

Exokernel - An OS Architecture for Application-Level Resource Managment

Shufang Wu

shufang.wu@ieee.org Thursday, March 10, 2005

Exokernel: An OS Architecture For Application-Level Resource Management

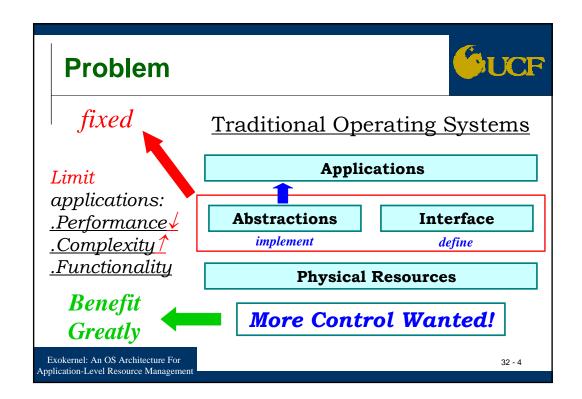
32 - 1

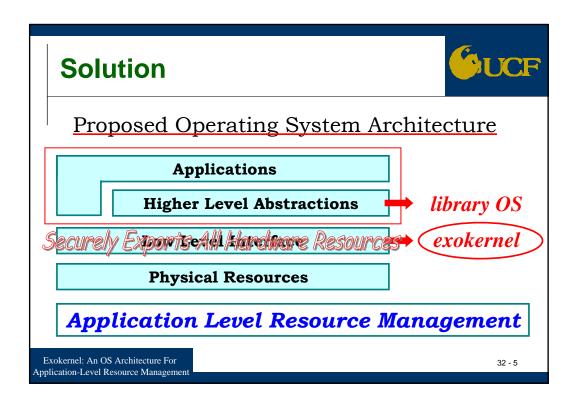
Agenda

- Paper Description (1 Slide)
- What is the Observed Problem? (1 Slide)
- What is the Proposed Solution? (10 Slides)
- How is the Solution? (15 Slides)
- What We Learned (1 Slide)
- References
- Q & A

Exokernel: An OS Architecture For Application-Level Resource Management

Paper Description




- Pages: 16 (including 2 pages of references)
- Two-columns
- Main text:
 - -Font size: \Rightarrow 9

Too much! I have to choose some.

Exokernel: An OS Architecture For Application-Level Resource Management

Solution - Exokernel

- Applications Know Better Than OS
- A Simple, Thin veneer:
 - Multiplex and export physical resources
 securely through a set of primitives
- Library OS:
 - -Simpler and more specialized
 - Portability and compatibility
 - Simplified by modular design

Exokernel: An OS Architecture For Application-Level Resource Management

Solution – Design (1133)

- One Goal
 - -Give applications more freedom in managing
- One Way
 - Separate protection from management
- **Three** Tasks
 - -Track ownership -Secure binding
 - Ensure protectionVisible revocation
 - Revoke access
- **Three** Techniques

 - Abort protocol

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 7

Solution – Design Principles

- Securely expose hardware
 - The central tenet of the architecture
 - All privileged instructions, hardware DMA capabilities, and machine resources
- Expose allocation
 - Allow to request specific physical resources
- Expose Names
 - Remove a level of indirection: Translation
- **Expose Revocation**
 - Allow to relinquish

Exokernel: An OS Architecture For Application-Level Resource Management

Solution – Design Policy

- Exokernel Hands over
 - Resource policy decisions to applications/library OS
- Exokernal must include policy to
 - Arbitrate between competing applications/library OS
 - At this point, no different from traditional kernels

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 9

Solution – Secure Bindings

- Is A Protection Mechanism
 - decouple authorization from the use
- Can Improve Performance
 - Protection checks expressed in simple ops
 - Perform authorization only at bind time
- Primitives can be implemented in h/w or s/w
 - Hardware mechanisms
 - Software caching
 - Downloading application code

Exokernel: An OS Architecture For Application-Level Resource Management

Secure Bindings – Examples

- Multiplexing Physical Memory
 - Using self-authenticating capability and address translation hardware
 - To ensure protection: guards access by requiring to present the capability
 - To break: change capability and free resource
- Multiplexing the Network
 - A software support is provided by packet filters
 - Application code, *filters*, is downloaded into kernel

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 11

Secure Bindings – Examples

- Application-specific Safe Handlers (ASH)
 - An example of downloading code
 - Downloaded into kernel to initiate a message
 - Associated with a packet filter
 - Runs on package reception

Exokernel: An OS Architecture For Application-Level Resource Management

Solution – Visible Revocation

- Way to Reclaim and Break
- Compared to Invisible Revocation
- Can Guide De-allocation and Have Knowledge
- A Requirement of Physical Naming

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 13

Solution – Abort Protocol

- Exokernel Takes Back Resources "By Force"
- Break All Bindings and Inform
- Repossession Vector
 - -Record the forced loss of resource
- Repossession Exception

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15-1)

- Prototype
 - Aegis (exokernel), and ExOS (library OS)
- Aegis
 - -CPU, MEM, Exception, TLB, Interrupt, NI
- ExOS
 - Process, VM, User-level exceptions,Interprocess abstractions, Network protocols
 - -Extensibility

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 15

How's the Solution? (15-2)

Machine	Processor	SPEC rating	MIPS
DEC2100 (12.5 MHz)	R2000	8.7 SPECint89	~ 11
DEC3100 (16.67 MHz)	R3000	11.8 SPECint89	~ 15
DEC5000/125 (25 MHz)	R3000	16.1 SPECint92	~ 25

Table 1: Experimental platforms.

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15 - 3)

- Test Four Hypotheses
 - -Exokernel can be very efficient
 - Low-level, secure multiplexing of hardware resources can be implemented efficiently
 - Traditional OS abstractions can be implemented efficiently at application level
 - Applications can create special-purpose implementation of these abstractions

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 17

How's the Solution? (15-4)

Aegis:

As an Exokernel

System call	Description
Yield	Yield processor to named process
Scall	Synchronous protected control transfer
Acall	Asynchronous protected control transfer
Alloc	Allocation of resources (e.g., physical page)
Dealloc	Deallocation of resources

Table 2: A subset of the Aegis system call interface.

Primitive operations	Description
TLBwr	Insert mapping into TLB
FPUmod	Enable/disable FPU
CIDswitch	Install context identifier
TLBvadelete	Delete virtual address from TLB

Table 3: A sample of Aegis's primitive operations.

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15-5)

Aegis: Base Costs

Machine	os	Procedure call	Syscall (getpid)
DEC2100	Ultrix	0.57	32.2
DEC2100	Aegis	0.56	3.2 / 4.7
DEC3100	Ultrix	0.42	33.7
DEC3100	Aegis	0.42	2.9 / 3.5
DEC5000	Ultrix	0.28	21.3
DEC5000	Aegis	0.28	1.6 / 2.3

Table 4: Time to perform null procedure and system calls. Two numbers are listed for Aegis's system calls: the first for system calls that do not use a stack, the second for those that do. Times are in microseconds.

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 19

How's the Solution? (15-6)

Aegis: Exceptions

Machine	OS	unalign	overflow	coproc	prot
DEC2100	Ultrix	n/a	208.0	n/a	238.0
DEC2100	Aegis	2.8	2.8	2.8	3.0
DEC3100	Ultrix	n/a	151.0	n/a	177.0
DEC3100	Aegis	2.1	2.1	2.1	2.3
DEC5000	Ultrix	n/a	130.0	n/a	154.0
DEC5000	Aegis	1.5	1.5	1.5	1.5

Table 5: Time to dispatch an exception in Aegis and Ultrix; times are in microseconds.

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15-7)

Aegis: providing protected control transfer as substrate for efficient IPC implementation

OS	Machine		Transfer cost
Aegis	DEC2100	12.5MHz	2.9
Aegis	DEC3100	16.67MHz	2.2
Aegis	DEC5000	25MHz	1.4
L3	486	50MHz	9.3 (normalized)

Table 6: Time to perform a (unidirectional) protected control transfer; times are in microseconds.

L3: the fastest published result.

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 21

How's the Solution? (15 - 8)

Aegis: using Dynamic Packet Filter

Filter	Cold Cache	Warm Cache
MPF	71.0	35.0
PATHFINDER	39.0	19.0
DPF	7.5	1.5

Table 7: Time on a DEC5000/200 to classify TCP/IP headers destined for one of ten TCP/IP filters; times are in microseconds.

MPF: a widely used packet filter engine.

PATHFINDER: fastest packet filter engine.

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15 - 9)

Conclusion for Aegis

An exokernel can be implemented efficiently!

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 23

How's the Solution? (15-10)

ExOS:

Manage OS abstractions at application level

Focus on:

- -IPC Abstractions
- -Application-level Virtual Memory
- -Remote Communication

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15 – 11)

ExOS: IPC Abstractions

Machine	os	pipe	pipe'	shm	lrpc
DEC2100	Ultrix	326.0	n/a	187.0	n/a
DEC2100	ExOS	30.9	24.8	12.4	13.9
DEC3100	Ultrix	243.0	n/a	139.0	n/a
DEC3100	ExOS	22.6	18.6	9.3	10.4
DEC5000	Ultrix	199.0	n/a	118.0	n/a
DEC5000	ExOS	14.2	10.7	5.7	6.3

Table 8: Time for IPC using pipes, shared memory, and LRPC on ExOS and Ultrix; times are in microseconds. Pipe and shared memory are unidirectional, while LRPC is bidirectional.

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 25

How's the Solution? (15 – 12)

ExOS: Virtual Memory measured by matrix multiplication

Machine	os	matrix
DEC2100	Ultrix	7.1
DEC2100	ExOS	7.0
DEC3100	Ultrix	5.2
DEC3100	ExOS	5.2
DEC5000	Ultrix	3.8
DEC5000	ExOS	3.7

Table 9: Time to perform a 150x150 matrix multiplication; time in seconds.

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15 – 13)

ExOS: Virtual Memory On Seven **Experiments of Particular Interest**

Machine	os	dirty	protl	prot100	unprot100	trap	appell	appel2
DEC2100	Ultrix	n/a	51.6	175.0	175.0	240.0	383.0	335.0
DEC2100	ExOS	17.5	32.5	213.0	275.0	13.9	74.4	45.9
DEC3100	Ultrix	n/a	39.0	133.0	133.0	185.0	302.0	267.0
DEC3100	ExOS	13.1	24.4	156.0	206.0	10.1	55.0	34.0
DEC5000	Ultrix	n/a	32.0	102.0	102.0	161.0	262.0	232.0
DEC5000	ExOS	9.8	16.9	109.0	143.0	4.8	34.0	22.0

Table 10: Time to perform virtual memory operations on ExOS and Ultrix; times are in microseconds. The times for appel1 and appel2 are per page.

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 27

How's the Solution? (15 – 14)

ExOS: Remote Communication

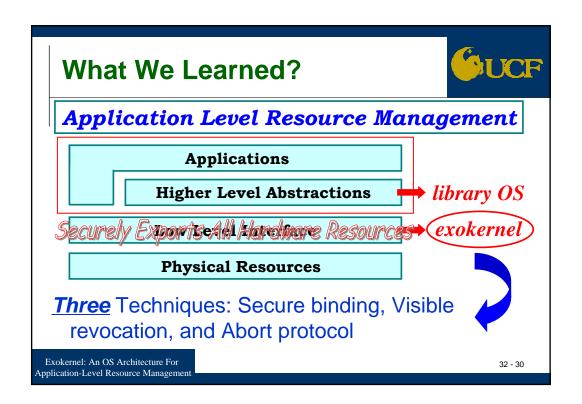
Machine	OS	Roundtrip latency
DEC5000/125	ExOS/ASH	259
DEC5000/125	ExOS	320
DEC5000/125	Ultrix	3400
DEC5000/200	Ultrix/FRPC	340

Table 11: Roundtrip latency of a 60-byte packet over Ethernet using ExOS with ASHs, ExOS without ASHs, Ultrix, and FRPC; times are in microseconds.

FRPC: fastest RPC on comparable hardware.

Exokernel: An OS Architecture For Application-Level Resource Management

How's the Solution? (15 – 15)



ExOS: No Conclusion in Paper ©

Based on the results of these experiments, we *conclude* that:

The exokernel architecture is a *viable* structure for high-performance, extensible operating systems.

Exokernel: An OS Architecture For Application-Level Resource Management

References

 Dawson R. Engler, M. Frans Kaashoek, and James O'Toole Jr., "Exokernel: An Operating System Architecture for Application-Level Resource Management", Proc. Of 15th Symposium on Operating System Principles, December 1995, pp. 251-266

Exokernel: An OS Architecture For Application-Level Resource Management

32 - 31

Thank You!

Exokernel: An OS Architecture For Application-Level Resource Management