Operating System Simulator
Project

m Purpose
m Basic concepts of event driven simulation

m Operating System Concepts
Resource allocation and management
context switching and interrupt handling
Basic flow: of contrel with: ini OS
Fundamental data structures

Operating System Simulator
Project

s Program will simulate the action of both
hardware and software components

s Hardware
m CPU
= Viemory.
m Peripheral devices
m Interrupt Handler
m Software
m CPU scheduler
m Process management functions

Operating System Simulator
Project

m Input files

m System configuration File
CONFIG.DAT

m User logon File
LOGON.DAT

m Process File
SCRIPT.DAT

m Program; files
EDITOR.DAT
PRINT.DAT
COMPILER.DAT
LINKER.DAT

Operating System Simulator
Project

m Simulator Overview

m The simulator is based on events

Begins by processing events, generates more
events during the progress and processes the
generated events

Normally starts with LOGON events
m Interrupt hardware

Changes the CPU and memory states

Calls Interrupt handler
m Services the interrupt

OSSIM — Major Data Structures

cpu_type
unsigned long
unsigned long
unsigned char
struct address_type
struct pch_type
struct simtime
struct simtime
struct simtime
struct simtime
int

int

int

double

struct pcb_list
struct pcb_list

char

char

char

unsigned int
int

int

struct segment_type
unsigned int
struct state_type
struct simtime
struct simtime
struct simtime
struct simtime
unsigned long
double
unsigned long
unsigned long
struct simtime
struct simtime
struct simtime
struct simtime
int

double

struct rb_type
struct rb_list
struct rb_list
struct simtime
struct simtime

This pcb is
not in the
ready queue.
It is the active

rate
CPU_burst
mode
pc
*actvpch
busy
gwait
response
idle
served
maxq
glen
utilize
*ready
e

tail pcb_list

flags
user[5]

pcb_list

struct pcb_type
struct pcb_list
struct pcb_list

*pcb
*next
*prev

pch_list pcb_list

termnl calloc(MAXSCRIPT, sizeof(int))

*script
pgmid-....
*segtable_|
segtab_len
cpu_save
logont
blockedt
readyt
runt
sjnburst
sjnave
instrleft
sliceleft
tblocked
tready
trun
tlogon
served
efficncy

saws | pob type M@jOr Data Structures

izeof(struct segment_type))

struct pcb_type
int

struct simtime
unsigned long
struct addr_type

struct rb_type *rb
struct rb_list *next

status
*pcb
dev
queuet
bytes
reqid

OSSIM — Major Data Structures

device_type

char

struct rb_type
unsigned long int
unsigned long int
struct simtime
struct simtime
struct simtime
struct simtime
int

int

int

double

struct rb_list
struct rb_list
struct simtime

devid[5]
*currb
npb
byps
busy
gwait
response
idle
served
maxq
glen
utilize
*head
*tail
start

rb_type

rb_list

rb_type

rb_list

OSSIM -Minor Data Structures

simtime

unsigned long
unsigned long
timer_type

struct simtime
unsigned long
struct simtime

instr_type

unsigned char
union operand_type

addr_type
int
unsigned int

segment_type

unsigned char
unsigned int
unsigned long

seconds
nanosec

TIME_OUT
QUANTUM
RRSLICE

opcode
operand

segment
offset

acchbits
seglen
membase

event_type

struct simtime
int

int

struct event_type
struct event_type

union operand_type

struct addr_type
unsigned int
unsigned long
unsigned long

state_type

unsigned char

| struct addr_type

seg_list

unsigned long
unsigned long
struct seg_list

time

event
agent
*prev
*next

address
count
burst
bytes

segsize
segptr
*next

usr =

statu:
segtable
seqtablen = 1
firstrb

lastrb

actvpch

pc=4

Picture: Process Mgmt

usr = U003
status = ‘B’
segtable
segtablen =3

waitrb
firstrb
lastrb

_ segtable
firstrb

pchb
status = ‘D’

dev =
bytes =1500

reqid =[0, 1]{| reqid =[1, 1]

reqid =[1, 3]

devid[5] = ‘DISK
*currb

*head

*tail b
statlﬁ)s ='A’

dev =0

bytes =5000
reqid =[0,3]

reqid =[0,1]

devid[5] = ‘PRNT’

*currb

*head

*tail och
status = ‘A’

dev =1

bytes =8500
regid =[1,3]

pch
status = ‘P’
dev =1
bytes =600
regid =[0,3]

Big Picture: Memory Mgmt

segsize =5 segsize = 1 segsize = 965

segptr segptr
*next *next

PC e
From CPU

(0]
1
2
&
4
5
6
7
8
9

OSSIM — Objective 1

n LOGON.DAT
<EVENT,AGENT, TIME>
EVENT
Anjevent in a computer system is a change ofi system) state
LOGON, SIO, WIO, END, and EIO
Shouldibe able to handle event names in both upper an lower
Cases
AGENT
Two) types
n User (Trerminal)
format: Uxxx
= Device
Format: disk1, printer

TIME
Unsigned long decimal

OSSIM — Objective 1

= Void Add_event(struct simtime *time, int event, int agent)

This function serts a future event in the list
New._events In the proper time seguence.new. events
points to the end of the list having| the smallest time
defined by the given function:

Cmpr_time(struct simtime * , struct simtime *)

OSSIM — Objective 1

Directions:

This function is called by Load! events(void)
Use the structure event_type with the given simtime, agent, and event.
/* The event list is a doubly-linked list of elements of EVENT_TYPE */

struct event_type {
struct simtime time;
int event;
int agent;
struct event_type *prev,*next;

réfer osdefs.h and externs.h

Insert it at the appropriate position in the event list (new_events). The event list is
ordered chronologically so make sure to maintain the correct order while inserting by
using the provided function:

OSSIM — Objective 1

m Before:

m After inserting a simtime record with
seconds = 20, nanosec = 0

OSSIM — Objective 1

= Void Load_events(void)

This functioniis called from simulator.c (The simulator driver)
and'it initializes the event list (new_events) from the file
logon.dat. This file normally centains only: LOGON events for
all'terminals. However, for debugging purposes, legon.dat can
contain events of any type. This function uses:

Add_event(struct simtime * , int, int)

OSSIM — Objective 1

m Directions:
m Refer to intro.doc for the logon.dat format

m Use the given function:
convrt_time(struct simtime * timed, long time2)

m [he event name and agent name can be either in
upper or lower case or a combination. Make sure
you convert It to upper case.

OSSIM — Objective 1

m Directions: (contd.)

m Convert the event name to eventid using the eventidtab[] defined in
simulator.c. Example: event name = LOGON, event id'= 0

m Convert the agent name to agent. Here two cases arise:
If-the agent:nameis Uxxx, agent'idi= x¢x. (agent isia user)

If'the agent is a device, then: TRMSIZE + 1 <=agent <= TRMSIZE +
DEVSIZE where TRMSIZE s the number of ‘terminals (users) and
DEVSIZE is theinumber ofi devices. Youlwill have to use the loekup
table devtable defined in simulator.c.

s Call Add_event(time2, enevt_id, agent_id) to buildithe event list.

OSSIM — Objective 1

= void Write_event (int event, int agent, struct simtime
*time)

This function writes an event to “simout™ with the
format:

“EVENT AGENT TIME (HR:>0000000¢ MINaXX SCaxx IMSxxx mS:xxx NSaxoxx™

= You will have to convert the nanosec field to MS,
mS,and NS. The seconds field will have to be
converted to HR, MN, and SC.

OSSIM — Objective 1

m Directions:
n Called from Interrupt(void)

m Convert the event_id and agent_id to event
name and agent name for printing te the
output file simout which is already open.

10

OSSIM — Objective 1

void Interrupt(void)

This function is called frem simulator.c (The simulator driver)

Directions:
remOoVes anlevent fromi new. events
sets CILOCK, AGENT, and EVENT
deallocatesithe event element
writes the event to “simout™
Copies CPU.mode and CPU.pc into oldstate

Caopies newstate into CPU.mode and CPU.pcou will have te convert
the nanosec field'to MS, mS,and NS. The seconds field will have to
be converted to HR, MN, and'SC.

11

