
1

COP4600 : Operating Systems Joohan Lee

COP 4600 (Sec 1): Operating Systems

Lecture 9

School of Computer Science
University of Central Florida

Instructor : Joohan Lee
jlee@cs.ucf.edu

http://www.cs.ucf.edu/~jlee/cop4600

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Software implementation of mutual exclusion
– By Dekker, a Dutch mathematician
– Mutual exclusion for two threads

• First version of Dekker’s algorithm
– Succeeds in enforcing mutual exclusion
– Uses variable to control which thread can execute

COP4600 : Operating Systems Joohan Lee

Algorithm 1

• Use a single “turn” shared variable:

int turn = 1;
cobegin
p1: while (1) {

while (turn==2); /*wait*/
CS1; turn = 2; program1;

}
//
p2: while (1) {

while (turn==1); /*wait*/
CS1; turn = 1; program2;

}
coend

2

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Problems with the first version of Dekker’s algorithm
– While satisfying mutual exclusion requirements,

– Busy waiting
• Constantly tests whether critical section is available
• Wastes significant processor time

– Lockstep synchronization
• Each thread can execute only in strict alternation

COP4600 : Operating Systems Joohan Lee

Figure 5.6 Mutual exclusion implementation – version 1 (1 of 2).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.6 Mutual exclusion implementation – version 1 (2 of 2).

5.4.1 Dekker’s Algorithm

3

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Second version
– Removes lockstep synchronization (strict alternation)

COP4600 : Operating Systems Joohan Lee

Algorithm 2

• Use two variables to indicate intent to use the CS

int c1 = 0, c2 = 0;
cobegin
p1: while (1) {

while (c2); /*wait*/
c1 = 1;
CS1; c1 = 0; program1;

}
p2: while (1) {

while (c1);
c2 = 1;
CS2; c2 = 0; program2;

}
coend

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Problems with the second version
– Violates mutual exclusion

• Thread could be preempted while updating flag variable
• After the while tests, both threads may enter the critical

section concurrently
– Not an appropriate solution

4

COP4600 : Operating Systems Joohan Lee

Figure 5.7 Mutual exclusion implementation – version 2 (1 of 3).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.7 Mutual exclusion implementation – version 2 (2 of 3).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.7 Mutual exclusion implementation – version 2 (3 of 3).

5.4.1 Dekker’s Algorithm

5

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Third version
– Set critical section flag before entering critical section test

• Once again guarantees mutual exclusion

COP4600 : Operating Systems Joohan Lee

Algorithm 3

• Use two variables to indicate intent to use the CS

int c1 = 0, c2 = 0;
cobegin
p1: while (1) {

c1 = 1;
while (c2); /*wait*/
CS1; c1 = 0; program1;

}
p2: while (1) {

c2 = 1;
while (c1);
CS2; c2 = 0; program2;

}
coend

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Problems with the third version
– Introduces possibility of deadlock

• Both threads could set flag simultaneously
• Both c1 and c2 may be set to 1 at the same time
• Neither would ever be able to break out of loop

– Not a solution to the mutual exclusion problem

6

COP4600 : Operating Systems Joohan Lee

Figure 5.8 Mutual exclusion implementation – version 3 (1 of 2).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.8 Mutual exclusion implementation – version 3 (2 of 2).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Fourth version
– Sets flag to false for small periods of time to yield control

7

COP4600 : Operating Systems Joohan Lee

Algorithm 4

int c1 = 0, c2 = 0;
cobegin
p1: while (1) {

c1 = 1;
while (c2){

c1 = 0; random_wait; c1=1;
}; /*wait*/
CS1; c1 = 0; program1;

}
p2: while (1) {

c2 = 1;
while (c1){

c2 = 0; random_wait; c2=1;
}; /*wait*/
CS2; c2 = 0; program2;

}
coend

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Problems with the fourth version
– Solves previous problems, introduces indefinite postponement

• Both threads could set flags to same values at same time
repeatedly

both repeat the while loop
quite low probability

• Would require both threads to execute in tandem (unlikely but
possible)

– Unacceptable in mission- or business-critical systems

COP4600 : Operating Systems Joohan Lee

Figure 5.9 Mutual exclusion implementation – version 4 (1 of 4).

5.4.1 Dekker’s Algorithm

8

COP4600 : Operating Systems Joohan Lee

Figure 5.9 Mutual exclusion implementation – version 4 (2 of 4).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.9 Mutual exclusion implementation – version 4 (3 of 4).
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.9 Mutual exclusion implementation – version 4 (4 of 4).

5.4.1 Dekker’s Algorithm

9

COP4600 : Operating Systems Joohan Lee

5.4.1 Dekker’s Algorithm

• Dekker’s Algorithm
– Proper solution for two-threaded mutual exclusion solution

implemented purely in software with no special-purpose
hardware instructions

– Uses notion of favored threads to determine entry into critical
sections

• Resolves conflict over which thread should execute first
• Each thread temporarily unsets critical section request flag
• Favored status alternates between threads

– Guarantees mutual exclusion
– Avoids previous problems of deadlock, indefinite postponement

COP4600 : Operating Systems Joohan Lee

Algorithm 5 : Dekker’s Solution
int favor = p1, c1 = 0, c2 = 0;
cobegin
p1: while (1) {

c1 = 1;
while (c2){

if (favor == p2){
c1 = 0;
while (favor == p2);
c1 = 1;

}
}; /*wait*/
CS1; favor = p2; c1 = 0; program1;

}
p2: while (1)

c2 = 1;
while (c1);

if (favor == p1){
c2 = 0;
while (favor == p1);
c2 = 1;

}
CS2; favor = p1; c2 = 0; program2;

}
coend

COP4600 : Operating Systems Joohan Lee

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (1 of 4)

5.4.1 Dekker’s Algorithm

10

COP4600 : Operating Systems Joohan Lee

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (2 of 4)
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (3 of 4)
5.4.1 Dekker’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (4 of 4)
5.4.1 Dekker’s Algorithm

11

COP4600 : Operating Systems Joohan Lee

5.4.2 Peterson’s Algorithm (1981)

• Previous algorithms illustrate how complicated process
synchronization can be

Simpler algorithm for two process mutual exclusion
with busy waiting

• Less complicated than Dekker’s Algorithm
– Still uses busy waiting, favored threads
– Requires fewer steps to perform mutual exclusion primitives
– Easier to demonstrate its correctness
– Does not exhibit indefinite postponement or deadlock

COP4600 : Operating Systems Joohan Lee

Peterson Solution (1981)
• Like #2 but use a “WillWait” variable to break a tie:

int c1 = 0, c2 = 0, WillWait;
cobegin
p1: while (1) {

c1 = 1;
willWait = 1;
while (c2 && (WillWait==1)); /*wait*/
CS1; c1 = 0; program1;

}
p2:while (1) {

c2 = 1;
willWait = 2;
while (c1 && (will_wait==2));
CS2; c2 = 0; program2;

}
coend

COP4600 : Operating Systems Joohan Lee

Why Peterson’s Solution Works
• Avoiding Mutual Blocking

– Assume p1 circle through its while loop blocked
– p2 may be doing one of the following things

• (1) not trying to enter CS
– p1 detects C2 is 0 and enters its CS

• (2) waiting in its own while loop
– Impossible: will_wait is either 1 or 2 (it cannot remain in 1

or 2 forever)
• (3) repeatedly executing its own complete loop

– Impossible: while p1 is waiting, p2 could enter the CS
only if will_wait is set to 1

– After exiting its CS, p2 will set will_wait to 2, which will not
pass the while condition until p1 executes its CS

12

COP4600 : Operating Systems Joohan Lee

Why Peterson’s Solution Works
• Mutual Exclusion

– Assume p1 has just passed its test and is about to enter its CS
– c1 is now 1
– Can p2 also enter its CS at the same time?

• (1) Case 1: p1 passed its test because c2 is 0
– p2 is in non-CS section. If p2 tries to enter its CS, it has to

set c2 to 1
– c1 is already 1, p2 has to wait

• (2) Case 2: p1 passed its test because will_wait is 2
– p2 finds that c1 is already 1 and will_wait is 2, which

prevents p2 from passing the test

COP4600 : Operating Systems Joohan Lee

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (1 of 3)

5.4.2 Peterson’s Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (2 of 3)
5.4.2 Peterson’s Algorithm

13

COP4600 : Operating Systems Joohan Lee

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (3 of 3)
5.4.2 Peterson’s Algorithm

COP4600 : Operating Systems Joohan Lee

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

• Applicable to any number of threads
– Creates a queue of waiting threads by distributing numbered

“tickets”
– Each thread executes when its ticket’s number is the lowest of

all threads
– Unlike Dekker’s and Peterson’s Algorithms, the Bakery Algorithm

works in multiprocessor systems and for n threads
– Relatively simple to understand due to its real-world analog

COP4600 : Operating Systems Joohan Lee

Figure 5.12 Lamport’s Bakery Algorithm. (1 of 3)

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

14

COP4600 : Operating Systems Joohan Lee

Figure 5.12 Lamport’s Bakery Algorithm. (2 of 3)

5.4.3 N-Thread Mutual Exclusion: Lamport’s Bakery Algorithm

COP4600 : Operating Systems Joohan Lee

Figure 5.12 Lamport’s Bakery Algorithm. (3 of 3)

5.4.3 N-Thread Mutual Exclusion:Lamport’s Bakery Algorithm

