
1

1

A Fast File System for UNIX

Presented by

Sean Mondesire

Subramanian Kasi

2

Outline:

Introduction
Old File System
New File System
Performance Improvement
File System Functional Enhancements
Conclusion
References

2

3

Introduction

The Fast File system was developed by the
Computer Systems Research Group (CSRG) at the
University of California Berkeley
The work was done under grants from the NSF and
ARPA
The main goal was increase the throughput of old
512-byte UNIX file system by changing the
underlying implementation.

4

Old File System

Each disk drive is divided into one or more “partitions”
Each partition has one File System
File system consists of
- Boot Area
- Super block
- Inode list
- Data blocks.

3

5

Partition Partition Partition

B S Inode list Data blocks

Boot Area Superblock

Old File System

6

One or more sectors in a track are grouped to form a
“data block”

Old File System

4

7

The boot area stores objects that are used in booting
the system.
If a file system is not to be used for booting, the boot
area is left blank
Superblock contains basic parameters of the file
system.

- number of data blocks in the file system
- maximum number of files
- pointer to the free list – A link list of all free blocks in a

system. Traversed during block allocation for a file

Old File System

8

Within the file system are files
Each file is described by an inode
An inode contains information about:
-ownership information
-time stamps
-array of indices to data blocks

Old File System

5

9

struct inode
{

u_short di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid_lsb; /* owner's user id */
short di_gid_lsb; /* owner's group id */
quad di_size; /* number of bytes in file */
time_t di_atime; /* time last accessed */
long di_atspare;
time_t di_mtime; /* time last modified */
long di_mtspare;
time_t di_ctime; /* time of last file status change */
long di_ctspare;
daddr_t di_db[NDADDR]; /* disk block addresses */
.
.

};

Old file System

10

An inode may contain references to single, double
and triple indirect blocks.

Old File System

6

11

B S i-list data data data directorydirectory datadata data

inode inode inode

inode # File Name
inode # File Name
inode # File Name

Certain files are distinguished as directories which
contain a list of file names and their corresponding
inodes

Old File System

12

A 150MB traditional file system contains
- 4 MB of inodes
- 146 MB of data blocks
- causes long seek time from

files inode to its data.
- files within a directory are not

allocated sequential slots in
the 4MB of inodes.

inodes

Data blocks

4MB

146MB

Old file System-Layout Problems

7

13

Disk transfers were only 512 byte (block size)
Next sequential data block not on the same cylinder
causes seek time between transfers
Reason: Due to suboptimum allocation of data blocks
to files.
Problem with free list- Scrambled
free list – A link list of all free blocks in a file

system stored in the superblock.

Old File System

14

Free list initially ordered
As files created and deleted became scrambled.
Eventually became totally random
Files had their block randomly distributed over the
disk.
Caused seek time for every block access
175 kb/s (initial) 30kb/s

Old File System

8

15

Summary of problems:
Long seek time from inode to actual data
Files in a directory not allocated consecutive slots in
the inode list
Small block size (512 bytes)
Allocation of blocks to a file suboptimum
Resulted in too many seeks between block transfers.

Old File System

16

First work at Berkeley was to increase the block size
from 512 to 1024
File system performance doubled!- though it was
only using 4% of disk bandwidth
Reason:
- Each disk transfer twice as much data
- most files described without need to

access indirect blocks
Good indication that increasing block size helps

Old File System

9

17

New File System

Like the Old file system each disk drive contains one
or more file systems
The file system is described by the superblock
Superbock is replicated to protect against failure
Since information present in superblock is static no
need to access copies unless default superblock
becomes unusable.

18

Larger block size : 4096 bytes
Block size for each file system recorded in
superblock
File system with different block sizes can be accessed
on the same system.
Decision of the block size made at time the file
system is created.

New File System

10

19

track2
track1

head 0

head 1

head 2

Cylinder 0

Cylinder 1

Sector 0
Sector1

Tracks with the same radius on different platters
form a cylinder
New file system divided a disk partition into one or
more cylinder groups – consecutive cylinders

New File System
track3

20

Each cylinder group contains bookkeeping
information.

- Redundant copy of superblock
- bit map of available blocks in the cylinder group
(replaced the free list)

- summary information describing the usage of
data blocks.

New File System

11

21

All cylinder group information could be kept at the
top platter all copies of superblock information
on top platter.
Failure of top platter causes loss of all copies of the
superblock
Solution: Bookkeeping information for each cylinder
group at an offset from the previous group - spiral
structure

New File System

22

Problem with large block size –Unix systems are
composed of many small files.

Space wasted is calculated as % of space on the disk
not containing user data
As block size increases – waste increases
45.6 % waste for 4096-byte file system blocks!!

New File System
(Optimizing storage utilization) :

12

23

Need to use large blocks without waste
Solution: divide the blocks into one or more
fragments
Fragment size specified at the time file system is
created
Block can be broken into 2,4 or 8 fragments
Lower bound of fragment size is the sector size
Each individual fragment is addressable.

New File System

24

The bit map present for each cylinder group contains
the status of the fragments

“X” - fragment in use
“0” - fragment is available
Fragments of adjoining blocks cannot be used as one
block (6-9 cannot be used as one block)
12-15 can be used as one block

New File System

13

25

Example: 11,000 byte file stored in a 4096/1024 file
system
Stored in two full size blocks 4096 x 2 = 8192
One three fragment portion 1024 x 3 = 3072
Total space allocated 11,264 as opposed to 12,288

New File System

26

Space is allocated to a file every time a program
executes a write system call.
When a file needs to be expanded to hold new data
one of the three condition exists.

1. There is enough space in an already allocated block
of fragment –new data written to available space

New File System

14

27

2.The file contains no fragmented blocks
the last block has insufficient space to hold new
data.
- part of the data is written into the block
- If the remainder of the new data contains more than
a full block, a full block is allocated first –data is
written
- repeated until less than a full block remains
- if remaining data can fit in less than a block a block
with necessary fragments is located

New File System

28

3. The file contains one or more fragments
if (sizeof (newdata) + data in fragments) > Size of a block

- the data in the fragment + the new data moved to a new
block
- process continues as in 2

New File System

Problem with expanding a file one fragment at a time
- data may be copied too many times
Solution: user program writes one full block at a time
except for a block at the end of a file

15

29

In order for the layout policies to be effective the file
system cannot be kept full.
Free space reserve- acceptable percentage of file
system blocks that should be free
Reason: If the number of free blocks falls to zero the
system throughput is cut to half.

New File System

30

(File System Parameterization):

Old file system ignores the parameters of the
underlying hardware
The new file system parameterizes the processor
capability and the mass storage characteristics
Enables Blocks to be allocated in a configuration
dependent way.

New File System

16

31

Parameters considered:
Speed of the processor
Hardware support for mass storage transfers
Characteristics of the mass storage device.

New File System

32

Mass storage on disks
Tries to allocate blocks on the same cylinder as the
previous block in the file
These blocks need to be rotationally well positioned
Could mean consecutive blocks or rotationally
delayed blocks

New File System

17

33

If a processor with an I/O channel requires no
processor intervention two consecutive blocks can be
accessed without any delay
A processor without an I/O channel will require
processor intervention between the disk transfer to
prepare for the next disk transfer

New File System

34

Uses the physical characteristics of a disk like:
- number of blocks /track
- rate at which disk spins
Processor characteristics
- time to service an interrupt
- time to schedule next disk transfer

New File System

18

35

Using the processor and the disk characteristics
Allocation routine calculates the number of blocks
that needs to be skipped – so that next block in the
file will come under the disk head at the appropriate
time
Minimizes the time spent waiting for the disk to
position itself

New File System

36

The cylinder group summary information includes a
count of available blocks at different rotation
positions
Superblock contains a vector rotational layout table
Each component in this table – lists the index into the
block map for every data block in its rotational
position.

New File System

19

37

When looking for a block:
- first looks through the summary counts for a
rotational position with a non zero block count

- uses the rotational position to index into the
rotational layout table to find the list to use to find a
free block

New File System

38

05

13

22

51

Number of
blocks
available

Rotational
position

cylinder group summary information

05

113

2,7,8,9,101

1,52

List of blocks at
this position

Rotational
position

Finds a non
zero Rotational
position from
the group
summary
information

Uses the
rotational
position to
index into the
vector
rotational
layout table

rotational layout table

20

39

If a file system is parameterized to lay out blocks
with a rotation separation of 2 ms
If the processor requires 4 ms to schedule disk
operations then wasted disk revolutions on every
block - throughput drops
In the new file system the rotation layout delay can be
reconfigured based on the target machine.

New File System

40

Layout Policies

The policies improve performance by:
Increasing the locality of reference to
minimize seek latency
Improving the layout of data to make larger
transfers possible

Two types of policies:
Global policy routines
Local allocation routines

21

41

Global Layout Policies

Attempt to improve performance by clustering
related information

Make decisions about the placement of new inodes
and data blocks
Decide the placement of new directories and files

Distribute unrelated data among different
cylinder groups

For the fear of too much localization

42

Local Allocation Routines

Called by the global policy routines with
requests for specific blocks
Always allocates the requested block if it is
free
If the requested block is not free then the
four level allocation strategy must be used

22

43

Four Level Allocation Strategy

1. Use the next free block that is rotationally
closest to the requested block on the
same cylinder

Cylinder 0

44

Four Level Allocation Strategy

2. If there are no free blocks on the same
cylinder, a free block in the same
cylinder group is used

Cylinder 0

Cylinder 1

Cylinder Group

23

45

Four Level Allocation Strategy

3. If the cylinder group is full, use the
quadratic hash function to hash the
cylinder group number to find another
cylinder group to look for a free block

4. If the hash fails, use an exhaustive
search on all cylinder groups

46

Functional Enhancements

A few additional functional enhancements
have been introduced to UNIX:

Long file names
Symbolic links
File locking
Rename
Quotas

24

47

Functional Enhancements (cont.)

Long File Names:
File names can be at most 255 characters

Symbolic Links:
A file that contains the pathname of another file
Gives the illusion a remote file is actually local
The specified path can be either absolute or relative
pathnames

Absolute: “C:\SchoolWork\Spring2005\COP5611\HW1.EXE”
Relative: “\COP5611\HW1.EXE”

48

Rename

In the old file system, a file rename required 3
calls to the system to:

Create a new copy of the existing file
Rename the temporary file

Posed a threat if the system crashed or
interrupted
FFS added the “rename” system call

Guarantees the target name file will be created
Handles renaming of files and directories

25

49

File Locking – Old FS

Old file system locking:
Synchronized processes used a “lock” file
Successful locks allowed for immediate
updates
Failure of lock creation forces the process to
keep trying to create the lock file

50

File Locking – Old FS

Disadvantages:
CPU time wasted during creation loop when a
lock fails.
After a system crash, locks have to be
manually removed
Since system admin processes can create
files, they must use other means for locking

26

51

File Locking - FFS

Fast File System’s Locking Mechanism:
Advisory locks

Locks applied to files when a program requests it
Lock override is determined by the user program
Chosen since many programs need to use locks
and run as the system administrator
Supports shared and exclusive locks on files

52

Quotas

In the old file system, users can allocate as
much resources as available
FFS added a quota mechanism to limit the
amount of resources a user can obtain

Limits the amount of inodes and disk blocks a user
may allocate
When a user program exceeds its soft limit, a warning
is displayed
When a user program exceeds its hard limit, it is
terminated

27

53

Performance

To compare the old file system to the Fast
File System, the following measures were
taken:

The rate a user program can transfer data to
or from a file (read/write)
Disk utilization by the file system
CPU utilization

54

Experiment Conditions

Processor used: VAX 11/750
Buses: UNIBUS & MASSBUS
Disk Drive: AMPEX Capricorn 330-MB
Winchester
Each file system was used for 1 month
Each test had 10 percent of disk free
space

28

55

56

Performance: Fast File System

Uses up to 47 percent of the disk bandwidth
Old file system used between 3 and 5 percent of the
bandwidth
Reason: FFS has larger block sizes

The read rate is always at least as fast as the
write

Reason: the kernel must perform more processing to
allocate block when writing
Old FF: 50 percent faster writes than reads

29

57

Performance (cont.)

FFS has over 16 times faster read speeds than
the old FS
FFS has over 9 times faster write speeds than
the old FS
FFS throughput does not change over time

Only when disk has 10% free space
Throughput decreases to near half the speed if
the disk is full

58

Performance Explanations

Blocks are more optimally ordered
Related data are grouped together

Larger Blocks
Block sizes 4096 and 8192 bytes are used
compared to 1024 bytes used in the old FS
Larger amounts of related data are pulled in
less transfers

30

59

Future Expansions

Better memory management techniques:
FFS performance is limited by memory copy
operations
Current techniques inhibit speeds of
accessing and moving data

Techniques to allocate several blocks to a
file at a time

Handles file expansion more gracefully
Reduces write allocation overhead

60

Conclusion

New File System
Optimally places related data on disk
Increases amount of bytes transferred for a given
data transfer

Layout Policies
Global Layout Routines
Local Allocation Routines

31

61

Conclusion (cont.)

Functional Enhancements
Longer Filenames
Symbolic Links
Rename System Call
File Locking
Quotas

Performance Results
16 times faster reads than the old file system
9 times faster writes than the old file system

62

References

McKusick, Marshall K., William N. Joy, Samuel J. Leffler,
Robert S. Fabry, “A Fast File System for UNIX”

McKusick, Marshall K.,“The Design and Implementation
of the 4.4BSD Operating System”

Morgan, David, “Analyzing a File System,”
http://homepage.smc.edu/morgan_david/cs40/analyze-ext2.htm

Nguyen, Thu D., “UNIX Fast File System”,
http://www.cs.rutgers.edu/~tdnguyen/courses/cs519/fall2003/

Duke University, Introduction to Operating Systems
http://www.cs.duke.edu/courses/cps110/

