
1

The Unix Time Sharing System
D. Ritchie and K. Thompson

AND
Lions Commentary – Chapter 18,19

Spring 2005Operating System TechniquesC0P 5611

UCF

Anirban Bag

&

Gautami Shirhatti

Outline

Introduction

Design Principles,Functionality

Programs Under Unix

Hardware/Software Environment

Layers in Unix

Unix OS- File System

- File/Directories/Links/Referencing

- Inodes/I lists

I/O Calls

Logical to Physical Mapping

2

Protection

Filters

The UNIX Shell Implementation

CODE

Summary

Conclusion

References

Introduction

Unix- General Purpose,Timesharing ,Multi-User,Interactive OS

Designed for Digital Equipment Corporation [PDP-11/40,11/45]

Developed by Ken Thompson and Dennis Ritchie

Basic organization for File System,Command Interpreter

Pun for MULTICS!!!
Three versions:

Version1 – PDP-7 and 9 Computers [1969,Bell Lab]
Version2 - Unprotected PDP-11/20 Computer
Version3 - PDP-11/40 and /45 – Rewritten in C

Operational in February 1971

3

Design Principles

Philosophy: “ A powerful OS for interactive use need not be expensive in
human effort and equipment!!”

Goal: With $40k you can built a versatile O/S in less than 2 years!

Basic Utility:
Textual Applications
Preparing and formatting Patent Application
Collection and Processing trouble data
Monitoring the Bell System Switching Machines
Recording and Checking telephone orders
Vehicle for research in OS

Functionality

Hierarchical File System incorporating demountable volumes

Compactness of Source code : Nucleus(<9000LOC)

Compatible File,Device,I/O

Initiate Asynchronous processes

System Command language per user basis

Over 100 subsystems installed

Simplicity,Elegance,Reliability,Easy to Use

4

Programs Under Unix
Assembler

Text Editor (Based on QED)

Linking Loader

Symbolic Debugger

Compiler [BCPL] + Data Structures [C]

Interpreter for dialect of BASIC

Bottom-Up Compiler [Yacc]

Top-Down Complier [TMG]

Macro processor[M6]

Form letter generator,Permuted Index Program

Utility programs

Hardware Environment

16 Bit Word(Two 8-bit bytes)

Direct Addressing of 32K –16Bit words/64k-8Bit Bytes

Word/Byte Processing :

Efficient Handling of 8 Bit characters

1 Megabyte fixed-head disk – File storage,swapping

4 x 2.5 Megabytes of disk cartridges (removable)

144Kbytes memory (core)

40 Megabytes disk packs(removable)

Various other specialized devices

Powerful and convenient set of Micro programmed instructions

5

Hardware Features

Asynchronous Processing:
Highest possible speed,Replacement with faster devices [No h/w,s/w changes]
Modular component design:
Easy and Flexible configuring
Stack Processing
Hardware sequential memory manipulation - Easy to handle structured
data,subroutines and interrupts
8 Very Fast General Purpose registers
Fast integrated circuits for Interactive processing
Automatic Priority processing
Four line,multilevel system is dynamically alterable
Vectored Interrupts
Fast Interrupt response without device polling
Single and Double Operand Instructions

Specialized Devices

Voice response unit & synthesizer

Phototypesetter

Digital Switching Network

Picture phone Interface

Satellite PDP-11/20 – Generates vectors,curves,characters

6

Software Environment

Occupies 42Kbytes of core memory

Written in C

Many Functional Improvements

Multiprogramming

Ability to share reentrant code among several user programs

Layers In Unix

Hardware (disks, terminals, CPUs, etc)

Unix OS (process management, mem-management, fs, I/Os etc)

Standard Library (open, close, read, write, fork, exec etc.)

Standard Utilities(shells, editors, compilers, etc)

Users

Kernel Mode

User mode

7

Unix OS Functions

Initialization

Process Management

System Calls

Interrupt Handling

Input/Output Operations

File Management

The Unix File System

A File : Sequence of Bytes

File Types [User Point of View]

Ordinary Disk Files

Directories

Special Files

Removable File Systems

8

Ordinary Files

Contains information user places

Name: Sequence of 14 or fewer characters

E.g : Symbolic , Binary(Object) Programs

Symbolic: String/newlines

Binary: Sequences of words as they appears in main memory

No particular structuring imposed by the Kernel

Structure controlled by the Programs using the files

Directories

Provide mapping between names and files themselves

Each user has a directory (home directory)

Subdirectories can be used

Directories cannot be managed by unauthorized/unprivileged programs (that do
not have “permission”).

/root: System maintains for its own use

All files can be found by tracing a a PATH (/root/alpha/beta…)

/bin (contains mostly system commands)

Same file (name) can appear in different directories

/- Search begins with the Root Directory

‘.’ indicates the current directory;

‘..’ indicates the upper level directory

9

Names and Links

Absolute Path Names :
Start at Root of the file system

Relative Path Names:
Start at the current directory

Links: Multiple Names
A directory entry for a file
Same Non Directory File appears in several directories under
different names
All links to file have equal status
File doesn’t exist within directory
Entry contains File Name and Pointer

Symbolic Links[Soft]: Path name of another file
Hard Links: Don’t cross file-system boundaries

Special Files

Most unique feature of UNIX

Each I/O device is associated with a file

Written into/ Read from as ordinary files

Read/Write result in activation of assosciated device

Directory “/dev” contains all special files in the system

Link can be made link ordinary file

E.g: To punch a card then one has to write to /dev/ppt

10

Advantages: (I/O Devices treated as Files)

Files and I/O Devices are similar in structure

File devices have the same naming convention,syntax

Program can pass Device Name as parameter

Similar protection options can be applied uniformly – Regular files

UNIX Directory Structure

ROOT

vmunix

Dev

Bin

User

etc

tmp

lib

11

Removable File Systems

Can be “mount”-ed

Replaces a leaf of the hierarchy tree (of the ordinary tree) by a new whole sub-tree

/root is on the fixed disk (of the hardware)

The four removable disks are mounted on the directories

/user1, /user2, /user3, and /user4.

Two arguments: Name of ordinary file, Direct Access special file (Disk Pack)

EXCEPTION: Identical treatment of files on different devices..

No links are allowed between file hierarchies

ADVANTAGE: Simplified book-keeping !!!

File System Mounting

12

I/O Calls

Features

Designed to eliminate the difference between devices/access styles.

No distinction between “ Random”/”Sequential”

No Logical record size imposed by the system

No predetermination of the file size possible or necessary

Size of ordinary file= Size of the highest byte written

BASIC I/O CALLS

1) Filep=open(name,flag)

Name= Name of the file

Flag= If the file is to be read/written/updated

Filep=“File descriptor” for subsequent calls to read/write

2) Create : To create a new file/completely rewrite old file

No user visible locks in the system

Neither “necessary” nor “sufficient”

I] Unnecessary:

Not faced with large, single file databases

II] Insufficient:

Sufficient Internal locks managed by the system

System maintains “Logical Consistency” when user engage in inconvenient activities

e.g Writing on the file at the same time

13

3) Reading/Writing (done sequentially)

n = read(filep, buffer, count)

n = write (filep, buffer, count) /* count should be equal to n */

Upto count bytes transmitted between filep and buffer

Read call returns Zero = End of the file

n= Number of bytes transmitted

An implicit file pointer is maintained by Unix and points to the character location

to either be read or written into next.

4) location = seek (filep, base, offset)

Facilitates Random(Direct Access)

Pointer with filep moved “Offset bytes” from current position/end of the file

Offset can be negative, Depends on base

Other I/O calls

close(filep)

delete (filep)

mkdir

ln –s

Change protection mode(chmod)

14

Code- Read/Write

15

Protection

Each user is issued an “userid”

At creation, any file is marked with the userid of the owner.

7 Bits are provided for protection

Six bits designate who (user, group, others) has what access (w/r/x) on

the file.

Super user is the “reigning” user who is not restricted in any way

Set-user-Id – Privileged programs using files inaccessible to others

Avoid Intervention by the OS

e.g Accounting file shouldn’t be read/written/changed by other programs

16

Blocks and Fragments

Two main objects :
Files
Directories

Maximum file system occupied by – “Data Blocks”
Hardware disk sector– 512bytes
Unix : Large number of small files

High Speed- Greater than 512 Bytes blocks desired
Problem: Excessive Internal Fragmentation
Solution: Use two block sizes for files with no indirect blocks

i] All blocks of file – Large Blocks [8K]
ii]Last block- Small [1024 byte, Multiple of smaller “Fragment” size]

Block –Fragment : Size set during creation
Ratio 8:1 [4096:512/8192:1024]
Small Files: Make Fragments small
Large Files:Make block size large

I-node/I-list

Directory entry- Name of assosciated file + Pointer to file

Pointer is Integer – i- number [Index Number]
Helps the system access the file

File Access - i-number stored in system table – i-list
i-list (stored in a known part of the device)

Files i-node –Record giving complete file description

Owner

Physical disk/tape address for the file

Protection bits

Size

Time of last modification

User and Group Identifiers

17

Number of links into the file

Directory/file

Special file/or not

Bit for small file or large file

i-node- 15 pointers to the disk blocks containing data
1- 12 pointers- Direct blocks

Addresses of blocks that contain the data of file
Copy of I-node kept in core memory
E.g: Block size=4K, 48k data directly accessed from i-node

13,14,15 pointers – Indirect blocks
First indirect block pointer- Address of single indirect block
Single Indirect block- index block

Address of the blocks containing the data
Double-indirect-block

Address of block contain address of block containing pointer to actual
data blocks

18

Referencing

Pointers(1-12)
[12012] Data Block

12008 Data Block

Direct Blocks

First indirect block
pointer

Single
Indirect block

[12008]

12004 12008

Double indirect
block

pointer

[12008]

Double

Indirect block

Data Block

Directories

No distinction between directories and plain files
Directory contents – Data blocks
Directories- Represented by i-nodes
i-node type field – Plain file/Directory
Version7: File names [14 char]

Directory – List of 16-byte entries [2bytes- I-node number]
4.2 BSD: File names : Variable length

Directory – Variable length- [Length of entry+file name+inode number]

Disadvantage: Directory Management &Search routine complex
Advantage:

Flexibility to user
No practical limit on name length

19

Directories

First two names in directory: “.” or “..”
New directory entries added in first available space
Search Technique: Linear

Open /Create system call :
Goal:The association between the PATH of the file and its own I-number

[Done by searching the directory entries]

As a file is open-ed the systems stores the following info into the file-descriptor
(obtained by open/create system calls)
- device - i-number -read/write pointer position

Subsequent references via the File descriptor
File Definition User : File Name

System : i-node

Each device has a number of blocks depending on its features/characteristics

#of I-node

Name of file

Link #

I-node

Small Files - Size is less or equal to 8 blocks (4k), addresses of blocks stored
Large Files -Size above 4k,8 device addresses point to indirect block of 256 addresses

Mode
Owner

Timestamp
Size

Block count
Ref count

Data block

Data block

Data block

…………

Small File

When a file is created a new I-node is obtained.

Ordinary Files

File system divided into 512 byte blocks

I-node: Space for 8 device addresses

20

Large Files

Mode

Owner

Timestamp

Size

Block count

Ref count

256 pointers

256 pointers

256 pointers

…………

Data Block

Data Block

Link Operations

Adding Link:
Create directory entry with new name

Copy the I-number from original file entry

Increment the link count filed of I-node

Deleting Link:
Decrement the link count of I-node

Erase the directory entry

If link count==0

Free Disk Blocks

Deallocate I-node

21

Structure of Unix File System

Boot Block

Super block

I-nodes Data-Blocks

Boot Block: Helps the system become alive (boot up process)
Primary Bootstrap program

Super Block: describes number of I-nodes, #of blocks, list of free disk blocks
I-nodes: 64 bytes long and describes one file only.

Data blocks store essentially the data of all files and directories

Directories are collection of 16byte entries (14 characters for the dir name and 2 bytes for I-
nodes)
Contents of directories are kept in the data blocks a directory’s I-node

Child’s File
Descr. Table

Unrelated Process’
File Descr Table

File StructureTable

File position
R/W

Pointer to I-node

File position
R/W

Pointer to I-node

I-node list

Relationship between file descriptor table,
open file descriptor, and I-node table

Parent file
Descriptor Table

Data blocks

Tables(Open Files)

I-node

USER
SPACE

22

Physical Into Logical

Advantages

Different file system –Uses/Swap Area

Reliability

Efficiency - Block and Fragment sizes

Prevent a program from using all available space

Disk Backups done from partition- Easy Search

Mapping of Logical File System
to Physical devices

Swap

Root

Root

23

The Shell

prompt> command arg1 arg2 arg3 … argn
command: may feature full name or single lexeme
if the latter is the case, the image of the program to be executed in
resident in /bin
(so put the /bin prefix on in order to derive full path)

Salient Features:
Standard Input (“0” file descriptor)
Standard Output (“1” file descriptor)
Standard Error (“2” file descriptor)
Redirection (for instance: ed <script ; ls > tmp1)
Filters and pipes
Multitasking available Substitute strings in prior issued commands /
listing ability

FILTERS

Standard I/O notion used to direct output of one to input of other

Seperated by vertical bars

Ls| pr –2|opr

Ability of processing

24

Shell Implementation

Shell waits for user to type command

New line- Char end indicates return from Shells “Read”

Shell analyses command line, puts arguments for execute

fork (wait until the child is created)

When “&” is present do NOT wait for child – BACKGROUND

PROCESSES

Children inherit all old files (and standard file so diagnostics may appear

together)

Filters are implemented as pipes

CODE

25

FILE & INODE Structures
FILE STRUCTURE

INODE STRUCTURE

Unix Super Block

26

Protection-User/Super User

SYSTEM CALLS
Open/Create mkNode

27

SUMMARY

Unix- Efficient Time Sharing system

Small, modular system with on-line source code.

Simple interface to the file system (no big access methods)

Convenient and effective process control

File system : Tree structured directories

Direct access/Sequential access supported – System calls/Lib routines

Files – Array of fixed size data blocks+ trailing fragment

I-Node: Kernels description of file

Logical to Physical Mapping provided

Multiprogramming: Fork to create process

Pipes ,Filter implemented

Shell implementation- Standard User Interface ,Simple ,Replaceable

Networking ,Windowing ,Graphics,Real time operations added-

Unix could absorb it, BUT STILL REMAIN “UNIX”

28

Conclusion

Unix is an efficient time sharing system
developed

“BY THE PROGRAMMERS”
for

“THE PROGRAMMERS!!!!”

References

I. Ritchie, D.M., and Thompson, K., The UNIX Time-Sharing
System, The Bell System Technical Journal, Vol. 57, No. 6 (July-
August 1978), Part 2, pp. 1905-1929.

II. John Lions,” Lions’ Commentary on Unix, 6th edition”

