
1

Chapter 14 and 15

Program Swapping &

Introduction to Basic I/0

• Rupesh Jain

• Mikel Rodriguez

Outline
1. Introduction

2. Understanding the Sched Procedure

3. Walkthrough of the program swapping code

4. Four procedure manipulating the text array

5. Basic I/O under Unix

6. The file “Buff.h”

7. The file “Conf.c”

8. The Swap procedure

9. Race Conditions

10.Summary

11.References

2

What is Program Swapping ?

Processes can be selectively swapped out and swap in to share the
limited resource of main physical memory among several process

It is also called roll in and roll out

UNIX like other timesharing and multiprogramming system uses
Program swapping

Process1
Swap Area

DISK

Main Memory

Process2

Main Memory

Swap Area

Swap Out

Swap In

Handle by direct
call (2024) on
the procedure
xswap (4368)

Handle by direct
call (2034) on
the procedure
swap (5196)

Process 0

Process …

Process …

Process 0

Sched

3

History

Originally Sched was called “swap” directly to swap out rather
than xswap

Four Procedure which manipulate the array of structures called
text

1. xswap

2. xalloc

3. xfree

4. xccdec

Text Segment

Text segment are segment which contain only pure code and
data which remains unaltered throughout the program
execution

Information about text segment must be stored in a central
location (i.e text array)

main()

{

}

Program u.u_textp

4

Sched (1940)
Sched spends most of its time waiting in one of the following situation

A. (runout)
• None of the processes which are swapped out is ready to run

• The situation can be changed by a call to “wakeup” or to “xswap”

called by “newproc”.

B. (runin)
•There is atleast one process swapped out and ready to run but it

hasn’t been out more than 3 seconds and none of the process

present in main memory is inactive or has been more than 2 seconds.

•The situation can be changed by a call to “sleep”

Find the process ready to run,select
the longest one

A search made for the
process which is ready
to run and has been
swapped out for the
longest time

Sched Procedure

5

There is no such process,
situation A holds

main memory area for to hold
data segment if text segment
needs to be present also text
segment the size needs to be
increased

If it has adequate size text and
data then goto found2(2031)

If the process is waiting for event of low precedence &which is not
locked and state is swait or sstop but not ssleep then goto swap out

If image to be swapped in has been <3 sec ,B
holds

Search for the process which
is loaded but not locked
whose state is srun or
ssleep (waiting for high
precedence) and been in
mem for longest time

Process swapped out is <2
sec ,situation B holds

Swap out using xswap and
process image is flagged as not
loaded

Read the text seg into mm

Swap(addr within swap area, mm addr,
size, direction indicator)

Release disk swap area to the
available list,record mm addr,set the
sload reset the accumulated time
indicator

6

xswap(4368)

If oldsize was not supplied then
use current size of data
segmentFind the disk space area

for the process data
segmentxccdec is called unconditionally

decrement the count ,associated with
the text segment of the number of “in
mm”processes which reference that
text segment. If the count becomes
zero, the mm area occupied by the
text seg is simply returned to the
available space.

The Slock flag is set while the
process is being swapped out

mm image is released except
when xswap is called by newproc

runout is set, sched is waiting for
something to swap in so wake it
up

xalloc (4433)
It is called by “exec”(3130) when new program is being initiated.
Its handle the allocation of ,or linking to ,the text segment.
xalloc (ip) ,the argument ip is a pointer to the mode of the code file.

xfree (4398)

xfree is called by “exit” (3233) when a process is being terminated

Set the text pointer in the
proc entry to NullDecrement mem count

abandon the text
segment in the disk swap
area

Text segment is not
flagged to be saved

7

An Introduction to

Basic I/O under Unix

• “buf.h”

• “conf.h”

• “conf.c”

There are three files whose contents are essential to UNIX
input/output:

The File “buf.h”

This file declares two structures:

buff devtab

8

“struct buf”
This structure is buffer header and serves as a buffer

control block

Position on free list

Major+minor device name

transfer count

block # on device

returned after I/O
words not transferred

Status flags

The buf structure may be divided into three
sections:

“struct buf” (continued)

Flags

List pointer
i/o parameters

9

“devtab struct”

The devtab structure contains status
information for the devices and serves as a list

head for:

(a) the list of buffers associated with the device

(b) the list of outstanding i/o requests for the
device

The File “conf.h”

The file “conf.h” declares:

10

The File “conf.c”

“Swbuf” controls swapping input and output

Swbuf in “bio.c”

11

Swbuf Continued (An Example)
The code for swap displays some of the problems of race conditions
when several processes are running together

A

Process “A”
initiates a
swapping
operation

A

A

Flags==B_BUSY |
B_PHYS | rdflg

Swbuf Continued (An Example)

A

B

Process “B”
initiates a
swapping
operation

Flags==B_BUSY |
B_PHYS | rdflg

B

12

Swbuf Continued (An Example)

A

B

Flags==B_BUSY| B_PHYS
| rdflg |B_WANTED

Swbuf Continued (An Example)

A

FINISHED

C

Interrupt

B

Flags==B_BUSY| B_PHYS
| rdflg |B_WANTED

13

Swbuf Continued (An Example)

A

B

C
Wake up

Wake up

What happens next depends on the order in
which A and B are reactivated

Flags== B_BUSY |
B_PHYS | rdflg |

B_DONE

Sets Flags
to

Swbuf Continued (An Example)

Case 1: A goes first:

•“B_DONE” is set (so no more
sleeping is needed) •“B_WANTED” is reset

(so there is no wakeup)

Process “A” finishes up and
sets: Flags==B_PHYS | rdflg |
B_DONE

A

A

A

B

Process B can now
finish

14

Swbuf Continued (An Example)

Case 2: B goes first:

•Finds “B_BUSY”

•Turns

“B_WANTED” on

Goes to sleep again leaving:
Flags==B_BUSY | B_PHYS |
rdflg | B_DONE | B_WANTED

Process “A” starts again: it finds
B_WANTED on

•Process A calls “wakeup”

•Process “B” wakes up
and finishes

Summary

• “Sched” procedure makes the decision of swap in and swap out

• Four procedures manipulate the text array structure
1) xswap
2) xccdec
3) xalloc
4) xfree

•The “buff” structure in “buf.h” is buffer header and serves as a buffer
control block.
•“Swbuf” (an instance of the buf structure) controls the process of
swapping input and output.

15

References

• "Lions' Commentary on Unix 6th edition with source code” by
John Lion.

• http://www.uwsg.iu.edu/UAU/memory/pageswap.html “Unix For
Advanced Users”

• “ The Unix I/O System” by Dennis Ritchie

•“UNIX in a Nutshell, 3rd Edition” by Arnold Robbins

