
1

Bootstrapping

Introduction

Bootstrapping

Introduction:
Computers execute programs stored in main
memory, and initially the operating system is on
the hard disk.

When the computer is turned on it does
not have an operating system loaded in memory
and the hardware alone cannot do the
operations of an OS. To solve this paradox a
special program called bootstrap loader is
created.

2

Bootstrapping continued…

This program does not have the full
functionality of an operating system, but
it is capable of loading into memory a
more elaborated software(i.e. loader2)
which in its turn will load the operating
system.
Once the OS has been loaded the loader
transfers the control of the system to the
Operaing system.

Bootstrapping continued…

Early programmable computers had toggle
switches on the front panel to allow the operator
to place the bootloader into the program store
before starting the CPU.

In modern computers the bootstrapping process
begins with the CPU executing software
contained in ROM at a predefined address whose
elementary functionality is to search for devices
eligible to participate in booting, and load a
small program from a special section of a device.

3

Bootstrapping continued…

BOOT PROG

ROM

I/O

LOADER2
OS

I/O OPERATIONS

CPU MEMORY

BOOT PROG

ROM

I/O

LOADER2
OS

I/O OPERATIONS

CPU MEMORY

LOADER2

Bootstrapping continued…

4

In earlier computers data had to be hand
loaded as specified before, but nowadays a
small piece of software called loader helps us
to avoid the manual loading.

Bootstrapping continued…

STORE Ф
READ

Ф Ф + 1
IF EOF IP 0

ELSE IP 100000

os

100000

0

LOADER 2

Ф = 0
99998

BOOT PROG

ROM

I/O

LOADER2
OS

I/O OPERATIONS

CPU OS

LOADER

Bootstrapping continued…

5

The above diagram can be explained in the
following steps.

1. Check hardware
2. Initiate I/O to load the loader2 program into

memory
3. loader2 loads the OS and passes control to

it

Bootstrapping continued…

We have seen that once the OS has control over
the system , it can create an environment for
programs to run.

The operating system will load device drivers
and other programs that are needed for the
normal operation of the computer system.

Conclusion

6

Operating system

Process concept

7

Concept of Multiprogramming

When there is a single program running in the
CPU, it leads to the degradation of the CPU
utilization.

Example: When a running program initiates an
I/O operation, the CPU remain idle until the I/O
operation is completed.

Solution to this problem is provided by
Multiprogramming.

A mode of operation that provides for
the interleaved execution of two or
more programs by a single processor.

Definition:

Multiprogramming Continued..

8

Improving CPU utilization
By allowing several programs to reside in main
memory at the “same time” the CPU might be
shared,

such that when one program initiates an I/O
operation,

another program can be assigned to the CPU,
thus the improvement of the CPU utilization.

Multiprogramming Continued..

The idea of process need to be
introduced in order to understand operating
system in a multiprogramming computer
system.

What is a process?

Implementation

Multiprogramming Continued..

9

Process

Definition:
A program in execution
An asynchronous activity
The “locus of control” of a procedure in
execution
It is manifested by the existence of a
process control block in the operating
system.

A state of a process describes the activity that
process is doing at a certain moment in time.

New : A newly created process, not in the
ready queue.

Ready : It can use the CPU , if available.
Running : If it is currently in the CPU.
Waiting : Waiting for some event ex: I/O
Abend : Stops executing due to an error.
End : Finished executing properly.

Process States

10

NEW

READY RUNNING

END

WAITING

States of processes

ABEND

SUSPENDED

Causes of state change

When a process executes, it changes states and
interrupts cause process to change states.
Current State New state Interrupt
Running End EOP

(End of Program)

Running ABEND Trap
(Abnormal end)

Running Blocked System Call
(Start I/O) for I/O (SIO)

11

RUNNING

END

ABEND

BLOCKED

Depiction of state change

EOP

TRAP

SIO

The activity of a process is controlled by a data
structure called Process Control Block(PCB).

A PCB is created every time a program is
loaded to be executed.

So, Process is defined by PCB-Program couple.

Process Continued…

12

Structure of PCB

PCB contains information about processes

the current state of a process

Unique identification of process

Process priority

CPU registers

Instruction Pointer (IP), also known as PC

Base and limit registers

Time limits and I/O status information

PROGRAM
S
T
A
C
K

Base code
Limit Code
IP or PC

Stack Pointer
Registers

Interrupt Flags
MODE
.….

Process State

Structure of PCB Contd…

Process name or ID
Pointer to next PCB

….

…..

13

We can now observe how each stage of a
process takes place by the aid of state
diagrams.

Process creation :
An OS can create one or more processes, via a
create-process system call.

During the course of execution an user process
may create processes as well. In this case, the
creating process is called the parent and the
created (new) process is named the child.

Process Continued…

Process Creation

New

Ready

The process is created and then inserted at the
back of the ready queue, it moves to the head of
the queue according the CPU availability.

Create

14

PCB

stack

Program

OS prog

Load

Create

Process Creation Contd…

1
st
a
c
k

st
a
c
k

2

PCB1 PCB2

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

Memory snap shot of two processes in
Ready State

The PCB is stored in the OS memory area in a linked list.

NULL

15

READY

RUNNING

Dispatcher

When a process reaches the head of the queue and the CPU
is available, the process is dispatched which means that the
CPU is assigned to the process. This cause a transition
from the ready state to the running state.

When the time slice of the running process expires it goes
back to the ready state.

Timer Interrupt

Ready to Running

1
st
a
c
k

st
a
c
k

2

PCB1 PCB2

READY RUNNING

LOADER DISPATCHER INTERRUPT HANDLER RUNTIME LIBRARY

CPU

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATER

Ready to Running

PI TI I/O ModeSVC

16

1
st
a
c
k

st
a
c
k

2

PCB1 PCB2

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

CPU

st
a
c
k

2

PCB2

Ready to Running

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC Mode

st
a
c
k

1

PCB1

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

CPU

PCB2

2
st
a
c
k

Running to Ready

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC Mode

17

2
st
a
c
k

1

PCB2 PCB1

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

CPU

st
a
c
k

st
a
c
k

1

PCB1 PCB2

2

st
a
c
k

Running to Ready

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC Mode

As the OS switches the allocation of CPU
among processes it uses the PCB to store the
CPU information or context, which represents
the state of the process.

In the previous example we have seen how
the OS performed a context switch between
processes P2(from Running to Ready) and
P1(from Ready to Running).

When a context switch occurs we need to save
the state of the running process in its PCB and
load the state of the new process in the CPU.

Process Continued…

18

Save state into PCB1

Reload state from PCB2

Save state into PCB2

Reload state from PCB1

TIMER

DISPATCH

DISPATCH

TIMER

P1 OS P2EXECUTING

WAITING

EXECUTING

Context switching

WAITING

WAITING

EXECUTINGWAITING

WAITING
WAITING

WAITING

READY

RUNNING

WAITING

I/O Interrupt
Start I/O (System call)

Case of I/O interrupt

19

PCB1 PCB2

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

I/O

SIO

Case of I/O interrupt Contd..

PCB3

I/O DEVICE

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB1

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

I/O
PCB3

PCB2

Case of I/O interrupt Contd..

I/O DEVICE

PCB2

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB3

20

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

I/O

PCB2

SUSPEND

OS

Case of I/O interrupt Contd..

PCB1

I/O DEVICE

PCB3

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

I/O

PCB3 PCB2PCB1

Case of I/O interrupt Contd..

I/O DEVICE

SUSPEND

PCB3

Accumulator

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

OS

21

Save state into PCB3

Reload state from PCB2

Suspend P2

Resume P2

P3 OS P2EXECUTING

WAITING IN I/O
QUEUE

READY STATE

Context switching

SIO

Put P3 into the I/O queue

DISPATCH
IN I/O STATE EXECUTING

I/O INTERRUPT

HANDLE I/O
SUSPENDED

DISPATCH

EXECUTING

WAITING

READY STATE
WAITING

WAITING
EXECUTING

Put P3 in Ready state

Handle I/O:
Here the process waiting in the I/O

queue is moved back to the ready state after the
I/O request is completed.

22

RUNNING

END

End of Process

EOP

ABEND

TRAP

OS

PCB

stackprog TRAP

EOP

1. ABORT PROGRAM

2. ERROR MESSAGE

3. FREE RESOURSES

4. DELETE PCB

1. PROGRAM RUNS
SUCCESSFULLY

2. FREE RESOURSES

3. DELETE PCB

23

Process Synchronization

Concurrency

Definition:

Two or more processes execute
concurrently when they execute different
activities on different devices at the same time.

24

READY RUNNING Process 1

Process 2

Process 3

Concurrency Contd..

WAIT ON
DEVICE 1

WAIT ON
DEVICE 2

Concurrency Contd..

In a multiprogramming system CPU time is
multiplexed among a set of processes.

Users like to share their programs and data and
the OS must keep information integrity.

Processes are allowed to use shared data
through threads. The concurrent access to
shared data may result in data inconsistency.

25

Concurrency Contd..

Example :
Consider a variable X =4 and two programs running
concurrently
P1 P2
{ {

Load X Load X

X X+10 X X+2
Store X Store X

} }

Timer interrupt

Concurrency Contd..
The state of the process P1 is saved and the process P2
executes. The value of X is now:

4+2 = 6

After process P2 finishes execution, P1 resumes execution.
Now the value of X becomes

4+10 =14

We see that there are two different values for X

26

Concurrency Contd..

Consider the case when P1 executes completely.
The value of X will be now:

4+10 = 14

The process P2 executes and the value of X will
be changed to:

14+2 = 16

Concurrency Contd..

I/O DEVICE

4

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB1 PCB24

X

27

Concurrency Contd..

I/O DEVICE

4

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

X =4
PCB1 PCB2

Timer interrupt

X

4

Concurrency Contd..

4

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB1 PCB2

CPU is now assigned to P2

4

X

28

Concurrency Contd..

6

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB1 PCB26

X

Concurrency Contd..

4

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB1 PCB26

X = 4

X

29

Concurrency Contd..

14

IP
OV MP

INTERRUPT FLAGS MASK

TO BE DEFINED LATERPI TI I/O SVC

PCB1 PCB2

CPU is now assigned to P2

14
X = 14

X

Concurrency Contd..

Here there are two different values for the same
variable X.

This is called a Race Condition.

It occurs when processes access shared
variables without using an appropriate
synchronization mechanism.

30

Race Condition

Definition:
A race condition is an undesirable situation

that occurs when two or more operations
manipulate data concurrently and the outcome
depends on the particular order the operations
occur.

In order to avoid a race condition, it is to
necessary to ensured that only one process, at a
time, has exclusive access to the shared data.

Race Condition Contd..

The prevention of other process from
accessing a shared variable, while one process is
accessing it, is called

mutual exclusion
In order to guarantee mutual exclusion we

need some kind of synchronization mechanism.

In most synchronization schemes a physical
entity must be used to represent a resource.
This entity is often called Lock Byte or
Semaphore.

31

Process Synchronization

Concept of Critical Section:
A Critical Section is the segment

of code where a shared variable is used.

If several processes are accessing a
shared variable when one process is in its
critical section, no other process is
allowed to enter its critical section.

Process Synchronization contd..

Each process must request permission to
enter the critical section (CS).
A solution to CS problem must satisfy the
following requirements

1. Mutual exclusion
2. Progress

32

Process Synchronization contd..

Mutual exclusion: When a process is
executing in the critical section other
processes can not execute their critical
sections.
Progress: If no process is executing in its
critical section and there are processes
that wish to enter the critical section, only
one of them can enter the critical section.

Process Synchronization contd..

Test and Set
Before entering the critical section we need

to execute a Lock(x) operation and an
Unlock(x) operation before leaving the CS.
P1 P2
. .
. .
Lock(x) Lock(x)
{ {
CS CS
} }

Unlock(x) Unlock(x)

33

Process Synchronization contd..

If a system implements Test and Set as a hardware
instruction, we can implement mutual exclusion with the
help of a Boolean variable, TS, that is initialized to “0” and
two operations.
Lock Unlock
Label: If TS = 1 then goto Label TS 0

else TS 1

This is implemented in hardware

Process Synchronization contd..

The main disadvantage here is that when one
process is in the critical section all other
processes only used the CPU to execute
Test and Set.

This is called busy waiting.

To overcome this problem the concept of
Semaphores was proposed by Dijkstra.

34

Concept of Semaphores

Semaphores:

A semaphore S is an integer variable that
apart from initialization, is accessed only
through two standard “atomic” operations.

Wait
Signal

Concept of Semaphores

When a process executes a wait operation and
finds that the semaphore value is not positive
the process blocks itself, and the OS places the
process in the semaphore waiting queue.

The process will be restarted when some other
process executed the signal operation, which
changes the process state from waiting to ready.

35

Semaphores contd..

The operations were originally named as:
P means Wait
V means Signal

S

Semaphore
queue

P
C
B

P
C
B

P
C
B

value

Semaphores contd..

The semaphore operations can be defined as
follows

P(S) : inhibit interrupts
S.value S.value -1
if S.value < 0

then {
add this process to S.queue

}
end;

enable interrupts

36

Semaphores contd..

V(S):
inhibit interrupts
S.value :=S.value+1

if S.value<=0
then {

remove a process from S.queue
add process to Ready queue
}

end;

enable interrupts

Masking Interrupts…

We need to disallow or mask the interrupts
while the P(s) or the V(s) operations are
executed.

Thus the current sequence of instructions would
be allowed to execute without preemption.

37

Masking Interrupts contd…

Example
Consider the PSW

IP
INT MASK

MODE
OV

INT = 1

MASK= 0 (TI = 0)

OV MP MPTI SVC TI I/O SVCI/O

Semaphores contd..

Algorithms for P and V operations
P(S)

1. Decrement value of S by 1
2.If S<0 then

- Find current process descriptor
- Remove from processor queue
- Add to semaphore queue

3. Call Dispatcher

38

Semaphores contd..

V(S)
1. Increment value of S by 1
2. If S<=0 then

-Dequeue some process descriptor
from semaphore queue

- Add the process to ready queue
3. Call Dispatcher

Semaphores contd..
P1 P2

P(S) P(S)

V(S) V(S)

Mutual exclusion implementation with semaphores

CS CS

39

Semaphores contd..

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1
PCB2

VALUE

1

SEMAPHORE S

null

P1 Trying to enter Critical
section

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1
PCB2

VALUE

0

SEMAPHORE S

null

Semaphore is decremented
and P1 enters the Critical

Section

40

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB2
PCB1

VALUE

0

SEMAPHORE S

null

Timer Interrupt while P1
in Critical Section

Context Switch

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB2
PCB1

VALUE

0

SEMAPHORE S

null

P2 trying to Enter Critical
section

P2 executes P(S)

41

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB2
PCB1

VALUE

-1

SEMAPHORE S

null

Semaphore is decremented

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB2
PCB1

VALUE

-1

SEMAPHORE S

Semaphores contd..

PCB2 P2 is blocked

42

Semaphores contd..

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1
PCB1

VALUE

-1

SEMAPHORE S
PCB2

CPU assigned to P1

Semaphores contd..

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1

VALUE

-1

SEMAPHORE S
PCB2

P1 executes V(S)

43

Semaphores contd..

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1

VALUE

0

SEMAPHORE S
PCB2

Semaphore is incremented

Semaphores contd..

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1
PCB2

VALUE

0

SEMAPHORE S
PCB2

P2 is sent back
to ready state.

44

Semaphores contd..

READY RUNNING

LOADER INTERRUPT HANDLER DISPATCHER RUNTIME LIBRARY

PCB1
PCB2

VALUE

0

SEMAPHORE S

null

I/O Procedures

45

I/O Procedures

We shall now consider how the operating
system handles a request for I/O from a user
process.

A request from a process will be a system call
to the operating system of the form.

DOIO(device, mode, amount, destination,
semaphore)

I/O Procedures contd…

DOIO is the name of a system I/O procedure.

Device is the number of the device on which the
I/O operation will take place.

Mode indicates the operation and sometimes the
character code to be used.

Amount amount of data to be transferred.

Destination location into which the transfer is to occur

Semaphore is the address of a semaphore request
serviced

46

I/O Procedures contd…

The I/O procedure assembles the parameters of
the request into an I/O request block and adds
it to the I/O request queue.

The I/O request queue is associated to the
descriptor of the concerned device and is
serviced by a separate process called device
handler.

I/O Procedures contd…

The I/O procedure notifies the device handler
that a request has been placed on the I/O
request queue by the request pending signal and
when the operation is complete the device
handler notifies the user by the means of
request serviced .
A device handler operates in a continuous cycle
during which it removes an IORB from the
request queue initiates the corresponding I/O
operation and waits for that operation to be
completed.

47

I/O Procedures contd…

DEVICE DESCRIPTOR

Next device in
device
structureIDENTIFICATION

STATUS

CHARACTERISTICS

DEVICE REQUEST

QUEUE

CURRENT IORB

SEMAPHORE

Request pending
SEMAPHORE

Operation complete

DESTINATION

QUALITY
MODE

Originating
process

Error
location

Semaphore
request
serviced

IORB

Remainder
of request
serviced

Translation
tables

Process descriptor
of current user

Sketch of I/O system

User

DOIO (stream, mode,
semaphore, amount,
destination);

wait (request
serviced); test
error location

I/O
Procedure

exit;

Device
Handler

Interrupt
routine

Wait (request
pending);

Identify device;
perform error
checks; assemble
IORB; place
IORB on device
request queue;

signal(request
pending);

Locate device
descriptor;

Signal (operation
complete);

Flow of Control

Semaphore
synchronization

pick IORB from
request queue;
Initiate I/O;
wait (operation
complete);
perform error
checks; performance
error checks;
perform
housekeeping;
signal(request
serviced);
delete IORB

