COP 5611 Operating System Techniques

The Unix Time Sharing System
D. Ritchie and K. Thompson
AND
Lions Commentary — Chapter 18,19

Anirban Bag

&

Gautami Shirhatti

Spring 2005

FARVSN GEANL T

Introduction
Design Principles,Functionality

Programs Under Unix

Outline

Hardware/Software Environment

Layers in Unix
Unix OS- File System

- File/Directories/Links/Referencing

- Inodes/1 lists
1/0 Calls
Logical to Physical Mapping

Protection

Filters

The UNIX Shell Implementation
CODE

Summary

Conclusion

A SRS A A5G

References

Introduction

O Unix- General Purpose, Timesharing ,Multi-User, Interactive OS

O

Designed for Digital Equipment Corporation [PDP-11/40,11/45]

O

Developed by Ken Thompson and Dennis Ritchie

Q Basic organization for File System,Command Interpreter

Pun for MULTICS!!!
Three versions:
v’ Versionl — PDP-7 and 9 Computers [1969,Bell Lab]
v Version2 - Unprotected PDP-11/20 Computer
v/ \ersion3 - PDP-11/40 and /45 — Rewritten in C
Operational in February 1971

Design Principles

Philosophy: “ A powerful OS for interactive use need not be expensive in
human effort and equipment!!”

Goal: With $40k you can built a versatile O/S in less than 2 years!

Basic Utility:

Textual Applications

Preparing and formatting Patent Application
Collection and Processing trouble data
Monitoring the Bell System Switching Machines
Recording and Checking telephone orders
Vehicle for research in OS

EG 2 S el

Functionality

Q Hierarchical File System incorporating demountable volumes
a Compactness of Source code : Nucleus(<9000LOC)

Q Compatible File,Device,l/O

Q Initiate Asynchronous processes

a System Command language per user basis

@ Over 100 subsystems installed

Q Simplicity,Elegance,Reliability,Easy to Use

(G AN EIN A LIRS pmE WO« VR TR Ol S Tal -)

Programs Under Unix

Assembler

Text Editor (Based on QED)

Linking Loader

Symbolic Debugger

Compiler [BCPL] + Data Structures [C]
Interpreter for dialect of BASIC

Bottom-Up Compiler [Yacc]

Top-Down Complier [TMG]

Macro processor[M6]

Form letter generator,Permuted Index Program

Utility programs

(RS (o ¥ (A8 VTRV AY [

Hardware Environment

Q 16 Bit Word(Two 8-bit bytes)

Direct Addressing of 32K —16Bit words/64k-8Bit Bytes

Q Word/Byte Processing :

Efficient Handling of 8 Bit characters

1 Megabyte fixed-head disk — File storage,swapping
4 x 2.5 Megabytes of disk cartridges (removable)
144Kbytes memory (core)

40 Megabytes disk packs(removable)

Various other specialized devices

Powerful and convenient set of Micro programmed instructions

Hardware Features

Asynchronous Processing:

Highest possible speed,Replacement with faster devices [No h/w,s/w changes]
Modular component design:

Easy and Flexible configuring

Stack Processing

Hardware sequential memory manipulation - Easy to handle structured
data,subroutines and interrupts

8 Very Fast General Purpose registers

Fast integrated circuits for Interactive processing
Automatic Priority processing

Four line,multilevel system is dynamically alterable
Vectored Interrupts

Fast Interrupt response without device polling
Single and Double Operand Instructions

Specialized Devices

Voice response unit & synthesizer
Phototypesetter
Digital Switching Network

Picture phone Interface

iV (] S [l e [l g]

Satellite PDP-11/20 — Generates vectors,curves,characters

Software Environment

Occupies 42Kbytes of core memory
Written in C
Many Functional Improvements

Multiprogramming

[0 R R [B (5 (0]

Ability to share reentrant code among several user programs

Layers In Unix

User mode

Kernel Mode

Hardware (disks, terminals, CPUs, etc)

Unix OS Functions

Q Initialization

a Process Management

Q System Calls

Q Interrupt Handling

Q Input/Output Operations

a File Management

The Unix File System

Q AFile: Sequence of Bytes

Q File Types [User Point of View]

v Ordinary Disk Files

v Directories
v Special Files

v Removable File Systems

Ordinary Files

O O

Contains information user places

Name: Sequence of 14 or fewer characters

E.g : Symbolic, Binary(Object) Programs

= Symbolic: String/newlines

= Binary: Sequences of words as they appears in main memory

No particular structuring imposed by the Kernel

Structure controlled by the Programs using the files

[EF A a1 O]

(4 SR IS o) SR SIYAY 1 WS

Directories

Provide mapping between names and files themselves

Each user has a directory (home directory)

Subdirectories can be used

Directories cannot be managed by unauthorized/unprivileged programs (that do

not have “permission”).

Iroot: System maintains for its own use

All files can be found by tracing a a PATH (/root/alpha/beta...)

/bin (contains mostly system commands)

Same file (name) can appear in different directories

/- Search begins with the Root Directory

*.” indicates the current directory;

*..” indicates the upper level directory

Names and Links

Absolute Path Names :
Start at Root of the file system
Relative Path Names:
Start at the current directory
Links: Multiple Names
O Adirectory entry for a file

0 Same Non Directory File appears in several directories under
different names

O All links to file have equal status

O File doesn’t exist within directory

O Entry contains File Name and Pointer

Symbolic Links[Soft]: Path name of another file
Hard Links: Don’t cross file-system boundaries

Special Files

Most unique feature of UNIX

Each 1/0 device is associated with a file

Written into/ Read from as ordinary files
Read/Write result in activation of assosciated device

Directory “/dev” contains all special files in the system

LR [7E8 RIS T[] £ [3450 (O

Link can be made link ordinary file

E.g: To punch acard then one has to write to /dev/ppt

Advantages: (1/0 Devices treated as Files)

O Filesand 1/O Devices are similar in structure

O File devices have the same naming convention,syntax

(]

Program can pass Device Name as parameter

O

Similar protection options can be applied uniformly — Regular files

UNIX Directory Structure

User lib

etc

10

Removable File Systems

Can be “mount”-ed

]
0 Replaces a leaf of the hierarchy tree (of the ordinary tree) by a new whole sub-tree
O /root is on the fixed disk (of the hardware)
Q The four removable disks are mounted on the directories

fuserl, /user2, /user3, and /user4.
Two arguments: Name of ordinary file, Direct Access special file (Disk Pack)
EXCEPTION: Identical treatment of files on different devices..

No links are allowed between file hierarchies

ADVANTAGE: Simplified book-keeping !!!

File System Mounting

Mourtad Fila System

i J'Irh\\““\
)| o) (o)

wohn

Foot Fille Sy stam

cd fzalesfebruarg’john

11

1/0 Calls

Features
QO Designed to eliminate the difference between devices/access styles.
No distinction between “ Random”/”Sequential”

a

O No Logical record size imposed by the system

O No predetermination of the file size possible or necessary
a

Size of ordinary file= Size of the highest byte written

BASIC I/O CALLS

1) Filep=open(name,flag)

Name= Name of the file

Flag= If the file is to be read/written/updated

Filep="File descriptor” for subsequent calls to read/write

2) Create : To create a new file/completely rewrite old file

No user visible locks in the system

Neither “necessary” nor “sufficient”

1] Unnecessary:

Not faced with large, single file databases

1] Insufficient:

Sufficient Internal locks managed by the system

System maintains “Logical Consistency” when user engage in inconvenient activities

e.g Writing on the file at the same time

12

3) Reading/Writing (done sequentially)
n = read(filep, buffer, count)
n = write (filep, buffer, count) /* count should be equal to n */
= Upto count bytes transmitted between filep and buffer
= Read call returns Zero = End of the file
= n= Number of bytes transmitted
An implicit file pointer is maintained by Unix and points to the character location
to either be read or written into next.
4) location = seek (filep, base, offset)
Facilitates Random(Direct Access)
Pointer with filep moved “Offset bytes” from current position/end of the file

Offset can be negative, Depends on base

Other 1/0O calls

a close(filep)

Q delete (filep)

O mkdir

a In-s

Q Change protection mode(chmod)

13

5500
5501
5502
5503
5504
5508 =
5506 %/
5507 str
=508 {
5508
5510
5511
5512
5513 } £

R

One file structure is allocated
for sach open/ocreat/pipe call.
Main uae is to hold the read/write
pointer asscciated with esach cpen
file.
uct file
char £_flag
char f_count: f* refersnce count */
int £_inode; /* pointer to inode structure *
char *f offset(2]; f* read/write character pointer
ile [NFILE]
5600 /=

5601 * Incde atructure as it appears on
5602 = the disk. Not used Ly the aystem.
5603 * but by things like check, df, dump.

5604 +/

5605 struct inode
5606 {

5E07 int i_modej
5608 char i_nlink;
5605 char i_uid;
SE10 char i_gidy

5611 char i_sizel;
5612 char *i sizel;

5613 int i addr[e];

5614 int i _atime(2]:
5615 int i meime[2];
5616 };

5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749

Code- Read/Write

/*

* common code for read and write callas:

* check permissions, set base, count, and offset
* and switch out to readi, writei, or pipe code.
*f

rdwr (mode)

register *£fp, m;

m = mode;

fp = getf (u.u_ar0[R0O]);

if (fp == NULL)
return;

if ((fp->f_flag&m) == 0) {
u.u_error = EBADF;
return;

u.u base = u.u arg[0];
u.u_count = u.u_arg[l];
u.u_segflg = 0;
if (fp->£ flag&FPIPE) {
if {(m==FREAD)
readp(fp) ; else
writep (£p);

14

5750) elee |

5751 w.u offeet(l] = fp->f offeet(l];
5752 wu offeet(0] = fp->f offeet(0];
5753 1f (m==FREAD)
5754 readi (fp->f inode); else
5755 writei(fp->f inode|;
5756 dpadd (fp->£ offset, u.u arg(l]-u.u count);
5757
5758 u.u ar0[R0] = w.u arg(l]-u.u count;
5759)
Protection

O Eachuser isissued an “userid”

Q Atcreation, any file is marked with the userid of the owner.
Q 7 Bits are provided for protection
a

Six bits designate who (user, group, others) has what access (w/r/x) on
the file.

Q Super user is the “reigning” user who is not restricted in any way
Q Set-user-ld — Privileged programs using files inaccessible to others
Q Avoid Intervention by the OS

e.g Accounting file shouldn’t be read/written/changed by other programs

15

Blocks and Fragments

O Two main objects :
= Files
= Directories
0 Maximum file system occupied by — “Data Blocks”
O Hardware disk sector— 512bytes
O Unix : Large number of small files
High Speed- Greater than 512 Bytes blocks desired
Problem: Excessive Internal Fragmentation
Solution: Use two block sizes for files with no indirect blocks
i] All blocks of file — Large Blocks [8K]
ii]Last block- Small [1024 byte, Multiple of smaller “Fragment” size]
Block —Fragment : Size set during creation
Ratio 8:1 [4096:512/8192:1024]
Small Files: Make Fragments small
Large Files:Make block size large

oo0oo

I-node/l-list

0 Directory entry- Name of assosciated file + Pointer to file
Q Pointer is Integer — i- number [Index Number]

Helps the system access the file

O

File Access - i-number stored in system table — i-list
i-list (stored in a known part of the device)
Files i-node —Record giving complete file description
Owner
Physical disk/tape address for the file
Protection bits
Size

Time of last modification

A S e SN

User and Group ldentifiers

16

v Number of links into the file

v Directory/file
v Special file/or not

v Bit for small file or large file

Q i-node- 15 pointers to the disk blocks containing data
A 1- 12 pointers- Direct blocks
= Addresses of blocks that contain the data of file
= Copy of I-node kept in core memory
E.g: Block size=4K, 48k data directly accessed from i-node

B 13,14,15 pointers — Indirect blocks
= Firstindirect block pointer- Address of single indirect block
= Single Indirect block- index block
Address of the blocks containing the data
= Double-indirect-block

Address of block contain address of block containing pointer to actual
data blocks

17

Referencing

4
o= U] NP s 1.2 - o i

‘) ﬂ

Direct Blocks

Ay
Firstindirect block —___ Data Block

[12008] -

Single
Indirect block
X y 4
Double indirect a—
block — — — Data Block
[12008]

Double

Indirect block

Directories

a No distinction between directories and plain files
a Directory contents — Data blocks
a Directories- Represented by i-nodes
i-node type field — Plain file/Directory

a Version7: File names [14 char]

Directory — List of 16-byte entries [2bytes- I-node number]
a 4.2 BSD: File names : Variable length

Directory — Variable length- [Length of entry+file name+inode number]

Disadvantage: Directory Management &Search routine complex
Advantage:

v Flexibility to user
v No practical limit on name length

Directories

Q First two names in directory: *“.” or

Q New directory entries added in first available space
Q Search Technique: Linear

Open /Create system call :

Goal: The association between the PATH of the file and its own I-number
[Done by searching the directory entries]

As a file is open-ed the systems stores the following info into the file-descriptor
(obtained by open/create system calls)
- device - i-number -read/write pointer position

Subsequent references via the File descriptor

File Definition=> User : File Name
System : i-node

Each device has a number of blocks depending on its features/characteristics

Name of file

I-node #of 1-node

Link #

Small Files - Size is

Ordinary Files

When a file is created a new I-node is obtained.

File system divided into 512 byte blocks

1-node: Space for 8 device addresses

less or equal to 8 blocks (4k), addresses of blocks stored

Large Files -Size above 4k,8 device addresses point to indirect block of 256 addresses

Mode
Owner
Timestamp
Size

Block count Data block
Ref count
—
¥/ Data block
\\f——’

Small File

Data block

19

Large Files

Mode 4
ouner Data Block
Timestamp _
Size /
Block count 256 pointers 4
Ref count \ Data Block
\

256 pointers

k/ 256 pointers

Link Operations

U Adding Link:
Q Create directory entry with new name
QO Copy the I-number from original file entry

Q Increment the link count filed of I-node

Q Deleting Link:
= Decrement the link count of I-node
= Erase the directory entry
m |f link count==0
. Free Disk Blocks

. Deallocate I-node

20

Structure of Unix File System

Boot Block 1-nodes Data-Blocks

11 A

Super block

v Boot Block: Helps the system become alive (boot up process)
v Primary Bootstrap program

v Super Block: describes number of I-nodes, #of blocks, list of free disk blocks
v I-nodes: 64 bytes long and describes one file only.

v Data blocks store essentially the data of all files and directories

v Directories are collection of 16byte entries (14 characters for the dir name and 2 bytes for I-
nodes)

v Contents of directories are kept in the data blocks a directory’s I-node

Relationship between file descriptor table,
open file descriptor, and I-node table

I-node
Tables(Open Files) I-node list
Parent file File StructureTable
Descriptor Table
File position

Child’s File Pointer-toll-node Data blocks

Descr. Table
USER File p'gj\i,l\i/on
SPACE — Pointer to I-node

Unrelated Process’ N

File Descr Table,

Physical Into Logical

Advantages

Q Different file system —Uses/Swap Area

0 Reliability

Q Efficiency - Block and Fragment sizes

Qa Prevent a program from using all available space

Q Disk Backups done from partition- Easy Search

Root

Mapping of Logical File System
to Physical devices

22

The Shell

prompt> command argl arg2 arg3 ... argn
command: may feature full name or single lexeme

if the latter is the case, the image of the program to be executed in
resident in /bin

(so put the /bin prefix on in order to derive full path)
Salient Features:
Standard Input (“0” file descriptor)
Standard Output (“1” file descriptor)
Standard Error (“2” file descriptor)
Redirection (for instance: ed <script ; Is > tmp1l)
Filters and pipes

Multitasking available Substitute strings in prior issued commands /
listing ability

s OO NN

FILTERS

Q Standard I/0 notion used to direct output of one to input of other
Q Seperated by vertical bars
Q Ls|pr—2lopr

Q Ability of processing

23

[@h- A BN o2 Tak e e

Shell Implementation

Shell waits for user to type command

New line- Char end indicates return from Shells “Read”
Shell analyses command line, puts arguments for execute
fork (wait until the child is created)

When “&” is present do NOT wait for child - BACKGROUND
PROCESSES

Children inherit all old files (and standard file so diagnostics may appear

together)

Filters are implemented as pipes

CODE

24

FI

LE & INODE Structures

5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616

FILE STRUCTURE

5513 } file[NFILE];

5500 /%

5501 * One file structure is allocated

5502 * for each open/creat/pipe call.

5503 * Main use is to hold the read/write

5504 * pointer associated with each open

5505 * file.

5506 %/

5507 struct file

5508

5509 char £_flag;

5510 char £_count; /* reference count */

5511 int £ _inode; /* pointer to inode structure *
5512 char *f offset[2]; /* read/write character pointer

)PQ()[)E STRUCTURE

* Inode structure as it appearsa on
* the disk.
* but by things like check, df, dump.

>/

struct

int
chax
char
chaxr
chax
chax
int
int
int

Not used by the system.

inode

i _mode;

i nlink;

i wid;

i gid;
i_size0;
*i sizel;
i_addr[g];

i_atime[2]
i_mtime[2]

.

5550 /
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561 &
'5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576 }
5577 /

Unix Super Block

Definition of the unix super block.
The root super block is allocated and
read in iinit/alloc.c. Subsequently

a auper block is allocated and read
with each mount (smount/sys3.c) and
released with umount (sumount/sys3.c).
A disk block is ripped of for storage.
See alloc.c for general alloc/free
routines for free list and I list.

* Ok R E % F E E % X

*/

truct filaya

int a_isize; /* aize in blocka of I list */

int 8_faize; /* size in blocks of entire volume */

int s_nfree; /* number of in core free blocks
(between 0 and 100) */

int a_free[100]; /* in core free blocks */

int e_ninode; /* number of in core I nodes (0-100) *
int s_inode[100];/* in core free I nodes */

char s_flock; /* lock during free list manipulation
char a_ilock; /* lock during I liat manipulation */
char s_fmod; /* super block modified flag */

char s_ronly; /* mounted read-only flag */

int a_time[2]; /* current date of last update */

int pad[50];

* -

*/

25

Protection-User/Super User

€783 /*

§784 * Look up a pathname and test if
6785 * the resultant inode is owned by the
€786 * current user.

€787 * If not, try for super-user.

6788 * If permission is granted,

6789 * return inode pointer.

6790 %/

6791 ownerx ()

§792

6793 register struct inode *ip;

6754 extern uchar () ;

6795

6796 if ((ip = namei (uchar, 0)) == NULL)
6797 return (NULL) ;

€798 if(u.u_uid == ip-=i_uid)

6799 return (ip);

6800 if (susexr())

6801 return (ip) ;

6802 iput (ip) ;

6803 return (NULL) ;

6804 }

6805 /% —-- - - mmm o mmemoo— oo */
6806

6807 /*

6808 * Test if the current user is the
6808 * super user.

6810 =/

6811 suaser ()

6812

6813

6814 if (u.u_uid == 0)

6815 return (1) ;

6816 u.u_error = EPERM;

6817 return (0) ;

6818 }

L */

SYSTEM CALLS

Open/Create

* common code for cpem and crsat.
* Check permissicns, allocats an opsn file structurs,

mkNode

* and call the device cpen routine if any. 5950 * mknod system call
openl (ip, mods, trf) 5851 */

int *ip; 5952 mknod()

: ister struct fils *f 5953 {

register struc & *fp; i i

e Beaclisiow: 5954 register *ip;

int 4; 5955 extern uchar;

5956

TP - iR 5957 if (suser()) {

LE(bes 1= 2) { 5958 ip = namei (&uchar, 1);
1f (m&FREAD) 5959 if(ip != NULL} {
u(mm;;;;wzmm IREAD) 5960 u.u error = BEXIST;

access (rip, IWRITE); 5961 gote out;
if ((rip->i modexIFMT) IFDIR) 55962 }
w.u_srror = EISDIR; 55963 }

) } 5964 if(u.u_arrer)

1f (u.u_error) 5965 raturn;
goto out; 5966 ip = maknode(u.u arg[1]);

1E (brf) 5867 if (ip==NULL}

Lo (palEIRe R 5968 return;

preleirip); ;

1f ((fp = falloe()) == NULL) 5969 ip->i addr[0] = u.u argl2]:
goto out; 5570 - -

fp->f flag = me(FREAD|FWRITE) ; R

fp->f_inods = ri] E97L °“t7 .

1= uiu_ar0 (RO ; 5572 iput (ip):

openi (rip, m&FWRITE); 5973

if(u.u_error == 0)
raturn;

u.u_ofile[d] = NULL;

£p->£_count--;

out.
iput (rip) s

26

N T IRV SIS AL NG

SUMMARY

Unix- Efficient Time Sharing system

Small, modular system with on-line source code.

Simple interface to the file system (no big access methods)
Convenient and effective process control

File system : Tree structured directories

Direct access/Sequential access supported — System calls/Lib routines
Files — Array of fixed size data blocks+ trailing fragment

I-Node: Kernels description of file

Logical to Physical Mapping provided

Multiprogramming: Fork to create process

Pipes ,Filter implemented
Shell implementation- Standard User Interface ,Simple ,Replaceable

Networking ,Windowing ,Graphics,Real time operations added-

Unix could absorb it, BUT STILL REMAIN “UNIX”

27

Conclusion

Unix is an efficient time sharing system

developed

“BY THE PROGRAMMERS”
for

“THE PROGRAMMERS!!!™

References

Ritchie, D.M., and Thompson, K., The UNIX Time-Sharing
System, The Bell System Technical Journal, VVol. 57, No. 6 (July-
August 1978), Part 2, pp. 1905-1929.

John Lions,” Lions’ Commentary on Unix, 6% edition”

28

