF

 ==

 EDITOR.DAT These files hold program scripts defining instances of each

 PRINTER.DAT program type. For example, EDITOR.DAT holds all instances

 COMPILER.DAT of type EDITOR. The number of complete program scripts in

 LINKER.DAT each file must be the same as the number of occurrences of

 USER.DAT the program name in SCRIPT.DAT. Using the example above,

 we see that the PRINTER program is executed twice, once in

 the first script, and once in the third script. Therefore,

 PRINTER.DAT must have two complete program scripts - and

 these scripts need not, and most frequently, will not be

 the same. Similarly, EDITOR.DAT and LINKER.DAT both have

 two scripts, while COMPILER.DAT abd USER.DAT each have just

 one script.

 A program script must begin with information describing

 each segment of the program. This information is specified

 by two statements, the PROGRAM and SEGMENT statements.

 Their format is shown below.

 PROGRAM #segments

 SEGMENT length access_byte

 SEGMENT length access_byte

 ...

 SEGMENT length access_byte

 The PROGRAM statement must be first and specifies the total

 number of program segments. Following the PROGRAM state-

 ment is a series of SEGMENT statements, one for each seg-

 ment. The SEGMENT statement specifies the length of the

 segment in no. of instructions, and the access byte. The

 access byte is given as hex literal (0xdd). In theory, the

 access byte can be used to specify the access restrictions

 associated with the segment (READ, WRITE, EXEC, APND).

 Following the program header (PROGRAM and SEGMENT state-

 ments), the program script for each segment must be given.

 The length of each segment script must agree with the cor-

 responding SEGMENT statement. IMPORTANT: each segment

 script must end with either a SKIP-JUMP pair or an END.

 The ONLY way control can be transferred from one segment

 to another is via a SKIP-JUMP pair!!!!!!

 EXAMPLE

 PROGRAM 2

 SEGMENT 6 0x23

 SEGMENT 5 0x2F

 SIO 100

 DISK 450

 SIO 25

 PRNT 100

 SKIP 0

 JUMP [1,0]

 WIO 31

 REQ [0,1]

 WIO 0

 REQ [0,3]

 END 678

 ================================

 4.4 The Output File.

 The contents of this file consists of the following information:

 (1) An echo of the CONFIG parameters;

 (2) A log of all events generated during simulation;

 (3) An echo of each process script read (this should be produced

 immediately after the LOGON event that caused the script to

 be read);

 (4) The memory image of each program segment loaded; this should

 be produced following (3) or a program END event. Each seg-

 ment should be printed so that the absolute memory location

 holding each instruction is displayed.

 (5) Any debug output you may wish to produce.

 When in doubt about what information should be produced and the format

 to be used, refer to the output (ossim.out) of the instructor's simulator

 (OSSIM).

 EXAMPLE

 +---+

 | COP 4600, Summer '98 Simulator Report |

 | DATE: Wed Aug 29 09:09:36 1998 |

 | NAME: Franke |

 | |

 | DELTA TIME NSEC |

 | NO. OF TERMINALS 4 |

 | MEMORY SIZE 1000 |

 | CPU RATE (NSEC/INSTR)500 |

 | SCHEDULING ALGORITHM FCFS |

 | MAX SCRIPT LENGTH 2 |

 | |

 | DEBUG MEMORYOFF |

 | DEBUG EVENT_QOFF |

 | DEBUG PCB..............................OFF |

 | DEBUG RBLIST...........................OFF |

 | DEBUG RBQ..............................OFF |

 | DEBUG CPUqOFF |

 | |

 | ================= DEVICE TABLE =================== |

 | |

 | ID RATE(*) |

 | |

 | PRNT 10 |

 | DISK 300 |

 | |

 | (*)Bytes/Second |

 +---+

 EVENT AGENT HR:xxxxxxxx MN:xx SC:xx MS:xxx mS:xxx NS:xxx

 ----- ----- --

 LOGON U001 HR:0 MN:0 SC:0 MS:0 mS:0 NS:0

 SCRIPT FOR PROCESS U001 =

 EDITOR PRINTER

 SEGMENT #0 OF PROGRAM EDITOR OF PROCESS U001

 DISK ADDR: 28 LENGTH: 5

 MEM ADDR OPCODE OPERAND

 0 SIO 5

 1 PRNT 300

 2 CPU 0

 3 REQ [0, 1]

 4 END 5

 PROGRAM EDITOR HAS BEEN LOADED FOR PROCESS U001

 LOGON U002 HR:0 MN:0 SC:0 MS:0 mS:0 NS:0

 SCRIPT FOR PROCESS U002 =

 PRINTER

 SEGMENT #0 OF PROGRAM PRINTER OF PROCESS U002

 DISK ADDR: 29 LENGTH: 11

 MEM ADDR OPCODE OPERAND

 5 SKIP 1

 6 JUMP [0, 10]

 7 SKIP 1

 8 JUMP [0, 10]

 9 SKIP 1

 10 JUMP [0, 10]

 11 SKIP 1

 12 JUMP [0, 10]

 13 SKIP 1

 14 JUMP [0, 10]

 15 END 25

 PROGRAM PRINTER HAS BEEN LOADED FOR PROCESS U002

 LOGON U003 HR:0 MN:0 SC:0 MS:0 mS:0 NS:0

 SCRIPT FOR PROCESS U003 =

 EDITOR PRINTER

 SEGMENT #0 OF PROGRAM EDITOR OF PROCESS U003

 DISK ADDR: 125 LENGTH: 11

 MEM ADDR OPCODE OPERAND

 16 SIO 5

 17 PRNT 1000

 18 SKIP 0

 19 JUMP [0, 6]

 20 CPU 0

 21 REQ [0, 1]

 22 SKIP 1

 23 JUMP [0, 10]

 24 SKIP 0

 25 JUMP [0, 4]

 26 END 5

 PROGRAM EDITOR HAS BEEN LOADED FOR PROCESS U003

 SIO U001 HR:0 MN:0 SC:5 MS:0 mS:0 NS:0

 START IO ON device PRNT

 WIO U001 HR:0 MN:0 SC:5 MS:0 mS:0 NS:0

 PROCESS U001 IS BLOCKED FOR I/O.

 CPU BURST WAS 5 INSTRUCTIONS

 END U002 HR:0 MN:0 SC:30 MS:0 mS:0 NS:0

 PROGRAM (PRINTER) ENDS ON TERMINAL= U002

 CPU BURST WAS 25 INSTRUCTIONS

 ==========>PROCESS FOR TERMINAL U002 HAS TERMINATED!

 TERMINAL SUMMARY

 ===

 TERMNL| EXEC | WAIT | BLOCKED | ELAPSED | EFF

 ======|================|==============|==============|==============|====

 ===

 TOTALS| 0 SC | 0 SC | 0 SC | 0 SC |

 | 0 NS | 0 NS | 0 NS | 0 NS |

 ------|----------------|--------------|--------------|--------------|

 AVERGE| 0 SC | 0 SC | 0 SC | 0 SC |

 | 0 NS | 0 NS | 0 NS | 0 NS |

 ===

 DEVICE SUMMARY

 ===

 DEVICE| BUSY | WAIT | IDLE | RESPONSE |%UTL

 ======|================|==============|==============|==============|====

 CPU | 0 SC | 0 SC | 0 SC | 0 SC |0.00

 | 0 NS | 0 NS | 0 NS | 0 NS |

 ===

