Initialization and Process
Initiation 1n UNIX

Chapters6 and 7 from Lions Commentary on
UNI X

Presented by Wade Spires
COP 5611
March 22, 2005

Outline

¢ Overview
¢ Initializiation

¢ Initialize Kernel Segments

¢ Enable Memory Management
¢ Process Initiation

¢ Create System Process

¢ Create Init Process

¢ Summary
¢ References

Overview

i

Start

NEewpProc
(dp.c)

NEewpProc
(dp.c)

(dp.c)

Process | nitiation

NEewpProc
(dp.c)

(dp.c)

Process | nitiation

Memory Management
(start)

nitialize kernel segments

nitialize user segments

nitialize 1/0 segments

¢ Start Memory Management Unit (MMU)

PDP-11/40 Memory

¢ 8 kernel mode memory pages
¢ 8 user mode memory pages

¢ 32 to 4096 word page length
¢ (Unix uses 4096 word page length)
¢ 3 modes of memory access control

Kernel Address Space Mapping

| KB for user struciure —=

— <— ROUNDUP {end, 64 byte)

Kernel extends from () to "end”

Virtual Physical

Virtual to Physical Address

(16 bits to 18 bits)

15 13 12

[_L APF J OF
i
ACTWE PAGE FIELD DISPLACEMENT FIELD
Virtua Address

12 & B

T

BLOCK NUMBER DISPLACEMENT IN BLOCK

Displacement Field

Construction of Physical Address

BLOCK NO VIRTUAL ‘
1 ADDRESS

PAGE ADDRESS FIELD ACTIVE PAGE
REGISTER

o
PHYSICAL B8LOCK ND. DIB

L

(DISPLACEMENT IN BLOCK)

Active Page Registers (APR)

15 14 13

PROCESSOR STATUS WORD
o | |

| |

KERNAL {00Q) USER (11)

ACTIVE
PAGE
REGISTERS

15

PAR] ————— - PDR
PAGE ADDRESS REGISTER ' PAGE DESCRIPTION REGISTER

APR: PAR and PDR

15 g M

[o

PAR—Base Address

15 14 8 7 6 5 4 3 2 t 0
[T oLF v o] - |]
i]

PDR—Page Description

Example

1010 0000 1000 1010

Virtual Address

0000010001010

DF

101

0000010 001010

APF

BN DIB

Example

101 0000010 001010 0011 1100 1100 1110
APF BN DIB PSW

Kerngl = User
PAR PDR PAR PDR

Example

|
Virtual Address 101 0000010 001010
APF BN DIB

0000 0000 0000 1011 0111 1111 0000 0110

PAR PDR

000000001011=—
+ 0000010«

000000001101 001010
Physical Address

Kernel Address Space Mapping

KB for user structure —=

— <— ROUNDUP (end, 64 byte)

Kernel extends from O to "end”

Virtual Physical

Important Memory Locations
(m40.s)

¢ USIZE = 16
*PS =1/77776
¢®SSRO =177572
SAO0 =172340
SA6 =172354
SDO =1/72300
¢ UISAO =177640
¢®UISAL =177642
¢ UISDO =17/7600
¢ UISD1 =177602
¢|0 = 7600

Size of User Block (*64 = 1024 B)
Program Status Word

Status Register

Kernel Segment Address Register #0
Kernel Segment Address Register #6
Kernel Segment Descriptor Register #0
User Segment Address Register #0
User Segment Address Register #1
User Segment Descriptor Register #0
User Segment Descriptor Register #1
/O Segment Register

mov
mov
mov
clr
mov

mov
mov

add
sob

Initialize Kernel Segments
(start)

$KISAO, r0 start at first address and descriptor
$KISDO, r1 registers

Increment pointer positions by 200 to
0, 200, ..., 1200 blocks

for r6 = 6 to O (each segment register)

r2, (r0)+ address set to current pointer position
$77406, (rl)+ descriptor set to 4K size and read-write

r4, r2
r3, 1b

Initialize User Segment
(start)

e address () set to

mark end of program code
» bic $11777,r2 and data area Iin user

mov r2, (rO)+
mov SUSIZE-1\< 8|6, (r1)+ descriptor set to 1024B
size and read-write

_end rounded to multiple of 64
—Right-shift bitsby 6

—Cleareach bhitinr2that isset in!1777 (upper 6 bits)

Initialize 1/0 Segment
(start)

mov $I0, (r0)+ address set to 1/0 segment
mov $77406, (r1)+ descriptor set to 4K size and read-write

8" segment (KISA7) mapped into highest 4K
word segment of the physical address space

Start MMU

(start)

* set stack pointer to highest
MoV $—u +[USIZE*64.], sp word of per process data area

INcC SSRO enable memory management

Memory management enabled when right-most
bit of Status Register (SSRO) Is set.

Call main
(start)

set previous mode of program
mov $30000, PS status word to user

(30000, =11 000...0)
JSr pc, _main call main

mov $170000, -(sp) main returns and does this
clr -(sp) much later...
ret

Overview

NEWpProc
(dp.c)

i

Start

Initial Conditions 1n main

¢ Processor running at priority zero in kernel mode
and with previous mode set to user

¢ Kernel mode segmentation registers set and MMU
enabled

¢ All data areas used by the OS initialized

¢ Stack pointer (sp or r6) points to return address In
Start

1
2
3
A
5
6
4
8

Summary of main

. Zero out and free all of core memory

. Determine amount of memory available
. Initialize swap space

. Set up system/kernel process

. Determine type of clock

. Initialize buffer pools

. Call newproc() to create second process
. Call sched()

1
2
3
A
5
6
4
8

Summary of main

. Zero out and free all of core memory

. Determine amount of memory available
. Initialize swap space

. Set up system/kernel process

. Determine type of clock

. Initialize buffer pools

. Call newproc() to create second process
. Call sched()

How to handle processes?

In main, we need to:
* Set up system/kernel process
* Call newproc() to create second process

e Call sched()

First, need to define two structures
° proc
°* user

Process Structure
(proc.h)

struct proc {

p_stat; e Current state

0_flag; * Process traits

P_Pri, * Priority

0_pid; e User ID

D_ppid; e Parent ID

0 _addr; * Address of program's data segment
D _Size, * Size of program image in blocks
D_textp; * Pointer to text segment

} pf.dc[NPROC |,

User Structure

(user.h)

struct user {

u_rsav, e Arrays for storing registers r5 and r6

u_dgsayv, (environment and sp)
U_ssav;

U_procp, * Address of corresponding proc structure

u_uisa[16]; o |
u_uisd[16]; User page address and description registers

u_tsize;

U_dS_ize; e Size of text, data, and stack segments
u_ssize;

bu;

User Structure

(user.h)

35 fields in total also concerned with:
 Saving floating point registers

* User identification
* Parameters for input/output operations

* File access control
e System call parameters
e Accounting information

Proc Versus User

ProcC user

¢ One allocated per process € One allocated per process

¢ Never swapped from ¢ May be swapped when not
memory running

¢ Must be available any time € Only one available at a time

¢ Points to user ¢ Points to proc

struct proc { struct user {

}pf.dc[NPROC |, }u;m

Main Continued

In main, we can now:
 Set up system/kernel process
* Call newproc() to create second process

* Call sched()

Set up system process

(main.c)

proc[0] .p_addr = *ka6; ¢ Set address of process's
location in memory

¢ Set size of process's

proc[0].p_stat = SRUN; segment

proc{0].p_flag |- SLOAD; ¢ Mark the process as

procl0].p_flag |= SSY'S, runnable, in memory, and

U.U_procp = & proc{0]: should not be swapped out

proc[0].p size = USIZE;

¢ Save Its proc position

Main Again

In main, we can now:

* Set up system/kernel process

e Call newproc() to create second process
* Call sched()

if(newproc())
{
expand(USIZE + 1);
estabur(0, 1,0, 0);
copyout(icode, 0, sizeof(icode));
return;

}
sched();

Overview

i

Start

.
newproc

(SIU

newproc

¢ Initialize second “proc” structure—proc|1]
¢ Locate unused slot in proc table
¢ Copy proc|O]'s fields into proc|[1]
¢ Save environment and stack pointers into u.u_rsav
¢ Allocate data area in memory for proc|[1]
¢ Copy proc|[1]'s data area (including u.u_rsav) into
proc[l]'s data area
¢ Set proc[1]'s “u.u_procp” to &proc[l]

¢ Exact copy of proc[0] made, except value of
“u.u_procp” in proc|1] is “&proc[1]”
¢ Return O

Main Again

In main, we can now:

* Set up system/kernel process

e Call newproc() to create second process
e Call sched()

If(newproc()) - 0 returned
{

expand(USIZE + 1);

estabur(0,1,0,0);

copyout(icode, 0O, sizeof(icode));

return;
}

sched();

Overview

!

Start

newproc

(d p.c)

Scheduling the First Process
(sched)

See if anyone wants to be swapped in
swap out processes until there is room

¢ Disable interrupts

¢ Find process that is runnable but not In memory
¢ Search fails the first time—proc[0] and proc|[1] are

the only processes and are both in memory
¢ Call sleep() to wait for runnable, swapped process
(priority set to max = -100)

Overview

NewpProc
(dp.c)

i

Start

sleep

¢ Save PSW
¢ Get current process—proc|0]
¢ Priority Is negative, so set status of current process

to sleep
¢ Call swtch()

Overview

NewpProc
(dp.c)

i

Start

swich

¢ Static variable p set to process O initially (value
preserved between calls)

¢ Call savu() to save the stack pointer and the
environment pointer for the current process in u.u_rsav

¢ Call retu() on proc|0] (context switch from O to O the
first time)

¢ Reset kernel address register for segment #6 to
value passed as an argument

¢ Reset the stack and environment pointers to values
appropriate to the revised current process, whose
execution is about to be resumed

swtch (2)

¢ Search for highest priority, runnable process (starting
at end)

¢ Process 1 found

¢ retu() called to switch to process 1

¢ Call sureg() to copy appropriate values for current
process into user mode segmentation registers, which

were stored earlier in u.u_uisa and u.u_uisd (Os copied
the first time)
¢ Return 1... to main! (How?!)

newproc

¢ Initialize second “proc” structure—proc|1]
¢ L ocate unused slot in proc table
¢ Copy procl0]'s fields into proc[1]
¢ Save environment and stack pointers into u.u_rsav
¢ Allocate data area in memory for proc[1]
¢ Copy proc|l]'s data area (including u.u_rsav) into
proc[l]'s data area
¢ Set proc[1]'s “u.u_procp” to &proc[l]

¢ Exact copy of proc[0] made, except value of
“u.u_procp” in proc[1] is “&proc[1]”
¢ Return O

Overview

NewpProc
(dp.c)

i

Start

Main Again

In main, we can now:

* Set up system/kernel process

e Call newproc() to create second process
e Call sched()

If(newproc()) - 1 returned

{
expand(USIZE + 1);

estabur(0, 1,0,0);
copyout(icode, O, sizeof(icode));
return;

}
sched();

¢ Cal
ano

¢ Cal

main Again

expand() to allocate new, larger area for process 1
copy original data into it (no original data for proc[1])

estabur() to set prototype segmentation registers (1

data segment for proc[1])

¢ Call copyout() to copy the array “icode” into start of user
space

¢ Return to start in m40.s after the jJump to main()

¢ Cal
ano

¢ Cal

main Again

expand() to allocate new, larger area for process 1
copy original data into it (no original data for proc[1])

estabur() to set prototype segmentation registers (1

data segment for proc[1])

¢ Call copyout() to copy the array “icode” into start of user
space

¢ Return to start in m40.s after the jJump to main()

estabur

Set up prototype segmentation registers:
®Uu.u_uisa
¢ u.u_uisd

Segments created.:
¢ Text—Read-only
¢ Data—Read-write
¢ Stack—Read-write, expands down

Text

Virtual Address Space

¢ Cal
ano

¢ Cal

main Again

expand() to allocate new, larger area for process 1
copy original data into it (no original data for proc[1])

estabur() to set prototype segmentation registers (1

data segment for proc[1])

¢ Call copyout() to copy the array “icode” into start of user
space

¢ Return to start in m40.s after the jJump to main()

Overview

NewpProc
(dp.c)

i

Start

start Again

¢ Execute In user mode the instruction at user mode
address 0— icode (/etc/init)

mov $170000, -(sp)

clr -(sp)
rt

Execute icode—Init program (main.c)
Int icode]] =
{

0104413, /I sys exec; Init; initp

0000014,

0000010,

0000777, /1 br .

0000014, // initp: Init; O
0000000,

0062457, /I init: </etc/init\0O>
0061564,

0064457,

0064556,

0000164

Equivalent C Program

char* init = “/etc/init”;
main() {
execl(init, init, 0);
while(1) ;
]

Summary

NewpProc
(dp.c)

Summary

1. User turns computer on

NewpProc
(dp.c)

Summary

1. User turns computer on
~ > 2. Segments Initialized

3. Memory management enabled
newproc
(dp.c)

Summary

1. User turns computer on
v > 2. Segments initialized

| 3. Memory management enabled
newproc 2 4. Initialize various components
S ' 5. Initialize system process (#0)

Summary

y

newproc

)

-

. User turns computer on

. Segments Initialized

. Memory management enabled
. Initialize various components

. Initialize system process (#0)

. Copy system process (0 -> 1)

Summary

. User turns computer on

. Segments Initialized

. Memory management enabled
. Initialize various components

. Initialize system process (#0)

. Copy system process (0 -> 1)
. Scheduler/Disable Interrupts

<~ >
SR)
newproc _

(s p.c)

~NOoOO1Th,WDNPE

Summary

)

NEWProc
(dp.c)

CONOOTH,~,WDNPE

. User turns computer on

. Segments Initialized

. Memory management enabled
. Initialize various components

. Initialize system process (#0)

. Copy system process (0 -> 1)
. Scheduler/Disable Interrupts

. proc|0] goes to sleep

Summary

NEWProc
(dp.c)

)

OO NOOITP,~,WPNPEP

. User turns computer on

. Segments Initialized

. Memory management enabled
. Initialize various components

. Initialize system process (#0)

. Copy system process (0 -> 1)
. Scheduler/Disable Interrupts

. proc|[0] goes to sleep

. Switch to proc[1] (old proc[O])

Summary

. User turns computer on
. Segments Initialized
. Memory management enabled

1

2

3
new@, 2 4. Initialize various components
SR © 5. Initialize system process (#0)

. 6

-

8

9.

1

. Copy system process (0 -> 1)
. Scheduler/Disable Interrupts
. proc|[0] goes to sleep

Switch to procl[1] (old proc|0])
0. Load “init” into proc|1]

Summary

. User turns computer on
. Segments Initialized
. Memory management enabled
. Initialize various components
. Initialize system process (#0)
. Copy system process (0 -> 1)
. Scheduler/Disable Interrupts
. proc|[0] goes to sleep

. Switch to proc[1] (old proc|0])
10 Load “init” into proc[1]
11. Run init

NEWwpProc
(dp.c)

©OCOoO~NOOUIT,~,WN B

Summary

)

NEWpProc
(dp.c)

OO NOOITP,~,WPNPEP

. User turns computer on

. Segments Initialized

. Memory management enabled
. Initialize various components

. Initialize system process (#0)

. Copy system process (0 -> 1)

. Scheduler/Disable Interrupts

. proc|[0] goes to sleep

. Switch to proc[1] (proc|[0O] copy)

. Load “Init” into proc[1]
. Run init
. Initialization complete!

References

6.828 / Fall 2004. 6.828: Operating System Engineering.
12 March 2005
<http://www.pdos.Ics.mit.edu/6.828/2004/index.html>.

John Lions. Lions' Commentary on UNIX 6th Edition with
Source Code. Peer-to-Peer Communications, 1996.

PDP11/40 Processor Handbook. Digital Equipment
Corporation. 1972.

