COP 4600 (Sec 1): Operating Systems

Lecture 9

Instructor : Joohan Lee
jlee@cs.ucf.edu

http://www.cs.ucf.edu/~jlee/cop4600

School of Computer Science
University of Central Florida

-

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

« Software implementation of mutual exclusion
— By Dekker, a Dutch mathematician
— Mutual exclusion for two threads

« First version of Dekker’s algorithm
— Succeeds in enforcing mutual exclusion
— Uses variable to control which thread can execute

COP4600 : Operating Systems Joohan Lee

Algorithm 1

¢ Use a single “turn” shared variable:

int turn = 1;

cobegin

pl: while (1) {
while (turn==2); /*wait*/
CS1; turn = 2; programl;

//

p2: while (1) {
while (turn==1); /*wait*/
CS1; turn = 1; program2;

coend

COP4600 : Operating Systems Joohan Lee |

5.4.1 Dekker’s Algorithm

* Problems with the first version of Dekker’s algorithm
— While satisfying mutual exclusion requirements,
— Busy waiting
« Constantly tests whether critical section is available
« Wastes significant processor time
— Lockstep synchronization

« Each thread can execute only in strict alternation

COP4600 : Operating Systems

-

Joohan Lee |5]

5.4.1 Dekker’s Algorithm

Figure 5.6 Mutual exclusion implementation — version 1 (1 of 2)

COP4600 : Operating Systems

| g, [
Joohan Lee \\§,
| a

5.4.1 Dekker’s Algorithm

Figure 5.6 Mutual exclusion implementation — version 1 (2 of 2).

main() {

¢ ldone }

(threadNumber

[ertetcat secion coee]

threadiusbe

COP4600 : Operating Systems

L
© |
I

Joohan Lee

5.4.1 Dekker’s Algorithm

Second version
— Removes lockstep synchronization (strict alternation)

.

-

COP4600 : Operating Systems

Joohan Lee

Algorithm 2

int cl =0, c2 =0;
cobegin
pl: while (1) {
while (c2); /*wait*/
cl =1;
CS1; cl1 = 0; programl;
3
p2: while (1) {
while (cl);
c2 = 1;

CS2; cé = 0; program2;

coend

Use two variables to indicate intent to use the CS

COP4600 : Operating Systems

Joohan Lee

5.4.1 Dekker’s Algorithm

Problems with the second version
— Violates mutual exclusion
« Thread could be preempted while updating flag

section concurrently
— Not an appropriate solution

« After the while tests, both threads may enter the critical

variable

COP4600 : Operating Systems

Joohan Lee |

5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (1 of 3).

{ t2Inside);

tllnside

-

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (2 of 3).

main() {
done }

{ tillnside);

t2Inside

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (3 of 3).

t2Inside

COP4600 : Operating Systems Joohan Lee |

5.4.1 Dekker’s Algorithm

* Third version
— Set critical section flag before entering critical section test
« Once again guarantees mutual exclusion

~
I

COP4600 : Operating Systems Joohan Lee \§£

Algorithm 3

» Use two variables to indicate intent to use the CS

int cl =0, c2 =0;
cobegin
pl: while (1) {

cl =1;

while (c2); /*wait*/
CS1; cl1 = 0; programl;

p2: v}vhile w {
c2 =1;

while icl);
CS2; c2 = 0; program2;

coend

Joohan Lee

COP4600 : Operating Systems

5.4.1 Dekker’s Algorithm

* Problems with the third version
— Introduces possibility of deadlock

« Both threads could set flag simultaneously
» Both c1 and c2 may be set to 1 at the same time

» Neither would ever be able to break out of loop
— Not a solution to the mutual exclusion problem

COP4600 : Operating Systems Joohan Lee |

5.4.1 Dekker’s Algorithm

Figure 5.8 Mutual exclusion implementation — version 3 (1 of 2).

-

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

Figure 5.8 Mutual exclusion implementation — version 3 (2 of 2).

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

« Fourth version
— Sets flag to false for small periods of time to yield control

i
COP4600 : Operating Systems Joohan Lee |

Algorithm 4

int c1 = 0, c2 = 0;
cobegin
pl: while (1) {

cl = 1;

while (c2){
cl = 0; random wait; cl=1;
}; /*wait*/
CS1; cl1 = 0; programl;
¥
p2: while (1) {
c2 = 1;
while (c1){
c2 = 0; random wait; c2=1;
}; /*wait*/
CS2; c2 = 0; program2;

coend

-

COP4600 : Operating Systems Joohan Lee ‘S:q

5.4.1 Dekker’s Algorithm

* Problems with the fourth version
— Solves previous problems, introduces indefinite postponement
« Both threads could set flags to same values at same time
repeatedly
- both repeat the while loop
- quite low probability
* Would require both threads to execute in tandem (unlikely but
possible)
— Unacceptable in mission- or business-critical systems

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (1 of 4).

tlWantsToEnter
t2WantsToEnter

startThreads();
1 main()

(!done)

tlWantsToEnter

COP4600 : Operating Systems Joohan Lee |

5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (2 of 4).
{ t2WantsToEnter)

tlWantsToEnter

tiWantsToEnter

tlWantsToEnter
»
COP4600 : Operating Systems Joohan Lee ‘§}1
y .
5.4.1 Dekker’s Algorithm
Figure 5.9 Mutual exclusion implementation — version 4 (3 of 4).
1 main()
i
{ !done)
t2wWantsToEnter
{ tiwantsToEnter)
{
t2WantsToEnter
tZWantsToEnter
} 1
— | 4
COP4600 : Operating Systems Joohan Lee | §;
L

5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (4 of 4).

t2WantsToEnter

COP4600 : Operating Systems Joohan Lee |

5.4.1 Dekker’s Algorithm

* Dekker’'s Algorithm
Proper solution for two-threaded mutual exclusion solution
implemented purely in software with no special-purpose
hardware instructions
Uses notion of favored threads to determine entry into critical
sections

+ Resolves conflict over which thread should execute first

« Each thread temporarily unsets critical section request flag

« Favored status alternates between threads
— Guarantees mutual exclusion
Avoids previous problems of deadlock, indefinite postponement

COP4600 : Operating Systems Joohan Lee

Algorithm 5 : Dekker’s Solution

int favor = p1, c1 = 0, c2 = 0;
cobegin
pl: while (1) {

cl =1;

while (c2){
if (favor == p2){
cl = 03

while (favor == p2);
cl =1;

T
}; /Fwait*/
CS1; favor = p2; cl = 0; programl;

3
p2: while (1)
c2 = 1;

while (c1);
if (favor == p1){
c2 = 0;

ile Efavor == pl);

b
CS2; favor = pl; c2 = 0; program2;

coend

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker's Algorithm for mutual exclusion. (1 of 4)

redThread
tlWantsToEn
t2WantsToEnter

main()

€ ldone)

tiWantsToEnter

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (2 of 4)

(t2WantsToEnter }
f { favoredThread]

tiWantsToEnter

favoredThread b H

tlWantsToEnter

e
COP4600 : Operating Systems Joohan Lee ‘§}1
|]

5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker's Algorithm for mutual exclusion. (3 of 4)

main()
{
¢ !done)
t2WantsToEnter
{ tlwantsToEnter)
{
(favoredThread
t2WantsToEnter
L)i
t2WantsToEr
| #
COP4600 : Operating Systems Joohan Lee \§;
‘ L

5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker's Algorithm for mutual exclusion. (4 of 4)

favoredTh

COP4600 : Operating Systems Joohan Lee

10

5.4.2 Peterson’s Algorithm (1981)

* Previous algorithms illustrate how complicated process
synchronization can be

-> Simpler algorithm for two process mutual exclusion
with busy waiting

* Less complicated than Dekker’s Algorithm
— Still uses busy waiting, favored threads
— Requires fewer steps to perform mutual exclusion primitives
— Easier to demonstrate its correctness
— Does not exhibit indefinite postponement or deadlock

COP4600 : Operating Systems Joohan Lee |§

Peterson Solution (1981)

¢ Like #2 but use a “WillWait” variable to break a tie:
int cl1 =0, c2 = 0, WillWait;
cobegin
pl: while (1) {
cl =1;

willWait = 1;
while (c2 & (WillWait==1)); /*wait*/
CS1; cl1 = 0; programl;

}
p2:while (1) {
c2 = 1;
willWait = 2;
while (cl && (will_wait==2));
CS2; c2 = 0; program2;

coend

COP4600 : Operating Systems Joohan Lee

Why Peterson’s Solution Works

* Avoiding Mutual Blocking
— Assume p1 circle through its while loop - blocked
— p2 may be doing one of the following things
* (1) not trying to enter CS
— pl detects C2 is 0 and enters its CS
* (2) waiting in its own while loop
— Impossible: will_wait is either 1 or 2 (it cannot remain in 1
or 2 forever)
* (3) repeatedly executing its own complete loop

— Impossible: while p1 is waiting, p2 could enter the CS
only if will_wait is set to 1

— After exiting its CS, p2 will set will_wait to 2, which will not
pass the while condition until p1 executes its CS

COP4600 : Operating Systems Joohan Lee |

Ué/\
[1

11

Why Peterson’s Solution Works
Mutual Exclusion

.
— Assume pl has just passed its test and is about to enter its CS
— clisnow 1

— Can p2 also enter its CS at the same time?
¢ (1) Case 1: pl passed its test because c2 is 0
— p2is in non-CS section. If p2 tries to enter its CS, it has to
setc2to 1
—clis already 1, p2 has to wait
* (2) Case 2: pl passed its test because will_wait is 2

— p2 finds that c1 is already 1 and will_wait is 2, which
prevents p2 from passing the test

COP4600 : Operating Systems

Joohan Lee |

5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (1 of 3)

t favoredThread
le tlWantsToEnter
n tZWantsToEnter

startThreads();

COP4600 : Operating Systems

Joohan Lee

5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (2 of 3)

main()
W { !done)
{

t1WantsToEn
favoredThread

(t2WantsToEnter &% favoredThread

tlWantsToEnter

COP4600 : Operating Systems

Joohan Lee |

5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (3 of 3)

main()
{ !done)

t2WantsToEnter
favoredThread

{ tlWwantsToEnter && favoredThread b H

t2wantsToEnter

#
COP4600 : Operating Systems Joohan Lee ‘ ‘§}1
]

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

« Applicable to any number of threads

— Creates a queue of waiting threads by distributing numbered
“tickets”

— Each thread executes when its ticket's number is the lowest of
all threads

— Unlike Dekker's and Peterson’s Algorithms, the Bakery Algorithm
works in multiprocessor systems and for n threads

— Relatively simple to understand due to its real-world analog

COP4600 : Operating Systems Joohan Lee §;

5.4.3 N-Thread Mutual Exclusion:
Lamport's Bakery Algorithm

Figure 5.12 Lamport's Bakery Algorithm. (1 of 3)

choosing[n];

t ticket[n];

startThreads();

COP4600 : Operating Systems

Joohan Lee |

5.4.3 N-Thread Mutual Exclusion: Lamport’s Bakery Algorithm
Figure 5.12 Lamport’s Bakery Algorithm. (2 of 3)

main()

% = threadNumber();

e (!done }

COP4600 : Operating Systems Joohan Leei K

5.4.3 N-Thread Mutual Exclusion:Lamport’s Bakery Algorithm
Figure 5.12 Lamport’s Bakery Algorithm. (3 of 3)

(choosing[i] ! e);
(ticket[i] ! & ticket[i] < ti
(ticket[i] ticket[x] & i < x)

while { ticket[i] !

COP4600 : Operating Systems

Joohan Lee

14

