Lien’s Chapters 16 & 17

By Pavel Babenko and Michael Buchoff

The RK Disk Driver

Intreduction

« RK disk storage consists of
. disk controller RK11-D

. a number of RK disk drives, up to eight for
each disk controller

- Removable disk cartridges

« This disk storage is most used in PDP11
systems

Disk format

« Surfaces: 2

« Tracks/surface: 200

« Sectors/track: 12

« Bytes/Sector: 512

« Total of 2.4M Capacity

RKI11 Hardware controller

« Contains total of 7 hardware registers

Disk address
\Word count
Bus address in

Control status
Drive status out

Error

Data buffer

IHardware registers

« Disk address (in) — address of block on disk to
read/write

« Word count (in) — number of 2-bytes to
read/write

« Bus address (in) — memory location for data
used in read/write operations

IHardware registers (cont.)

« Contrel status register:

= (In) Operation flags
« The type of operation: read/write/reset
« Generate interrupt upon completion or not
« Operation start bit

= (out) Status information
« Ready flag
« Error flag

IHarndware registers (cont.)

There are two more registers used by UNIX:

« Drive status register holds information on drive
condition after operation

« Error status register holds drive error code

Inicase of error, UNIX prints error status and drive
status

PDP11 memoery model

« Im PDP11 hardware registers use the same
address space as memory

« For example, memory may be located at
addresses 0-010000 and hardware registers
located at 012000

« Hardware registers for RK11-D controller are
located at memory address base of 0177400
(octadecimal)

UNIX mountead device concept

« After removable cartridge Is plugged in, UNIX
operator has to ‘mount’ this drive with. mount
command.

« After this, drive gets device number and device
parameter records. Files and directories on drive
are linked to some UNIX filesystem subdirectory.

« Drive has to be dismounted after use.

RK driver software model

« Each UNIX block device has a gueue of pending 10
operations. Each eperation Is defined by one IO buffer

* Eachiblock device has associated devtab structure

struct deviab

{
char d_active;
struct buf *d_actf;
struct buf *d_actl;

}...

d_active indicates if device is currently busy

d_actf and d_actl point to begin and end of pending 10
gueue

Overview: of 1O buffer structure

« |O buffer contains
Device name
Memory address to read/write data
Number of bytes to read/write
Number of block on device to access
Operation flags: operation type (read/write), whether
operation asynchronous or not etc.

Pointer to the next buffer in queue

IO eperation start: nkstrateagy()

« Function rkstrategy(buf *bp) starts 10 operation
« |t adds buffer bp to 1O gueue

« Then it checks if device is now busy

« it Is busy, it does nothing

« |I'it Is not, it starts device operation with rkstart()
function

rkstrategy(abp)

struct buf *abp;

1
register struct buf * bp;
bp =abp;

/* add buffer bp to 10 queue */
if (rktab.d_actf == 0)
rktab.d_actf = bp;
else
rktab.d_actl->av_forw = bp;
rktab.d_actl = bp;

/* start device operation */
if (rktab.d_active == 0)
rkstart();
¥

kstart() and devstant() functions

« rkstart() checks if there are 10 operations in
gueue

« [T yes, rkstart() sets busy flag and calls devstart()

« devstart() is responsible for executing one IO
operation.
= |t takes next buffer from 10 queue.
=« It loads controller registers with data from buffer.
It sets interrupt flag of status register.
It sets GO flag of status register =>
Hardware begins executing this 10 operation

#define' RKADDR 0177400

struct {
int rkds;
int rker;
int rkes;
int rkwe;
int rkba;
int rkda;

§

rkstart() {
register struct buf * bp;

/*if queue is.empty then return */
ifi (bp= rktab.d_actf) == 0)
return;

/* set busy flag and call devstart() */
rktab.d_active ++;
devstart(bp, &RKADDR->rkda, rkaddr(bp), 0);

¥

/*rkaddr Is an auxiliary function that, given linear block number on disk, returns coded
sectornumber/track number information in device format */

deystart(bp, devloc, devblk, hbecom)
struct buf *bp;
int *devioc;
{
register int *dp;
register struct buf *rbp;
register int com;

dp = devlac; /* contains the upper, rkda port number */

rbp = bp; /* rbp now points to the next buffer */

dp = devblk; / track/sector number sent to device */

--dp = rbp->b_addr; / memory address sent to device */

--dp = rbp->b_wcount; / number of bytes to transfer sent to device */

com = (hbcom << 8) | IENABLE | GO | ((rbp->b_xmem & 03) << 4);
if (rbp->bflags & B_ READ)
com =| RCOM;
else
com =| WCOM;
--dp = com; / status register is set, operation is started! */

¥

|© operation I pregress

Data is meved by RK controller directly from/to
specified memory address.

Process that requested this IO operation has
option to wait for completion in either
synchronous or asynchronous mode

If it had chosen synchronous mode, it was put to
sleep by high-level file system driver

Mode is specified by ‘flag’ field of 10 buffer

Operation completed

« UNIX function devstart() always requests
Interrupt to occur upon completion of 10
operation

« RK hardware uses interrupt vector 220 from
Interrupt vector table

« RK interrupts are handled by function rkintr()

tkintr() function

« clears busy flag from device
« checks for IO errors

« |f error happened, it executes the same 10
operation for up to 10 times

« Otherwise, it removes used buffer from 10 queue
and calls iedone() function on removed buffer

« Then, it AGAIN calls rkstart() to process all other
|O requests left in 1O queue

10

rkintr()

{

register struct buf *bp;

ifi (rktab.d_active == 0) /* if operation is not started, exit */
return;

bp = rktab.d_actf; /* bp peints to executed buffer */
rktab.d_active = 0; /* clear busy flag */

iff (RKADDR->rkes < 0){ /*if error bit Is set */
RKADDR->rkcs = RESET | GO;
ift (++rktab.d_errcnt <= 10) { /* try to repeat faulty operation up to 10 times */
rkstart();
return;
¥
bp->b_flags =| B_ERROR; /* if still experiencing an error, give it up */
rktab.d_errent = 0; /* clear error repeat count flag */
rktab.d_actf = bp->av_forw; /* remove this IO buffer from queue */

iodone(bp); /* do some postprocessing on removed buffer */
rkstart(); /* start operation again, for the next buffer */

lodene() function

« | operation was asynchronous, it releases used
buffer by adding it to unused buffers list

« | operation was synchronous, it awakes the
process that requested the operation

« |f not, the process is responsible for releasing
the buifer

11

iodone(bp)
struct buf *bp;
{

register struct buf *rbp;
rbp = bp; /* rbp is a buffer which operation is finished */
rbp->b_flags =||B_DONE; /* mark operation as done */

ift (rbp->b._flags & B_ ASYNC)

brelse(rbp); /* in asynchronous mode, release buffer */
else {

rbp->b_flags =& ~B_ WANTED;

wakeup(rbp); /* in synchronous mode, wakeup a process */

Operation flowchart

Interrupt: rkintr()

12

Chapter 17

|O buffers

Chapter 17 - Buffers

« buf structure

« Buffer functions
= Clrbuf
= INcore
= getblk
= Init
= bread, bwrite, bflush

13

What Is a buffer?

A buffer is an area of memory used for storing
messages

How are buffers useful?

Example: We wish to write 5 bytes to a disk.

Method 1:
ok ok o

Method 2 (using buffers): ﬁ

14

Major drawihack of buiifers

« Heavy memory requirements

« (Although a few: buffers no big deal, a few
hundred is)

Programming newbie — 1 buffer for every possible use

Experienced UNIX programmers —Have a pool
of buffers ready for arbitrary use

(av-list)

IHow are do we implement a buffer?

« Technically, we need nothing more than a
chunk of data and its length.

« \We willluse chunks of 514 bytes
4720 char buffers[NBUF][514]

(Where NBUF = 15)

15

next/previous
device

I—Inked LIStS I next/previous

av-list
= N
READ JOYSTICK WRITE JOYSTICK

™~ <,READ FILE 1 READ FILE 2 e READ FILE 3

=

X\

WRITE FILE 1 WRITE FILE 2 WRITE FILE 3

= e,
y N READ STATUS WRITE DOCUMENT 1 V}

I =" WRITE DOCUMENT 2
[]

\

UNUSED BUFFER 1 +* UNUSED BUFFER 2 bfreelist

ihe complicated part

« Each buffer will have a header

struct buf

{
Buffer & length

Double-linked
lists

Flags (reading, writing, etc.)
Which device and where on device
Error information

} buf[NBUF;

)

16

Iihe complicated part

« Each buffer will'have a header

struct buf

{
int b_flags;
struct buf *b_forw;
struct buf *b_back;
struct buf *av_forw;
struct buf *av_back;
int b_dev;
int b_wcount;
char *b_addr;
char *b_xmem;
char *b_blkno;
char *b_error;
char *b_resid;

} buf[NBUF];

[* see defines below */

/* headed by devtab of b_dev */

[

[* position on free list, */

[E: if not BUSY */

/* major+minor device name */

[* transfer count (usu. words) */

/* low order core address */

/* high order core address */

/* block # on device */

[* returned after 1/O */

[* words not transferred after
error */

clribuf(struct buii *bp)

« Clears out the first 512 bytes (256 words)

of the buffer

17

clribuf(struct buii *bp)

struct buf

clrbuf (bp) {
int *bp;

{ char *b_addr;

register *p; 1°
register c;

p = bp->b_addr;
C = 256;
do

*p++ = 0;
while (--c);

Incere(adeyv, char *blkno)

« Searches for a buffer with'a matching
device number of adev and a block of
blkno.

« Returns the buffer If it finds a match
* Else, returns O

18

Incere(adeyv, char *blkno)
4899 incore(adev, blkno) /“) DEVTAB w

4900 {
4901 register int dev; 3 buffer
4902 register struct buf *bp;
4903 register struct deviab *dp; buffer
4904 > puffer
4905 dev = adey;
4906 dp = bdevsw[adev.d_major].d_tab;
4907 for (bp = dp->b_forw;

bp = dp;

bp = bp->b, forw)

ift (bp->b_blkno==blkno && bp->b_dev == dev)
return(bp);

Start from DEVTAB and search
each buffer until we end up with a
match (or back where we started
from)

return(0);

gethlk(dev, char *plkno)

« [f'there Is a match, return it.

« Otherwise, search for the oldest non-busy.
block and allocate it.

19

gethlk(dev, char *blkno

DEVTAB w

buffer

1. Start from DEVTAB
and search each buffer
until we end up with a
match (or back where we
started from)

2. If there are no
free nodes, wait until
there is one

T preelist <

buffer
“—— puffer <

3. Use the next free buffer. (* this
one)

gethlk(dev, char *plkno)

getblk(dev, blkno)
{
{
struct buf *bp;
struct devtab *dp;

f[dev.d_major].d_tab;

>forw; bp = dp; bp = bp->b_forw) {
if (bp->b_blkno!=blkno || bp->b_dev
continue;

p->b_fla .
sleep(bp, PRIBIO);
sp10();
goto loop;

}

$p10();

notavail(bp);

return(bp)

}
sp10
notavail(bp = bfreelist.av_forw);
& B_DELWRI) {
1 5

B_BUSY | B_RELOC;
b_forw = bp->b_for
>b_back = bp->h_ba

dp->forw;
dp->b_forw->b_back = dp;
dp->b_forw
b_de:
b bik

20

getblk(dev, char *blkno)

getblk(dev, blkno)
{

[ofo]oF Code will return here every time something changes

dp = bdevsw[dev.d_major].d_tab; Get the devtab from the device

for (bp = dp->forw; bp !=dp; bp = bp->b,_forw) { ligrate-through the

if (bp->b_blkno!=blkno || bp->b_dev!=dev)

continue;

if (bp->b_flags&B_BUSY) {

circularly linked list
If there is no match, check
the next one

If the match we found is busy, mark it as

bp->b_flags =| B_WANTED; \yanted and sleep until something has

sleep(bp; PRIBIO);

goto loop;

¥

notavail(bp);
return(bp);

happened to it. Then try again.

Mark it as ours and return

gethlk(dev, char *plkno)

ift (bfreelist.av_forw == &bfreelist) {
bfreelist.b_flags =] B_WANTED
sleep(&bfreelist, PRIBIO);

goto loop

notavail(bp = bfreelist.av_forw);
if (bp->b_flags & B_DELWRI) {
bp->b_flags =| B_ASYNC
bwrite(bp);
goto loop;

f
bp->b_flags = B_BUSY | B_RELOC;

bp->b_back->b_forw = bp->b_forw;
bp->b_forw->b_back = bp->b_back;
bp->b_forw = dp->b_forw;
bp->b_back = dp->forw;
dp->b_forw->b_back = dp;
dp->b_forw = bp;

bp->b_dev = dey;

bp->b_blkno = blkno;

return(bp);

If there are no free elements, tell the OS we
want one and sleep until it becomes
available. Then, try again.

Mark the free element as ours.

If we need to write out, go ahead and
try again.

Mark this flag as busy and unused.
Remove this from the av-list and insert it
into the device linked list
Set the device information

Return the new buffer

21

bini i
{)lnlt() START bfreelist \
register struct buf *dp;

register struct deviab *dp;

register int 1;
struct bdevsw *bdp;

bireelist.b_forw = bfreelist.b,_back = After 1
bfreelist.av. forw = bfreelist.av._back = &bfreelist;

for (i = 0; i<NBUF; i++) { buffer has bfreelist +— buffer s
bp = &buf[il; been \

bp->b_dev =-1; added SR A~ S
bp->b_addr = buffers]i];

bp->b_back = &bfreelist;
bp->b_forw = bfreelist.b_forw;
bfreelist.b_forw->b_back = bp;

bfreelist.b_forw = bp;

bp->b_fl = B_BUSY; .
ey After2 preelist <> buffer
) buffers PR

i=0; have been \ /
for (bdp = bdevsw; bdp->d_open; bdp++) { V'
dp = bdp->d_tab; added buffer

if(dp) {
dp->b_forw = dp;

dp->b_back = dp;
.}
i++;

}
nblkdev = i;

Other Functions

« pread! (buffer read, not the food) — Pass it
a device number and an address in that
device, it will read it and return the buffer

« bwrite (buffer write) — Pass it a buffer and
it writes It out to the device

« bflush (buffer flush) — Pass it a device and
it writes out all the buffers

22

Conclusions

« RK disk driver, devtab structure
= rkstrategy, rkstart, devstart, rkintr, iodone

« puf structure

« Buffer functions
= clrbuf
= INncore
getblk
Init
bread, bwrite, bflush

\WWorks Cited

Lions” Commentary on UNIX 6 Edition
(With Source Code)

23

Questions?

24

