
Initialization and Process
Initiation in UNIX

Chapters 6 and 7 from Lions' Commentary on
UNIX

Presented by Wade Spires
COP 5611

March 22, 2005

Outline

Overview
 Initializiation

Initialize Kernel Segments
Enable Memory Management

Process Initiation
Create System Process
Create Init Process

Summary
References

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

Process Initiation

Memory Management

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

Process Initiation

Memory Management

Memory Management
(start)

 Initialize kernel segments
 Initialize user segments
 Initialize I/O segments
Start Memory Management Unit (MMU)

PDP-11/40 Memory

 8 kernel mode memory pages
 8 user mode memory pages
 32 to 4096 word page length

(Unix uses 4096 word page length)
 3 modes of memory access control

Virtual to Physical Address
(16 bits to 18 bits)

Virtual Address

Displacement Field

Construction of Physical Address

Active Page Registers (APR)

APR: PAR and PDR

PAR—Base Address

PDR—Page Description

Example

1010 0000 1000 1010

101 0000010001010

101 0000010 001010

Virtual Address

APF DF

APF BN DIB

Example
0011 1100 1100 1110

PSW

APR0

APR1

APR2

APR3

APR4

APR5

APR6

APR7

APR0

APR1

APR2

APR3

APR4

APR5

APR6

APR7

PDRPAR PDRPAR
Kernel User

101 0000010 001010
APF BN DIB

Example

APR5

101 0000010 001010
APF BN DIB

0000 0000 0000 1011 0111 1111 0000 0110
PDRPAR

Virtual Address

0000010
000000001011

 000000001101 001010
Physical Address

+

Important Memory Locations
(m40.s)

USIZE = 16
PS = 177776
SSR0 = 177572
KISA0 = 172340
KISA6 = 172354
KISD0 = 172300
UISA0 = 177640
UISA1 = 177642
UISD0 = 177600
UISD1 = 177602
 IO = 7600

Size of User Block (*64 = 1024 B)
Program Status Word
Status Register
Kernel Segment Address Register #0
Kernel Segment Address Register #6
Kernel Segment Descriptor Register #0
User Segment Address Register #0
User Segment Address Register #1
User Segment Descriptor Register #0
User Segment Descriptor Register #1
I/O Segment Register

Initialize Kernel Segments
(start)

 mov $KISA0, r0
 mov $KISD0, r1
 mov $200, r4
 clr r2
 mov $6, r3
1:
 mov r2, (r0)+
 mov $77406, (r1)+
 add r4, r2
 sob r3, 1b

for r6 = 6 to 0 (each segment register)

start at first address and descriptor
registers

increment pointer posit ions by 200 to
0, 200, ..., 1200

8
 blocks

address set to current pointer posit ion
descriptor set to 4K size and read-write

Initialize User Segment
(start)

mov $_end + 63., r2
address (KISA6) set to
mark end of program code
and data area in user

descriptor set to 1024B
size and read-write

Right-shift bits by 6

Clear each bit in r2 that is set in !1777 (upper 6 bits)

mov r2, (r0)+
mov $USIZE - 1 \< 8 | 6, (r1)+

ash $-6, r2

bic $!1777, r2

_end rounded to multiple of 64

Initialize I/O Segment
(start)

 mov $IO, (r0)+
 mov $77406, (r1)+

address set to I/O segment
descriptor set to 4K size and read-write

8th segment (KISA7) mapped into highest 4K
word segment of the physical address space

Start MMU
(start)

mov $_u + [USIZE*64.], sp

inc SSR0

set stack pointer to highest
word of per process data area

Memory management enabled when right-most
bit of Status Register (SSR0) is set.

enable memory management

Call main
(start)

mov $30000, PS

jsr pc, _main

set previous mode of program
status word to user
(30000

8
 = 11 000...0

2
)

call main

mov $170000, -(sp)
clr -(sp)
rt t

main returns and does this
much later...

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

Initial Conditions in main

Processor running at priority zero in kernel mode
and with previous mode set to user

Kernel mode segmentation registers set and MMU
enabled

All data areas used by the OS initialized
Stack pointer (sp or r6) points to return address in

start

Summary of main

1. Zero out and free all of core memory
2. Determine amount of memory available
3. Initialize swap space
4. Set up system/kernel process
5. Determine type of clock
6. Initialize buffer pools
7. Call newproc() to create second process
8. Call sched()

Summary of main

1. Zero out and free all of core memory
2. Determine amount of memory available
3. Initialize swap space
4. Set up system/kernel process
5. Determine type of clock
6. Initialize buffer pools
7. Call newproc() to create second process
8. Call sched()

How to handle processes?

In main, we need to:
● Set up system/kernel process
● Call newproc() to create second process
● Call sched()

First, need to define two structures
● proc
● user

Process Structure
(proc.h)

struct proc {
p_stat;
p_flag;
p_pri;
p_pid;
p_ppid;
p_addr;
p_size;
p_textp;
...

} proc[NPROC];

● Current state
● Process t raits
● Priority
● User ID
● Parent ID
● Address of program 's data segm ent
● Size of program im age in blocks
● Pointer to text segm ent

struct user {
u_rsav;
u_qsav;
u_ssav;
u_procp;
u_uisa[16];
u_uisd[16];
u_tsize;
u_dsize;
u_ssize;
...

} u;

● Arrays for storing registers r5 and r6
(environment and sp)

User Structure
(user.h)

● Address of corresponding proc st ructure

● User page address and descript ion registers

● Size of text , data, and stack segments

User Structure
(user.h)

35 fields in total also concerned with:
● Saving float ing point registers
● User ident ificat ion
● Param eters for input /output operat ions
● File access cont rol
● System call param eters
● Account ing inform at ion

Proc Versus User

One allocated per process
Never swapped from

memory
Must be available any time
Points to user

struct proc {
...

} proc[NPROC];

One allocated per process
May be swapped when not

running
Only one available at a time
Points to proc

struct user {
...

} u;

proc user

Main Continued

In main, we can now:
● Set up system/kernel process
● Call newproc() to create second process
● Call sched()

Set up system process
(main.c)

Set address of process's
location in memory

Set size of process's
segment

Mark the process as
runnable, in memory, and
should not be swapped out

Save its proc position

proc[0].p_addr = *ka6;

proc[0].p_size = USIZE;

proc[0].p_stat = SRUN;
proc[0].p_flag |= SLOAD;
proc[0].p_flag |= SSYS;

u.u_procp = &proc[0];

Main Again

if(newproc())
{

expand(USIZE + 1);
estabur(0, 1, 0, 0);
copyout(icode, 0, sizeof(icode));
return;

}
sched();

In main, we can now:
● Set up system/kernel process
● Call newproc() to create second process
● Call sched()

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

newproc

 Initialize second “proc” structure—proc[1]
Locate unused slot in proc table
Copy proc[0]'s fields into proc[1]
Save environment and stack pointers into u.u_rsav
Allocate data area in memory for proc[1]
Copy proc[1]'s data area (including u.u_rsav) into

proc[1]'s data area
Set proc[1]'s “u.u_procp” to &proc[1]

Exact copy of proc[0] made, except value of
“u.u_procp” in proc[1] is “&proc[1]”

Return 0

Main Again

if(newproc())
{

expand(USIZE + 1);
estabur(0, 1, 0, 0);
copyout(icode, 0, sizeof(icode));
return;

}
sched();

In main, we can now:
● Set up system/kernel process
● Call newproc() to create second process
● Call sched()

0 returned

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

Scheduling the First Process
(sched)

See if anyone wants to be swapped in
swap out processes until there is room

Disable interrupts
Find process that is runnable but not in memory

Search fails the first time—proc[0] and proc[1] are
the only processes and are both in memory

Call sleep() to wait for runnable, swapped process
(priority set to max = -100)

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

sleep

Save PSW
Get current process—proc[0]
Priority is negative, so set status of current process

to sleep
Call swtch()

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

swtch
 Static variable p set to process 0 initially (value

preserved between calls)
 Call savu() to save the stack pointer and the

environment pointer for the current process in u.u_rsav
 Call retu() on proc[0] (context switch from 0 to 0 the

first time)
Reset kernel address register for segment #6 to

value passed as an argument
Reset the stack and environment pointers to values

appropriate to the revised current process, whose
execution is about to be resumed

swtch (2)
 Search for highest priority, runnable process (starting

at end)
 Process 1 found
 retu() called to switch to process 1
 Call sureg() to copy appropriate values for current

process into user mode segmentation registers, which
were stored earlier in u.u_uisa and u.u_uisd (0s copied
the first time)

 Return 1... to main! (How?!)

newproc

 Initialize second “proc” structure—proc[1]
Locate unused slot in proc table
Copy proc[0]'s fields into proc[1]
Save environment and stack pointers into u.u_rsav
Allocate data area in memory for proc[1]
Copy proc[1]'s data area (including u.u_rsav) into

proc[1]'s data area
Set proc[1]'s “u.u_procp” to &proc[1]

Exact copy of proc[0] made, except value of
“u.u_procp” in proc[1] is “&proc[1]”

Return 0

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

Main Again

if(newproc())
{

expand(USIZE + 1);
estabur(0, 1, 0, 0);
copyout(icode, 0, sizeof(icode));
return;

}
sched();

In main, we can now:
● Set up system/kernel process
● Call newproc() to create second process
● Call sched()

1 returned

main Again
Call expand() to allocate new, larger area for process 1

and copy original data into it (no original data for proc[1])
Call estabur() to set prototype segmentation registers (1

data segment for proc[1])
Call copyout() to copy the array “icode” into start of user

space
Return to start in m40.s after the jump to main()

main Again
Call expand() to allocate new, larger area for process 1

and copy original data into it (no original data for proc[1])
Call estabur() to set prototype segmentation registers (1

data segment for proc[1])
Call copyout() to copy the array “icode” into start of user

space
Return to start in m40.s after the jump to main()

estabur

Set up prototype segmentation registers:
u.u_uisa
u.u_uisd

Segments created:
 Text—Read-only
 Data—Read-write
 Stack—Read-write, expands down

Text

Data

Stack

Virtual Address Space

main Again
Call expand() to allocate new, larger area for process 1

and copy original data into it (no original data for proc[1])
Call estabur() to set prototype segmentation registers (1

data segment for proc[1])
Call copyout() to copy the array “icode” into start of user

space
Return to start in m40.s after the jump to main()

Overview

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

start Again

Execute in user mode the instruction at user mode
address 0— icode (/etc/init)

mov $170000, -(sp)
clr -(sp)
rtt

Execute icode—init program (main.c)

int icode[] =
{
 0104413, // sys exec; init; initp
 0000014,
 0000010,
 0000777, // br .
 0000014, // initp: init; 0
 0000000,
 0062457, // init: </etc/init\0>
 0061564,
 0064457,
 0064556,
 0000164
};

Equivalent C Program

char* init = “/etc/init”;
main() {

execl(init, init, 0);
while(1) ;

}

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)
7. Scheduler/Disable Interrupts

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)
7. Scheduler/Disable Interrupts
8. proc[0] goes to sleep

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)
7. Scheduler/Disable Interrupts
8. proc[0] goes to sleep
9. Switch to proc[1] (old proc[0])

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)
7. Scheduler/Disable Interrupts
8. proc[0] goes to sleep
9. Switch to proc[1] (old proc[0])
10. Load “init” into proc[1]

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)
7. Scheduler/Disable Interrupts
8. proc[0] goes to sleep
9. Switch to proc[1] (old proc[0])
10. Load “init” into proc[1]
11. Run init

Summary

start
(m40.s)

main
(main.c)

sched
(main.c)

sleep
(slp.c)

swtch
(slp.c)

newproc
(slp.c)

1. User turns computer on
2. Segments initialized
3. Memory management enabled
4. Initialize various components
5. Initialize system process (#0)
6. Copy system process (0 -> 1)
7. Scheduler/Disable Interrupts
8. proc[0] goes to sleep
9. Switch to proc[1] (proc[0] copy)
10. Load “init” into proc[1]
11. Run init
12. Initialization complete!

References

6.828 / Fall 2004. 6.828: Operating System Engineering.
12 March 2005
<http://www.pdos.lcs.mit.edu/6.828/2004/index.html>.

John Lions. Lions' Commentary on UNIX 6th Edition with
Source Code. Peer-to-Peer Communications, 1996.

PDP11/40 Processor Handbook. Digital Equipment
Corporation. 1972.

