
1

LionLion’’s Chapters 16 & 17s Chapters 16 & 17
By Pavel Babenko and Michael By Pavel Babenko and Michael BuchoffBuchoff

The RK Disk DriverThe RK Disk Driver

2

IntroductionIntroduction

RK disk storage consists of RK disk storage consists of
•• disk controller RK11disk controller RK11--D D
•• a number of RK disk drives, up to eight for a number of RK disk drives, up to eight for

each disk controllereach disk controller
•• Removable disk cartridgesRemovable disk cartridges
This disk storage is most used in PDP11 This disk storage is most used in PDP11
systemssystems

Disk formatDisk format

Surfaces: 2Surfaces: 2
Tracks/surface: 200Tracks/surface: 200
Sectors/track: 12Sectors/track: 12
Bytes/Sector: 512Bytes/Sector: 512
Total of 2.4M CapacityTotal of 2.4M Capacity

3

RK11 Hardware controllerRK11 Hardware controller

Contains total of 7 hardware registersContains total of 7 hardware registers

in/outin/outData bufferData buffer
outoutErrorError
outoutDrive statusDrive status
in/outin/outControl statusControl status
ininBus addressBus address
ininWord countWord count
ininDisk addressDisk address

Hardware registersHardware registers

Disk address (in) Disk address (in) –– address of block on disk to address of block on disk to
read/writeread/write
Word count (in) Word count (in) –– number of 2number of 2--bytes to bytes to
read/writeread/write
Bus address (in) Bus address (in) –– memory location for data memory location for data
used in read/write operationsused in read/write operations

4

Hardware registers (cont.)Hardware registers (cont.)

Control status registerControl status register
(in) Operation flags(in) Operation flags

The type of operation: read/write/resetThe type of operation: read/write/reset
Generate interrupt upon completion or notGenerate interrupt upon completion or not
Operation start bitOperation start bit

(out) Status information(out) Status information
Ready flagReady flag
Error flagError flag

Hardware registers (cont.)Hardware registers (cont.)

There are two more registers used by UNIX:There are two more registers used by UNIX:

Drive status register holds information on drive Drive status register holds information on drive
condition after operationcondition after operation
Error status register holds drive error codeError status register holds drive error code

In case of error, UNIX prints error status and drive In case of error, UNIX prints error status and drive
status status

5

PDP11 memory modelPDP11 memory model

In PDP11 hardware registers use the same In PDP11 hardware registers use the same
address space as memory address space as memory
For example, memory may be located at For example, memory may be located at
addresses 0addresses 0--010000 and hardware registers 010000 and hardware registers
located at 012000located at 012000
Hardware registers for RK11Hardware registers for RK11--D controller are D controller are
located at memory address base of 0177400 located at memory address base of 0177400
((octadecimaloctadecimal))

UNIX mounted device conceptUNIX mounted device concept

After removable cartridge is plugged in, UNIX After removable cartridge is plugged in, UNIX
operator has to operator has to ‘‘mountmount’’ this drive with mount this drive with mount
command. command.
After this, drive gets device number and device After this, drive gets device number and device
parameter records. Files and directories on drive parameter records. Files and directories on drive
are linked to some UNIX are linked to some UNIX filesystemfilesystem subdirectory. subdirectory.
Drive has to be dismounted after use.Drive has to be dismounted after use.

6

RK driver software modelRK driver software model
Each UNIX block device has a queue of pending IO Each UNIX block device has a queue of pending IO
operations. Each operation is defined by one IO bufferoperations. Each operation is defined by one IO buffer
Each block device has associated Each block device has associated devtabdevtab structurestructure

structstruct devtabdevtab
{{

char d_active;char d_active;
structstruct bufbuf **d_actfd_actf;;
structstruct bufbuf **d_actld_actl;;
……

}}

d_active indicates if device is currently busyd_active indicates if device is currently busy
d_actfd_actf and and d_actld_actl point to begin and end of pending IO point to begin and end of pending IO

queue queue

Overview of IO buffer structureOverview of IO buffer structure

IO buffer containsIO buffer contains
Device nameDevice name
Memory address to read/write dataMemory address to read/write data
Number of bytes to read/writeNumber of bytes to read/write
Number of block on device to accessNumber of block on device to access
Operation flags: operation type (read/write), whether Operation flags: operation type (read/write), whether
operation asynchronous or not etc.operation asynchronous or not etc.

Pointer to the next buffer in queuePointer to the next buffer in queue

7

IO operation start: IO operation start: rkstrategyrkstrategy()()

Function Function rkstrategy(bufrkstrategy(buf **bpbp) starts IO operation) starts IO operation
It adds buffer It adds buffer bpbp to IO queue to IO queue
Then it checks if device is now busy Then it checks if device is now busy
If it is busy, it does nothingIf it is busy, it does nothing
If it is not, it starts device operation with If it is not, it starts device operation with rkstartrkstart() ()
functionfunction

rkstrategy(abprkstrategy(abp))
structstruct bufbuf **abpabp;;
{{

register register structstruct bufbuf * * bpbp;;
bpbp = = abpabp;;
......

/* add buffer /* add buffer bpbp to IO queue */to IO queue */
if (if (rktab.d_actfrktab.d_actf == 0)== 0)

rktab.d_actfrktab.d_actf = = bpbp;;
elseelse

rktab.d_actlrktab.d_actl-->>av_forwav_forw = = bpbp;;
rktab.d_actlrktab.d_actl = = bpbp;;

/* start device operation *//* start device operation */
if (if (rktab.d_activerktab.d_active == 0)== 0)

rkstartrkstart();();
}}

8

rkstartrkstart() and () and devstartdevstart() functions() functions
rkstartrkstart() checks if there are IO operations in () checks if there are IO operations in
queuequeue
If yes, If yes, rkstartrkstart() sets busy flag and calls () sets busy flag and calls devstartdevstart()()
devstartdevstart() is responsible for executing one IO () is responsible for executing one IO
operation. operation.

It takes next buffer from IO queue. It takes next buffer from IO queue.
It loads controller registers with data from buffer. It loads controller registers with data from buffer.
It sets interrupt flag of status register.It sets interrupt flag of status register.
It sets GO flag of status register =>It sets GO flag of status register =>
Hardware begins executing this IO operation Hardware begins executing this IO operation

#define RKADDR 0177400#define RKADDR 0177400

structstruct {{
intint rkdsrkds;;
intint rkerrker;;
intint rkcsrkcs;;
intint rkwcrkwc;;
intint rkbarkba;;
intint rkdarkda;;

}}

rkstartrkstart() {() {
register register structstruct bufbuf * * bpbp;;

/* if queue is empty then return *//* if queue is empty then return */
if ((if ((bpbp = = rktab.d_actfrktab.d_actf) == 0)) == 0)

return;return;

/* set busy flag and call /* set busy flag and call devstartdevstart() */() */
rktab.d_activerktab.d_active ++;++;
devstart(bpdevstart(bp, &RKADDR, &RKADDR-->>rkdarkda, , rkaddr(bprkaddr(bp), 0);), 0);

}}

/* /* rkaddrrkaddr Is an auxiliary function that, given linear block number on disIs an auxiliary function that, given linear block number on disk, returns coded k, returns coded
sectornumbersectornumber/track number information in device format *//track number information in device format */

9

devstart(bpdevstart(bp, , devlocdevloc, , devblkdevblk, , hbcomhbcom))
structstruct bufbuf **bpbp;;
intint **devlocdevloc;;
{{

register register intint **dpdp;;
register register structstruct bufbuf **rbprbp;;
register register intint com;com;

dpdp = = devlocdevloc;; /* contains the upper, /* contains the upper, rkdarkda port number */port number */
rbprbp = = bpbp; ; /* /* rbprbp now points to the next buffer */now points to the next buffer */
**dpdp = = devblkdevblk;; /* track/sector number sent to device *//* track/sector number sent to device */
**----dpdp = = rbprbp-->>b_addrb_addr;; /* memory address sent to device *//* memory address sent to device */
**----dpdp = = rbprbp-->>b_wcountb_wcount;; /* number of bytes to transfer sent to device *//* number of bytes to transfer sent to device */

com = (com = (hbcomhbcom << 8) | IENABLE | GO | ((<< 8) | IENABLE | GO | ((rbprbp-->>b_xmemb_xmem & 03) << 4);& 03) << 4);
if (if (rbprbp-->>bflagsbflags & B_READ)& B_READ)

com =| RCOM;com =| RCOM;
elseelse

com =| WCOM;com =| WCOM;
**----dpdp = com; = com; /* status register is set, operation is started! *//* status register is set, operation is started! */

}}

IO operation in progressIO operation in progress

Data is moved by RK controller directly from/to Data is moved by RK controller directly from/to
specified memory address. specified memory address.
Process that requested this IO operation has Process that requested this IO operation has
option to wait for completion in either option to wait for completion in either
synchronous or asynchronous modesynchronous or asynchronous mode
If it had chosen synchronous mode, it was put to If it had chosen synchronous mode, it was put to
sleep by highsleep by high--level file system driverlevel file system driver
Mode is specified by Mode is specified by ‘‘flagflag’’ field of IO bufferfield of IO buffer

10

Operation completedOperation completed

UNIX function UNIX function devstartdevstart() always requests () always requests
interrupt to occur upon completion of IO interrupt to occur upon completion of IO
operationoperation
RK hardware uses interrupt vector 220 from RK hardware uses interrupt vector 220 from
interrupt vector tableinterrupt vector table
RK interrupts are handled by function RK interrupts are handled by function rkintrrkintr()()

rkintrrkintr() function() function

clears busy flag from deviceclears busy flag from device
checks for IO errorschecks for IO errors
If error happened, it executes the same IO If error happened, it executes the same IO
operation for up to 10 timesoperation for up to 10 times
Otherwise, it removes used buffer from IO queue Otherwise, it removes used buffer from IO queue
and calls and calls iodoneiodone() function on removed buffer() function on removed buffer
Then, it AGAIN calls Then, it AGAIN calls rkstartrkstart() to process all other () to process all other
IO requests left in IO queueIO requests left in IO queue

11

rkintrrkintr()()
{{

register register structstruct bufbuf **bpbp;;

if (if (rktab.d_activerktab.d_active == 0) == 0) /* if operation is not started, exit *//* if operation is not started, exit */
return;return;

bpbp = = rktab.d_actfrktab.d_actf; ; /* /* bpbp points to executed buffer */points to executed buffer */
rktab.d_activerktab.d_active = 0;= 0; /* clear busy flag *//* clear busy flag */

if (RKADDRif (RKADDR-->>rkcsrkcs < 0) { < 0) { /* if error bit is set *//* if error bit is set */
......
RKADDRRKADDR-->>rkcsrkcs = RESET | GO;= RESET | GO;
......
if (++if (++rktab.d_errcntrktab.d_errcnt <= 10) { /* try to repeat faulty operation up to 10 times */<= 10) { /* try to repeat faulty operation up to 10 times */

rkstartrkstart();();
return;return;

}}
bpbp-->>b_flagsb_flags =| B_ERROR; /* if still experiencing an error, give it up */=| B_ERROR; /* if still experiencing an error, give it up */

} }
rktab.d_errcntrktab.d_errcnt = 0;= 0; /* clear error repeat count flag *//* clear error repeat count flag */

rktab.d_actfrktab.d_actf = = bpbp-->>av_forwav_forw;; /* remove this IO buffer from queue *//* remove this IO buffer from queue */
iodone(bpiodone(bp);); /* do some /* do some postprocessingpostprocessing on removed buffer */on removed buffer */
rkstartrkstart();(); /* start operation again, for the next buffer *//* start operation again, for the next buffer */

}}

iodoneiodone() function() function

If operation was asynchronous, it releases used If operation was asynchronous, it releases used
buffer by adding it to unused buffers listbuffer by adding it to unused buffers list
If operation was synchronous, it awakes the If operation was synchronous, it awakes the
process that requested the operationprocess that requested the operation
If not, the process is responsible for releasing If not, the process is responsible for releasing
the bufferthe buffer

12

iodone(bpiodone(bp))
structstruct bufbuf **bpbp;;
{{

register register structstruct bufbuf **rbprbp;;

rbprbp = = bpbp;; /* /* rbprbp is a buffer which operation is finished */is a buffer which operation is finished */
......
rbprbp-->>b_flagsb_flags =| B_DONE;=| B_DONE; /* mark operation as done *//* mark operation as done */

if (if (rbprbp-->>b_flagsb_flags & B_ASYNC)& B_ASYNC)
brelse(rbpbrelse(rbp);); /* in asynchronous mode, release buffer *//* in asynchronous mode, release buffer */

else {else {
rbprbp-->>b_flagsb_flags =& ~B_WANTED;=& ~B_WANTED;
wakeup(rbpwakeup(rbp);); /* in synchronous mode, wakeup a process *//* in synchronous mode, wakeup a process */

} }
}}

Operation flowchartOperation flowchart

rkstrategy(bp) rkstart()

devstart()

IO is in process…

Interrupt: rkintr()

13

Chapter 17Chapter 17
IO buffersIO buffers

Chapter 17 Chapter 17 -- BuffersBuffers

bufbuf structurestructure
Buffer functionsBuffer functions

clrbufclrbuf
incoreincore
getblkgetblk
InitInit
bread, bread, bwritebwrite, , bflushbflush

14

What is a buffer?What is a buffer?

A buffer is an area of memory used for storing
messages

How are buffers useful?
Example: We wish to write 5 bytes to a disk.

Method 1:

Method 2 (using buffers):

15

Major drawback of buffersMajor drawback of buffers

Heavy memory requirementsHeavy memory requirements
(Although a few buffers no big deal, a few (Although a few buffers no big deal, a few
hundred is)hundred is)

Programming newbie – 1 buffer for every possible use

Experienced UNIX programmers –Have a pool
of buffers ready for arbitrary use

(av-list)

How are do we implement a buffer? How are do we implement a buffer?

Technically, we need nothing more than a Technically, we need nothing more than a
chunk of data and its length.chunk of data and its length.

We will use chunks of 514 bytesWe will use chunks of 514 bytes
4720 char buffers[NBUF][514]

(Where NBUF = 15)

16

Linked ListsLinked Lists

READ JOYSTICK WRITE JOYSTICK

READ FILE 1 READ FILE 2 READ FILE 3

WRITE FILE 1 WRITE FILE 2 WRITE FILE 3

READ STATUS WRITE DOCUMENT 1

WRITE DOCUMENT 2

next/previous
device

next/previous
av-list

UNUSED BUFFER 1 UNUSED BUFFER 2 bfreelist

The complicated partThe complicated part

Each buffer will have a headerEach buffer will have a header_
struct buf
{

} buf[NBUF];

Buffer & length

Flags (reading, writing, etc.)
Which device and where on device
Error information

Double-linked
lists

17

The complicated partThe complicated part

Each buffer will have a headerEach buffer will have a header_
struct buf
{

int b_flags; /* see defines below */
struct buf *b_forw; /* headed by devtab of b_dev */
struct buf *b_back; /* “ */
struct buf *av_forw; /* position on free list, */
struct buf *av_back; /* if not BUSY */
int b_dev; /* major+minor device name */
int b_wcount; /* transfer count (usu. words) */
char *b_addr; /* low order core address */
char *b_xmem; /* high order core address */
char *b_blkno; /* block # on device */
char *b_error; /* returned after I/O */
char *b_resid; /* words not transferred after

error */
} buf[NBUF];

clrbuf(structclrbuf(struct bufbuf **bpbp))

Clears out the first 512 bytes (256 words) Clears out the first 512 bytes (256 words)
of the bufferof the buffer

18

clrbuf(structclrbuf(struct bufbuf **bpbp))
5038 5038 clrbufclrbuf ((bpbp))
5039 5039 intint **bpbp;;
5040 5040 {{
5041 5041 register *p;register *p;
5042 5042 register c;register c;
5043 5043
50445044 p = p = bpbp-->>b_addrb_addr;;
50455045 c = 256;c = 256;
5046 5046 dodo
5047 5047 *p++ = 0;*p++ = 0;
5048 5048 while (while (----c);c);
5049 5049 }}

struct buf
{
…

char *b_addr;
…
}

incore(adevincore(adev, char *, char *blknoblkno))

Searches for a buffer with a matching Searches for a buffer with a matching
device number of device number of adevadev and a block of and a block of
blknoblkno..
Returns the buffer if it finds a matchReturns the buffer if it finds a match
Else, returns 0Else, returns 0

19

incore(adevincore(adev, char *, char *blknoblkno))
4899 4899 incore(adevincore(adev, , blknoblkno))
4900 4900 {{
4901 4901 register register intint dev;dev;
4902 4902 register register structstruct bufbuf **bpbp;;
4903 4903 register register structstruct devtabdevtab **dpdp;;
4904 4904
4905 4905 dev = dev = adevadev;;
4906 4906 dpdp = = bdevsw[adev.d_major].d_tabbdevsw[adev.d_major].d_tab;;
4907 4907 for (for (bpbp = = dpdp-->>b_forwb_forw;;

bpbp != != dpdp;;
bpbp = = bpbp-->>b_forwb_forw))

4908 4908 if (if (bpbp-->>b_blknob_blkno====blknoblkno && && bpbp-->>b_devb_dev == dev)== dev)
4909 4909 return(bpreturn(bp););
4910 4910 return(0);return(0);
4911 4911 }}

DEVTAB

buffer

buffer
buffer

…

Start from DEVTAB and search
each buffer until we end up with a
match (or back where we started
from)

getblk(devgetblk(dev, char *, char *blknoblkno))

If there is a match, return it.If there is a match, return it.
Otherwise, search for the oldest nonOtherwise, search for the oldest non--busy busy
block and allocate it.block and allocate it.

20

getblk(devgetblk(dev, char *, char *blknoblkno))

DEVTAB

buffer

buffer
buffer

…

1. Start from DEVTAB
and search each buffer
until we end up with a
match (or back where we
started from)

bfreelist

buffer

buffer

buffer

2. If there are no
free nodes, wait until

there is one

bfreelist
…

3. Use the next free buffer. (this
one)

getblk(devgetblk(dev, char *, char *blknoblkno))
4021 4021 getblk(devgetblk(dev, , blknoblkno))
4022 {4022 {
4023 register 4023 register structstruct bufbuf **bpbp;;
4024 register 4024 register structstruct devtabdevtab **dpdp;;
4025 extern 4025 extern lboltlbolt;;
4026 4026
4027 4027 if(dev.d_majorif(dev.d_major >= >= nblkdevnblkdev))
4028 4028 dpdp = &= &bfreelistbfreelist;;
4029 4029
4030 loop:4030 loop:
4031 if (dev < 0)4031 if (dev < 0)
4032 4032 dpdp = &= &bfreelistbfreelist;;
4033 else {4033 else {
4034 4034 dpdp = = bdevsw[dev.d_major].d_tabbdevsw[dev.d_major].d_tab;;
4035 4035 if(dpif(dp == NULL)== NULL)
4036 4036 panic(panic(““devtabdevtab””););
4037 for (4037 for (bpbp = = dpdp-->>forwforw; ; bpbp != != dpdp; ; bpbp = = bpbp-->>b_forwb_forw) {) {
4038 if (4038 if (bpbp-->>b_blknob_blkno!=!=blknoblkno || || bpbp-->>b_devb_dev!=dev)!=dev)
4039 continue;4039 continue;
4040 sp16();4040 sp16();
4041 if (4041 if (bpbp-->>b_flags&B_BUSYb_flags&B_BUSY) {) {
4042 4042 bpbp-->>b_flagsb_flags =| B_WANTED;=| B_WANTED;
4043 4043 sleep(bpsleep(bp, PRIBIO);, PRIBIO);
4044 sp10();4044 sp10();
4045 4045 gotogoto loop;loop;
4046 }4046 }
4047 sp10();4047 sp10();
4048 4048 notavail(bpnotavail(bp););
4049 4049 return(bpreturn(bp););
4050 }4050 }
4051 }4051 }
4052 sp16();4052 sp16();
4053 if (4053 if (bfreelist.av_forwbfreelist.av_forw == &== &bfreelistbfreelist) {) {
4054 4054 bfreelist.b_flagsbfreelist.b_flags =| B_WANTED=| B_WANTED
4055 4055 sleep(&bfreelistsleep(&bfreelist, PRIBIO);, PRIBIO);
4056 sp10();4056 sp10();
4057 4057 gotogoto looploop

4058 }4058 }
4059 sp10();4059 sp10();
4060 4060 notavail(bpnotavail(bp = = bfreelist.av_forwbfreelist.av_forw););
4061 if (4061 if (bpbp-->>b_flagsb_flags & B_DELWRI) {& B_DELWRI) {
4062 4062 bpbp-->>b_flagsb_flags =| B_ASYNC=| B_ASYNC
4063 4063 bwrite(bpbwrite(bp););
4064 4064 gotogoto loop;loop;
4065 }4065 }
4066 4066 bpbp-->>b_flagsb_flags = B_BUSY | B_RELOC;= B_BUSY | B_RELOC;
4067 4067 bpbp-->>b_backb_back-->>b_forwb_forw = = bpbp-->>b_forwb_forw;;
4068 4068 bpbp-->>b_forwb_forw-->>b_backb_back = = bpbp-->>b_backb_back;;
4069 4069 bpbp-->>b_forwb_forw = = dpdp-->>b_forwb_forw;;
4070 4070 bpbp-->>b_backb_back = = dpdp-->>forwforw;;
4071 4071 dpdp-->>b_forwb_forw-->>b_backb_back = = dpdp;;
4072 4072 dpdp-->>b_forwb_forw = = bpbp;;
4073 4073 bpbp-->>b_devb_dev = dev;= dev;
4074 4074 bpbp-->>b_blknob_blkno = = blknoblkno;;
4075 4075 return(bpreturn(bp););
4076 }4076 }

21

getblk(devgetblk(dev, char *, char *blknoblkno))
4021 4021 getblk(devgetblk(dev, , blknoblkno))
4022 {4022 {
……
4030 loop:4030 loop:
……
4034 4034 dpdp = = bdevsw[dev.d_major].d_tabbdevsw[dev.d_major].d_tab;;
……
4037 for (4037 for (bpbp = = dpdp-->>forwforw; ; bpbp != != dpdp; ; bpbp = = bpbp-->>b_forwb_forw) {) {
4038 if (4038 if (bpbp-->>b_blknob_blkno!=!=blknoblkno || || bpbp-->>b_devb_dev!=dev)!=dev)
4039 continue;4039 continue;
……
4041 if (4041 if (bpbp-->>b_flags&B_BUSYb_flags&B_BUSY) {) {
4042 4042 bpbp-->>b_flagsb_flags =| B_WANTED;=| B_WANTED;
4043 4043 sleep(bpsleep(bp, PRIBIO);, PRIBIO);
……
4045 4045 gotogoto loop;loop;
4046 }4046 }
……
4048 4048 notavail(bpnotavail(bp););
4049 4049 return(bpreturn(bp););
4050 }4050 }
……

Code will return here every time something changes

Get the devtab from the device
Iterate through the
circularly linked list

If there is no match, check
the next one

If the match we found is busy, mark it as
wanted and sleep until something has
happened to it. Then try again.

Mark it as ours and return

getblk(devgetblk(dev, char *, char *blknoblkno))
4053 if (4053 if (bfreelist.av_forwbfreelist.av_forw == &== &bfreelistbfreelist) {) {
4054 4054 bfreelist.b_flagsbfreelist.b_flags =| B_WANTED=| B_WANTED
4055 4055 sleep(&bfreelistsleep(&bfreelist, PRIBIO);, PRIBIO);
……
4057 4057 gotogoto looploop
4058 }4058 }
……
4060 4060 notavail(bpnotavail(bp = = bfreelist.av_forwbfreelist.av_forw););
4061 if (4061 if (bpbp-->>b_flagsb_flags & B_DELWRI) {& B_DELWRI) {
4062 4062 bpbp-->>b_flagsb_flags =| B_ASYNC=| B_ASYNC
4063 4063 bwrite(bpbwrite(bp););
4064 4064 gotogoto loop;loop;
4065 }4065 }
4066 4066 bpbp-->>b_flagsb_flags = B_BUSY | B_RELOC;= B_BUSY | B_RELOC;
4067 4067 bpbp-->>b_backb_back-->>b_forwb_forw = = bpbp-->>b_forwb_forw;;
4068 4068 bpbp-->>b_forwb_forw-->>b_backb_back = = bpbp-->>b_backb_back;;
4069 4069 bpbp-->>b_forwb_forw = = dpdp-->>b_forwb_forw;;
4070 4070 bpbp-->>b_backb_back = = dpdp-->>forwforw;;
4071 4071 dpdp-->>b_forwb_forw-->>b_backb_back = = dpdp;;
4072 4072 dpdp-->>b_forwb_forw = = bpbp;;
4073 4073 bpbp-->>b_devb_dev = dev;= dev;
4074 4074 bpbp-->>b_blknob_blkno = = blknoblkno;;
4075 4075 return(bpreturn(bp););
4076 }4076 }

If there are no free elements, tell the OS we
want one and sleep until it becomes
available. Then, try again.

Mark the free element as ours.

If we need to write out, go ahead and
try again.

Mark this flag as busy and unused.

Remove this from the av-list and insert it
into the device linked list

Set the device information

Return the new buffer

22

binitbinit()()
binitbinit()()
{{

register register structstruct bufbuf **dpdp;;
register register structstruct devtabdevtab **dpdp;;
register register intint i;i;
structstruct bdevswbdevsw **bdpbdp;;

bfreelist.b_forwbfreelist.b_forw = = bfreelist.b_backbfreelist.b_back ==
bfreelist.av_forwbfreelist.av_forw = = bfreelist.av_backbfreelist.av_back = &= &bfreelistbfreelist;;

for (i = 0; i<NBUF; i++) {for (i = 0; i<NBUF; i++) {
bpbp = &= &buf[ibuf[i];];
bpbp-->>b_devb_dev = = --1;1;
bpbp-->>b_addrb_addr = = buffers[ibuffers[i];];
bpbp-->>b_backb_back = &= &bfreelistbfreelist;;
bpbp-->>b_forwb_forw = = bfreelist.b_forwbfreelist.b_forw;;
bfreelist.b_forwbfreelist.b_forw-->>b_backb_back = = bpbp;;
bfreelist.b_forwbfreelist.b_forw = = bpbp;;
bpbp-->>b_flagsb_flags = B_BUSY;= B_BUSY;
brelse(bpbrelse(bp););

}}
i = 0;i = 0;
for (for (bdpbdp = = bdevswbdevsw; ; bdpbdp-->>d_opend_open; ; bdpbdp++) {++) {

dpdp = = bdpbdp-->>d_tabd_tab;;
if(dpif(dp) {) {

dpdp-->>b_forwb_forw = = dpdp;;
dpdp-->>b_backb_back = = dpdp;;

}}
i++;i++;

}}
nblkdevnblkdev = i;= i;

}}

bfreelist

bfreelist buffer

bfreelist buffer

buffer

…

START

After 1
buffer has
been
added

After 2
buffers
have been
added

Other FunctionsOther Functions

bread (buffer read, not the food) bread (buffer read, not the food) –– Pass it Pass it
a device number and an address in that a device number and an address in that
device, it will read it and return the bufferdevice, it will read it and return the buffer

bwritebwrite (buffer write) (buffer write) –– Pass it a buffer and Pass it a buffer and
it writes it out to the deviceit writes it out to the device

bflushbflush (buffer flush) (buffer flush) –– Pass it a device and Pass it a device and
it writes out all the buffersit writes out all the buffers

23

ConclusionsConclusions

RK disk driver, RK disk driver, devtabdevtab structurestructure
rkstrategyrkstrategy, , rkstartrkstart, , devstartdevstart, , rkintrrkintr, , iodoneiodone

bufbuf structurestructure
Buffer functionsBuffer functions

clrbufclrbuf
incoreincore
getblkgetblk
InitInit
bread, bread, bwritebwrite, , bflushbflush

Works CitedWorks Cited

http://www.dictionary.comhttp://www.dictionary.com
http://www.snopes.com/common/computer/dhttp://www.snopes.com/common/computer/d

isk.gifisk.gif
http://minnie.tuhs.org/UnixTree/V6/usr/sys/dhttp://minnie.tuhs.org/UnixTree/V6/usr/sys/d

mr/bio.c.htmlmr/bio.c.html
LionsLions’’ Commentary on UNIX 6Commentary on UNIX 6thth Edition Edition

(With Source Code)(With Source Code)

24

Questions?Questions?

