
Concepts of Parallel and Distributed Processing
COP 4520 – Fall 2005

University of Central Florida

Charles E. Hughes

ceh@cs.ucf.edu
http://www.cs.ucf.edu/~ceh

Professor, School of Computer Science

COP 4520 — Concepts of Parallel and Distributed Processing – 2 – © Charles E. Hughes — UCF Computer Science Dept.

Basic Information
Meeting Times: TR 15:00 - 16:15, CS 221

Instructor: Charles E. Hughes, ceh@cs.ucf.edu, CSB-206, 823-2762

TA: None

Home Pages:
Instructor http://www.cs.ucf.edu/~ceh/;
Course http://www.cs.ucf.edu/courses/cop4520/NotesFall2005.html

Office Hours: TR 13:15-14:30

References:
Gregory R. Andrews, Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000.
Ananth Grama et al, Introduction to Parallel Computing, Addison-Wesley, 2003.
Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2003.
Tarek El-Ghazawi, UPC: Distributed Shared Memory Programming, John Wiley and Sons, 2005.

Prerequisites: COP3530 (CS3), COT3100 (Discrete Structures), CDA3103 (Computer Organization), COP3402
(Computer System Concepts).

Implementation Environments: Java – Eclipse. MPI. UPC.

Assignments: 4 to 6 small to moderate programming assignments (some are multi-part) using a variety of parallel
and distributed programming paradigms; 4 to 6 non-programming assignments; one project.
Exams: Two midterms and a final.

COP 4520 — Concepts of Parallel and Distributed Processing – 3 – © Charles E. Hughes — UCF Computer Science Dept.

Evaluation
Evaluation:
This is an approximation, subject to restructuring based on increases or decreases in assignments or in complexity
of assignments over what I am currently considering.
Quiz – 60 points; Mid Term – 90 points; Final Exam – 150 points
Actually the weight of a quiz and its corresponding exam varies to your benefit.
Assignments – 200 points; Available Points – 500
A – ≥90%
B+ – 87%-89%
B – 80%-86%
C+ – 77%-79%
C – 70%-76%
D – 50%-69%
F – <50%

Important Dates (Quiz Date is Subject to Change):
Quiz – MidTerm1 – October 6; MidTerm2 – November 3; Withdraw Deadline – October 14;
Thanksgiving – November 24; Final – December 8, 13:00-15:50

COP 4520 — Concepts of Parallel and Distributed Processing – 4 – © Charles E. Hughes — UCF Computer Science Dept.

Concept and Some Analogies

• Mowing and Edging Grass Takes Time

• Can Share the Work in Several Ways

o Generalists: Many People have Mowers and Edgers

o Specialists: Half Have Mowers, Half Have Edgers

o Agenda-based: Set an Agenda for the Whole Gang

• There are Problems with Relative Speeds

• There are Problems with Shared Resources

o Brooms, Trash Cans, …

• There are similar problems when many threads running on one or more computers,
each with one of more processors, is attacking a single problem

COP 4520 — Concepts of Parallel and Distributed Processing – 5 – © Charles E. Hughes — UCF Computer Science Dept.

Terminology

• Concurrent programming

• Multithreaded programming

• Multiprogramming

• Multiprocessing

• Distributed processing

COP 4520 — Concepts of Parallel and Distributed Processing – 6 – © Charles E. Hughes — UCF Computer Science Dept.

Topics of Course

• Architectures (hardware and software)

• Protocols (hardware and software)

• Communication and Coordination Primitives

• Algorithms

• Algorithm Complexity Analysis

• Reasoning about algorithms

o Correctness, Safety, Liveness

o Meta results

• Java Distributed Computing Paradigms

• MPI Message-Based Computing

• UPC SPMD Paradigm

• and other paradigms

COP 4520 — Concepts of Parallel and Distributed Processing – 7 – © Charles E. Hughes — UCF Computer Science Dept.

A Model

Fixed Connection Network

• Processors Labeled P1, P2, … , PN

• Each Processor knows its Unique ID

• Local Control

• Local Memory

• Fixed Bi-directional Connections

• Synchronous
 Global Clock Signals Next Phase

COP 4520 — Concepts of Parallel and Distributed Processing – 8 – © Charles E. Hughes — UCF Computer Science Dept.

Operations at Each Phase

Each Time the Global Clock Ticks

• Receive Input from Neighbors

• Inspect Local Memory

• Perform Computation

• Generate Output for Neighbors

• Update Local Memory

COP 4520 — Concepts of Parallel and Distributed Processing – 9 – © Charles E. Hughes — UCF Computer Science Dept.

A Model of Cooperation: Bucket Brigades

…P1 P2 P3 PN

• N Processors, Labeled P1 to PN

• Processor Pi is connected to Pi+1, i<N

COP 4520 — Concepts of Parallel and Distributed Processing – 10 – © Charles E. Hughes — UCF Computer Science Dept.

A Sort Algorithm

Odd-Even Transposition on Linear Array

…P1 P2 P3 PN

• The Array is X[1 : N]

• Pi's Local Variable X is X[i]

• Pi's have a Local Variables Y and a Global/Singular variable Step

• Step is initialized to Zero (0) at all Pi

• Compares and Exchanges are done alternately at Odd/Even - Even/Odd Pairs

COP 4520 — Concepts of Parallel and Distributed Processing – 11 – © Charles E. Hughes — UCF Computer Science Dept.

Odd-Even Transposition

Algorithmic Description of Parallel Bubble Sort

At Each Clock Tick and For Each Pi do {

 Step ++;

 if parity(i) = = parity(Step) & i < N then

 Read from Pi+1 to Y;

 X = min(X,Y)

 else if i > 1 then

 Read from Pi-1 to Y;

 X = max(X,Y);

}

COP 4520 — Concepts of Parallel and Distributed Processing – 12 – © Charles E. Hughes — UCF Computer Science Dept.

Example of Parallel Bubble Sort

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors

1 732

2 317

7 132

2 371

Case of 4, 3, 2, 1 Takes 4 Steps

COP 4520 — Concepts of Parallel and Distributed Processing – 13 – © Charles E. Hughes — UCF Computer Science Dept.

Measuring Benefits

How Do We Measure What We Have Gained?

• Let T1(N) be the Best Sequential Algorithm

• Let TP(N) be the Time for Parallel Algorithm (P processors)

• The Speedup SP(N) is T1(N)/TP(N)

• The Cost CP(N) is P×TP(N), assuming P processors

• The Work WP(N) is the summation of the number of steps taken by each of the
processors. It is often, but not always, the same as Cost.

• The Cost Efficiency CE P(N) (often called efficiency Ep(N)) is
 SP(N)/P = C1(N) / CP(N) = T1(N) / (P×TP(N))

• The Work Efficiency WEP(N) is
 W1(N) / WP(N) = T1(N) / WP(N)

COP 4520 — Concepts of Parallel and Distributed Processing – 14 – © Charles E. Hughes — UCF Computer Science Dept.

Napkin Analysis of Parallel Bubble

How'd We Do ? - Well, Not Great !

• T1(N) = N lg N Optimal Sequential

• TN(N) = N Parallel Bubble

• SN(N) = lg N Speedup

• CN(N) = WN(N) = N2 Cost and Work

• EN(N) = lg N / N Cost and Work Efficiency

But Good Relative to Sequential Bubble

SN(N) = N2/N = N ; EN(N) = SN(N) /N = 1 !

COP 4520 — Concepts of Parallel and Distributed Processing – 15 – © Charles E. Hughes — UCF Computer Science Dept.

Non-Scalability of Odd-Even Sort

Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling
number of values (N), each time we double number of processors (P) in a ring. The cost
of the parallel sort requires each processor to sort its share of values (N/P), and then do P
swaps and merges. Since P processors are busy, the cost is N lg N/P. After the local sort,
sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P
processors, for a Cost of N, and P-1 such merges occur, for a total cost of N×(P-1).
Efficiency is then
E = N lg N / (N lg N/P + N×(P-1)) = lg N / (P - 1 + lg N - lgP)
First 2 columns double N as P doubles. Second three try to increase N to keep efficiency
when P doubles.

N P E N P E
64 1 1.0000 64 1 1.0000
128 2 1.0000 4096 2 1.0000
256 4 0.8889 16777216 4 0.9600
512 8 0.6923 2.81475E+14 8 0.9231
1024 16 0.4762 7.92282E+28 16 0.8972
2048 32 0.2973 6.2771E+57 32 0.8807
4096 64 0.1739 3.9402E+115 64 0.8707
8192 128 0.0977 1.5525E+231 128 0.8649

COP 4520 — Concepts of Parallel and Distributed Processing – 16 – © Charles E. Hughes — UCF Computer Science Dept.

Cost for Finding Max Value in a List

Given a sequence A of n elements find the largest of these elements.
 Serial Algorithm.
 Largest = A [0]
 For i = 1 to n-1 do { if A [i] > Largest then Largest = A [i] }
 n - 1 comparison.

 A Parallel Algorithm

3 • 8 • 5 • 7 • • 2 • 1 • 9 • 4

8 • 7 • • 2 • 9

8 • •9

9 • time 3

time 2

time 1

log n2

P1 P2 P3 P4

COP 4520 — Concepts of Parallel and Distributed Processing – 17 – © Charles E. Hughes — UCF Computer Science Dept.

Efficiency of Binary Tree Max

Assume Full Binary Tree

• TN/2(N) = TN/4(N/2) + 1, N > 1

 T1(2) = 1

 TN/2(N) = lg N = O(lg N)

• CN(N) = N lg N = O(N lg N)

E N(N) = N / N lg N = O(1 / lg N)

• WN/2(N) = WN/4(N/2) + N/2, N > 2

 W1(2) = 1

 W N/2(N) = N – 1 = O(N)

• This is optimally work efficient.

• But it is not optimally cost efficient.

COP 4520 — Concepts of Parallel and Distributed Processing – 18 – © Charles E. Hughes — UCF Computer Science Dept.

Finding the Maximum by Controlled Anarchy
Step#1: Everyone’s an Optimist
 12 6 15 7

12
We're #1 We're #1 We're #1 We're #1

Ok

6
We're #1 We're #1 We're #1 We're #1

Ok

15
We're #1 We're #1 We're #1 We're #1

Ok

7
We're #1 We're #1 We're #1 We're #1

Ok

COP 4520 — Concepts of Parallel and Distributed Processing – 19 – © Charles E. Hughes — UCF Computer Science Dept.

This is the Meatiest Part
Step#2: Realism Sets In
 12 6 15 7

12
Just
Kidding

Rats!

 6
Just
Kidding

Just
Kidding

Just
Kidding

Rats!

15

7
Just
Kidding

Just
Kidding

Rats!

COP 4520 — Concepts of Parallel and Distributed Processing – 20 – © Charles E. Hughes — UCF Computer Science Dept.

That’s All Folks
Step#3: Reporting the Answer
 12 6 15 7

12

6

15

15 is boss

7

COP 4520 — Concepts of Parallel and Distributed Processing – 21 – © Charles E. Hughes — UCF Computer Science Dept.

Analysis of Very Fast Max

Optimal in Time, Not Work on CRCW (Concurrent Read Concurrent Write) PRAM
(Parallel Random Access Machine)

• Assign N processors to initialize M in 1 step.

• Assign all N2 processors to first statement to fill B in 1 step.

• Assign all N2 processors to 2nd statement to fill M in 1 step.

• Assign N processors to 3rd statement to select maxVal in 1 step.

COP 4520 — Concepts of Parallel and Distributed Processing – 22 – © Charles E. Hughes — UCF Computer Science Dept.

That Was Inefficient but Real Fast

• Can Solve Any Size Problem in 3 Steps
But we need to make unreasonable assumptions about memory (CRCW)

• Use Lots of Processors
Over a Million to Find Max of 1000

• We Want Fast but Not Too Expensive

COP 4520 — Concepts of Parallel and Distributed Processing – 23 – © Charles E. Hughes — UCF Computer Science Dept.

Sense of Optimality of Max

It Depends on Model and Goals

• Can use N2 processors to find max of N elements on O(1) time.

• Work is O(N2) on CRCW PRAM.

• Minimal work on EREW or CREW PRAM requires O(lg N) time.

• Can achieve O(lg lg N) time on CRCW doing minimal work.

COP 4520 — Concepts of Parallel and Distributed Processing – 24 – © Charles E. Hughes — UCF Computer Science Dept.

Fast, Inefficient Max in Unity Notation
|| is parallel composition

Program max

declare B : array [1..N, 1..N] of boolean
 M : array [1..N] of boolean
 maxVal : integer

initially < i : 1≤i≤N :: M[i] = false>

assign

 < i ,j : 1≤i≤N & 1≤j≤N :: B[i,j] = A[i] ≥ A[j]) >

 < i : 1≤i≤N :: M[i] = < & j : 1≤j≤N :: B[i,j] > >

 < i : 1≤i≤N :: maxVal = A[i] if M[i] >

end { max }

COP 4520 — Concepts of Parallel and Distributed Processing – 25 – © Charles E. Hughes — UCF Computer Science Dept.

Synchronous Parallel Max on Balanced Tree

Make A[i] the parent of nodes A[2×i] and A[2×i+1]. In this case A[0] is the parent of
A[0] and A[1]! But that’s good – think about it.
Hint: if this weren’t so and A[0]’s value was the max, it would be lost.

Program max

 declare t : integer

 initially t = N

 assign

 < i : 0≤i<t/2 ::

 A[i] = max(A[2*i], A[2*i+1]) if 2*i+1<N

 ~ A[2*i] if 2*i+1=N

 >

 t = t/2

end { max }

COP 4520 — Concepts of Parallel and Distributed Processing – 26 – © Charles E. Hughes — UCF Computer Science Dept.

Efficiency of Balanced Tree Max

Study Work Efficiency

• TN/2+1(N) = TN/4+1(N/2) + 1, N > 1

 T2(2) = 1

 TN/2+1(N) = lg N = O(lg N)

• WN/2+1(N) = WN/2(N/2) + N/2 + 1 , N > 2

 W2(2) = 2

 W N/2+1(N) = N - 1 + lg N = O(N)

• Tree Max is optimally work efficient within a constant factor

COP 4520 — Concepts of Parallel and Distributed Processing – 27 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 1

1. Consider the Max Tree we described earlier, but now use p processors to sort N
values, where N may be greater than p. In this case, each processor uses a
sequential algorithm to find its local max and then proceeds with the standard tree
approach. Analyze the Time, Cost and Work for

a. p = lg N
b. p = lg lg N
c. p = N / lg N
d. p = N / lg lg N

2. Consider the problem of sorting a deck of cards into Spades, Hearts, Diamonds,
Clubs, and in order Ace down to 2 within each suit.

a. What is the best way for an individual to do this? Describe the approach and
analyze the number of comparisons and inspections (e.g., what suit is this)
done.

b. Redo this but this time with five people. One of the five starts with all 52
cards. You will need to analyze the additional number of times a card is
passed from one person to another. We assume random access; that is, any
person can pass a card to any other at the same cost. The ending state of the
system is that all 52 cards must be in one person’s hand, sorted.

Due: Week#2 (9/1)

COP 4520 — Concepts of Parallel and Distributed Processing – 28 – © Charles E. Hughes — UCF Computer Science Dept.

Taxonomies

Control

Communication Model / Address space

Interconnection network

Granularity

COP 4520 — Concepts of Parallel and Distributed Processing – 29 – © Charles E. Hughes — UCF Computer Science Dept.

Taxonomies -- Control

SISD (typical single instruction on single data stream)

SIMD (single instruction applied to many data streams)

MISD (multiple instructions on single data stream – pipeline)

MIMD (multiple instructions on multiple data streams – typical multiprocessing)

Programming models
1. Control Parallel assumes separate independent functions that can be solved simultaneously. These separate

functions are then assigned to separate cpu's.
2. Data Parallel assumes there is a large data set that needs to be processed and that there is single processor for

each data element in set. The same set of instructions is applied to all elements in the data set. (Aggregation is
needed if actual number of elements exceeds available processors.)

Control (task)-parallel
Assign one (or more) processors to each function. The information from one function is passed to the next like on
an assembly line. Often the communication mechanism can do double duty as the coordination mechanism.
Alternatively, we can use a form of “barrier synchronization.” In either case, we need to design our solution so
subtasks take about the same amount of time.

Data-parallel
The same function is applied to each page simultaneously. Hence we process the pages independently in parallel.
The processors need to be synchronized in reporting the results. SIMD architectures imply data parallelism,
although MIMD can also be used.

COP 4520 — Concepts of Parallel and Distributed Processing – 30 – © Charles E. Hughes — UCF Computer Science Dept.

Even-Odd Transposition on a SIMD Machine

plural int value; // need to set to some value on each processor
…
int stage = 0;
if (iproc %2 == 0) // let even numbered do the work

while (stage < N-1) { // do two stages
if (xnetE[1].value < value) {

int temp = value;
value = xnetE[1].value;
xnetE[1].value = temp;

}
if (xnetW[1].value > value) {

int temp = value;
value = xnetW[1].value;
xnetW[1].value = temp;

}
stage += 2;

}

COP 4520 — Concepts of Parallel and Distributed Processing – 31 – © Charles E. Hughes — UCF Computer Science Dept.

Taxonomies – Communication Model / Address Space

Private memory (separate address spaces, also called distributed memory)
Shared address space (often called shared memory).

UMA (uniform / symmetric multiprocessors (SMP))
NUMA (non-uniform) memory access.

Cache and the cache coherence (consistency) problem.

A multicomputer is a distributed memory multiprocessor in which the nodes and network
are in a single cabinet. Such a system is tightly coupled and communication is over a
dedicated high-speed interconnection network.

A network of workstations is a form of distributed memory multiprocessor. Such a
system is loosely coupled and communication is usually through message passing.

Distributed, shared memory refers to a distributed implementation of the shared memory
model.

COP 4520 — Concepts of Parallel and Distributed Processing – 32 – © Charles E. Hughes — UCF Computer Science Dept.

Taxonomies -- Interconnection Network

Dynamic interconnections, e.g., bus and crossbar
Dynamic interconnection networks use switches (indirect), rather than direct connects.
Network is dynamic (bus like).
Crossbar performance scales well (no blocking), but cost is a problem. N2
Bus scales poorly on performance but nicely on cost.
Multistage compromises are usually used. (Butterfly is nice example -- n lg n switches, lg

n set for any communication, blocking occurs)

Static interconnections, e.g., linear, completely connected and hypercube.
Some examples are completely-connected, star connected, linear array, ring, 2-d
mesh, torus, 3-d mesh and torus, tree, hypercube.
Note that the central node in a star is the bottleneck, just as the bus is in a bus scheme.
This is also true of the root of a tree.

BLACKBOARD TIME

COP 4520 — Concepts of Parallel and Distributed Processing – 33 – © Charles E. Hughes — UCF Computer Science Dept.

Metrics for Static Networks

• Diameter – Maximum distance
o Routing algorithms

� Ring (shortest distance left or right)
� 2D mesh (XY dimensional routing)
� Hypercube (E dimensional routing)

• Note Hamming distance and Hypercube
• Connectivity – Number of paths between nodes

o Arc connectivity is minimum number of edges that can be removed before
network is disconnected

• Bisection Width – Minimum number of edges removed to partition network into
“equal” halves

• Channel Width – simultaneous bits that travel over each link
• Channel Rate – Peak data rate over a single link
• Channel Bandwidth – Product of Channel Width and Channel Rate
• Bisection Bandwidth – Product of Bisection Width and Channel Bandwidth

o Measure of how much can be pushed between halves of network

COP 4520 — Concepts of Parallel and Distributed Processing – 34 – © Charles E. Hughes — UCF Computer Science Dept.

Characteristics of Topologies

Network Diameter Arc Connectivity Bisection Width Cost (# links)
Complete 1 p – 1 p2 / 4 p (p – 1) / 2
Star 2 1 1 p – 1
Binary tree 2 lg((p + 1)/2) 1 1 p – 1
Linear array p – 1 1 1 p – 1
Ring ⎣p / 2⎦ 2 2 p
2d mesh 2 (√p – 1) 2 √p 2 (p – √p)
2d torus 2 ⎣√p / 2⎦ 4 2 √p 2 p
Hypercube lg p lg p p / 2 (p lg p) / 2
k-ary d-cube d ⎣k / 2⎦ 2 d 2 kd – 1 d p

• Note the hypercube is a 2-ary, d-cube, having 2d processors. A ring is a p-ary, 1-
cube. A 2d torus of p processors is a √p-ary, 2-cube. A k-ary, d-cube can be created
from k k-ary (d-1) cubes by connecting identical positions.

COP 4520 — Concepts of Parallel and Distributed Processing – 35 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 2
Due: Week#3 (9/8)

Consider the Omega and Butterfly versions of multistage dynamic interconnection networks. Each is specified on networks with
p processors, where p is some power of 2.
Butterfly network with p=8 (connect crossover at stage i of line j with stage i+1 switch at line j ⊕ 2lg p – i – 1).

Stage 0 1 2 3
0 • ------------------------------------ • ----------------------------------- • ------------------------------------• 0
1 • ------------------------------------ • ----------------------------------- • ------------------------------------• 1
2 • ------------------------------------ • ----------------------------------- • ------------------------------------• 2
3 • ------------------------------------ • ----------------------------------- • ------------------------------------• 3
4 • ------------------------------------ • ----------------------------------- • ------------------------------------• 4
5 • ------------------------------------ • ----------------------------------- • ------------------------------------• 5
6 • ------------------------------------ • ----------------------------------- • ------------------------------------• 6
7 • ------------------------------------ • ----------------------------------- • ------------------------------------• 7

Omega network with p=8 (connect output of line j at stage i to line (j shift left 1 circular) at stage i+1).
Note: You can read or write this network backwards from what I show below.

Stage 0 1 2 3
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

a. Prove that each of these connects node x to node y when the circuits are switched by choosing crossover at the i-th switch
whenever the i-th most significant bit of x⊕y is 1.

b. How many distinct potential communication pairs (a to b, c to d; a≠c, b≠d) exist for p=8? Of these, how many can occur in
parallel without a conflict occurring at some switch?

COP 4520 — Concepts of Parallel and Distributed Processing – 36 – © Charles E. Hughes — UCF Computer Science Dept.

Embedding Lower Order Networks into Hypercubes

• Reflected Grey Code

• Applying Code to Rings and Meshes

• Using Code to map onto Hypercube

COP 4520 — Concepts of Parallel and Distributed Processing – 37 – © Charles E. Hughes — UCF Computer Science Dept.

Reduction and Broadcast

• Reduction (all to one)
o Tree Reduction Algorithms
o Mapping onto a Hypercube
o Ring version
o 2d torus version

• Broadcast (one to all)
o Hypercube
o Ring
o 2d torus

• Broadcast (all to all)
o Hypercube
o Ring
o 2d torus

COP 4520 — Concepts of Parallel and Distributed Processing – 38 – © Charles E. Hughes — UCF Computer Science Dept.

Routing on Static Networks

• Communication costs associated with static networks.
Parameters are Startup Time (ts), Per-Hop Time (th), Per-Word Transfer Time (tw).

• Switching Techniques:

o Store-and-forward cost for m words traversing l links is tcomm = ts + (mtw + th) l.
Since th is usually quite small, we simplify this to tcomm = ts + mtwl.

o Cut-through routing advances the message as soon as it arrives at a node.
Wormhole routing is a specific type of cut-through in which the message is
divided into small parts called flits (flow-control digits). Flits are pipelined
through the network with an intermediate node needing to store the flit, but not
the whole message. Since flits are of fixed size, the communication cost is
tcomm = ts + lth+ mtw .

o Thus, store-and-forward is O(ml), whereas cut-through is O(m+l).

• Deadlocking can occur in wormhole routing

COP 4520 — Concepts of Parallel and Distributed Processing – 39 – © Charles E. Hughes — UCF Computer Science Dept.

Granularity

• Fine grain (often data parallel)
• Coarse grain (often control / function parallel)

• One measure is time for each computation step versus communication required

before next step

• BSP Model
o Bulk Synchronous Parallel

� Compute then communicate
� Loop {Superstep; Barrier Synch; communicate;}

o Granularity is ratio of size of superstep to communication time

COP 4520 — Concepts of Parallel and Distributed Processing – 40 – © Charles E. Hughes — UCF Computer Science Dept.

Programming Styles

Iterative parallelism: co // and process notation

Recursive parallelism (divide and conquer)

Producer / Consumer

Client / Server

Peers: worker, send and receive notation

Common orthogonal ways to attack are:

Functional Decomposition

Data Decomposition

COP 4520 — Concepts of Parallel and Distributed Processing – 41 – © Charles E. Hughes — UCF Computer Science Dept.

Foster’s Design Methodology – Partitioning

• Divide computation and data into many pieces
o Often this is done by dividing data first and then determine what computations

are associated with each piece of data; it is typical to do this with a focus on the
primary data structures

o Alternatively, we can be function driven, dividing the computation into pieces
and then associating data with each computation part

• In either case, the goal is to find as many primitive tasks as possible.

• Desirable attributes
o Flexible – There are orders of magnitude more tasks than available processors
o Efficient – Redundant computations and data are minimized
o Balanced – Primitive tasks are roughly the same size
o Scalable – The number of tasks increases with problem size

COP 4520 — Concepts of Parallel and Distributed Processing – 42 – © Charles E. Hughes — UCF Computer Science Dept.

Foster’s Design Methodology – Communication

• Determine the communication patterns between tasks
o Local communication refers to cases where a task needs to communicate with

a small number of other tasks; this is often done by creating communication
channels from the suppliers to the consumer

o Global communication refers to cases where a significant number of primitive
tasks must contribute data in order to perform some computation – MAX is a
very good example; one paradigm for managing this is the use of middleware in
the form of a blackboard or message queue

• Communication is parallel overhead in that this is not needed for non-parallel (single

task) computation

• Desirable attributes

o Locality – Tasks communicate with a small number of neighbors
o Balanced – Communication is balanced among tasks
o Communication Concurrency – Communications can be overlapped
o Computation Concurrency – Computations can be overlapped

COP 4520 — Concepts of Parallel and Distributed Processing – 43 – © Charles E. Hughes — UCF Computer Science Dept.

Foster’s Design Methodology – Agglomeration (1)

• Determine how to group tasks to improve performance or simplify design /
programming

o Sometimes we want more consolidated tasks than processors, putting several
per node – mapping is a major issue here

o Sometimes we want one consolidated tasks per processor; this is especially true
in SPMD environments such as clusters with message passing – mapping is
trivial with one processor per task

• Reduction in communication overhead is a major goal of agglomeration

o Agglomerating tasks that communicate removes communication overhead –
this is called “increasing locality”

o Combining tasks that are by their nature sequential (one await output from the
other) is usually a good start

o Of course, combining groups of sending and receiving tasks can also be
effective if the senders can group their messages together in order to reduce the
accumulated latency associated with many small messages

COP 4520 — Concepts of Parallel and Distributed Processing – 44 – © Charles E. Hughes — UCF Computer Science Dept.

Foster’s Design Methodology – Agglomeration (2)

• Desirable attributes
o Locality – Does agglomeration increase locality?
o Tradeoff – Is redundant computation less costly than replaced communication?
o Scalability – Is replication of computation or data not a hindrance when

problem size grows?
Is the number of tasks an increasing function of problem size?

o Balance – Are combined tasks of similar size (computation and
communication)?

o Matching – Are the number of tasks as small as possible, but at least as large
as the number of processors likely to be available?

o Economical – Is the cost of modifying existing sequential code must be
reasonable

COP 4520 — Concepts of Parallel and Distributed Processing – 45 – © Charles E. Hughes — UCF Computer Science Dept.

Foster’s Design Methodology – Mapping (1)

• Assign tasks to processors
o On a centralized multiprocessor, this is done automatically
o Thus, we assume a distributed memory parallel computer

• Our goal is to maximize processor utilization and minimize communication
overhead.

o Processor utilization is the percentage of time the processor is actively
executing tasks necessary to complete the computation – a busy wait is not an
example of a necessary activity; its inclusion is to remedy a mismatch or
contention induced by the chosen design

o Mapping communicating tasks to the same processor reduces communication
o Increasing processor utilization can conflict with minimizing communication

• Example, if we reduce communication to 0 by mapping all tasks to 1 out
of p available processors, then processor utilization is 1/p

o Optimal mapping is NP complete (we’ll study this later)
• Approaches to management can include

o Centralized – Pool processors with one manager who assigns tasks
o Distributed – Each peer keeps its own tasks and, when overloaded, pushes

some out to be picked up by others; again a blackboard or shared queue might
be used

o Static – Assign once and be happy
o Dynamic – Assign based on dynamically generated tasks

COP 4520 — Concepts of Parallel and Distributed Processing – 46 – © Charles E. Hughes — UCF Computer Science Dept.

Foster’s Design Methodology – Mapping (2)

• Checklist
o Did you investigate one task versus multiple tasks per processor?
o Did you investigate both static and dynamic mapping strategies?
o If you chose dynamic allocation, are you sure that the manager is not a

bottleneck?
o If you chose static allocation, is the ratio of tasks to processors at least one

order of magnitude?

COP 4520 — Concepts of Parallel and Distributed Processing – 47 – © Charles E. Hughes — UCF Computer Science Dept.

Traces

State, history, properties

s1 → s2 → s3 ... → sk

trace or history states; can have many traces in concurrent system

states are altered by atomic action

safety property : never enter a bad state

liveness property : eventually enter a good state

mutual exclusion is a safety property

partial correctness is a safety property

termination is a liveness property (finite histories)

total correctness is both a safety and liveness property

COP 4520 — Concepts of Parallel and Distributed Processing – 48 – © Charles E. Hughes — UCF Computer Science Dept.

Notation

co s1; // s2; // ... // sn; oc : concurrency

co [i=low to high] s;

process name { ... } : background process

< S; > : atomic action; critical section; mutual exclusion; granularity considerations

< await(B); > : conditional synchronization; barrier synchronization

< await(B) S; > : conditional atomic action

{ precondition } actions { postcondition } : basis for axiomatic proofs of correctness

COP 4520 — Concepts of Parallel and Distributed Processing – 49 – © Charles E. Hughes — UCF Computer Science Dept.

Max (some trial runs)

function max1
 int m = 0;
 for i = 0 to n-1
 if (a[i] > m) m = a[i];
end { max1 }

function max2
 int m = 0;
 co [i = 0 to n-1]
 if (a[i] > m) m = a[i];
end { max2 }

function max3
 int m = 0;
 co [i = 0 to n-1]
 < if (a[i] > m) m = a[i]; >
end { max3 }

function max4
 int m = 0;
 co [i = 0 to n-1]
 if (a[i] > m) < m = a[i]; >
end { max4 }

COP 4520 — Concepts of Parallel and Distributed Processing – 50 – © Charles E. Hughes — UCF Computer Science Dept.

Max in Concurrent Notation

The key here is that many conditions will probably be false, and so the guarded action
will never even be executed. Doing just the atomic test will destroy all concurrency.
Employing no guards will lead to a random selection among the candidates for max.
Guarding just the assign will have the same undesirable result.

function max

 int m = 0;

 co [i = 0 to n-1]

 if (a[i] > m)

 < if (a[i] > m)

 m = a[i]; >

end { max }

COP 4520 — Concepts of Parallel and Distributed Processing – 51 – © Charles E. Hughes — UCF Computer Science Dept.

Critical References

Critical reference is one changed by another process

At Most Once Property (x = e); appearance of atomicity

e contains at most one critical reference
and x is not read by any other process; OR

e contains no critical references

COP 4520 — Concepts of Parallel and Distributed Processing – 52 – © Charles E. Hughes — UCF Computer Science Dept.

Critical References (examples)
1. int y = 0, z = 0;

co x = y + z; // y = 1; z = 2; oc;
Two critical references – result is {x=[0,1,2,3], y=1, z=2} even though there is no
time when the state of system could have y+z equal to 2.

2. int x = 0, y = 0;
co x = x + 1; // y = y + 1; oc;
No critical references – result is {x=1, y=1}

3. int x = 0, y = 0;
co x = y + 1; // y = y + 1; oc;
One critical reference, but x not read by other – results {x=1, y=1},{x=2, y=1}

4. int x = 0, y = 0;
co x = y + 1; // y = x + 1; oc;
One critical reference per statement, and each assigned in other
 – results {x=1, y=2},{x=2, y=1},{x=1, y=1}
okay since there is a state in which the expressions x+1 and y+1 could
simultaneously be 1, even though does not satisfy at most once property

COP 4520 — Concepts of Parallel and Distributed Processing – 53 – © Charles E. Hughes — UCF Computer Science Dept.

Await

< S; > : atomic action; critical section; mutual exclusion; granularity considerations

< await(B); > : conditional synchronization; barrier synchronization

< await(B) S; > : conditional atomic action

Example:

Producer/Consumer – one item buffer (p is producer index, c is consumer index)
Initially p = 0, c = 0;
P: forever {<await (p = = c);> buf = next_produced; p++;}
C: forever {<await (p > c);> next_consumed = buf; c++;}

If implement await as spin loop, might do above as

forever {while (p > c); buf = next_produced; p++;}
forever {while (p <= c); next_consumed = buf; c++;}

This is a busy wait; common on parallel machines and at lower levels of architecture

COP 4520 — Concepts of Parallel and Distributed Processing – 54 – © Charles E. Hughes — UCF Computer Science Dept.

Avoiding Interference among Concurrent Processes

Disjoint Variables

Make sure reference set of each process differs from write set of others

Weakened assertions
Often just do your best at the time you make a decision
Analogy to greedy algorithms

Global invariants
Property of shared variables that is preserved across all assignments
Analogy to Domain analysis in OO

Synchronization
Making statements atomic avoids exposing inner states

COP 4520 — Concepts of Parallel and Distributed Processing – 55 – © Charles E. Hughes — UCF Computer Science Dept.

Fairness

Unconditional Fairness:

Every unconditional eligible atomic action is eventually executed

Weak Fairness

Unconditionally fair; OR
Every conditional eligible atomic action is eventually executed, provided the
condition becomes true and stays true until the atomic action is executed

Strong Fairness (an impractical consideration)

Unconditionally fair; OR
Every conditional eligible atomic action is eventually executed, assuming the
condition is infinitely often true – this means if the condition is always
guaranteed to return to true if ever it cycles from true to false then the atomic
action will eventually be executed

COP 4520 — Concepts of Parallel and Distributed Processing – 56 – © Charles E. Hughes — UCF Computer Science Dept.

Critical Section Problem

Mutual Exclusion

At most one process in a critical section

Absence of Deadlock (Livelock)

If two or more processes want a critical section, at least one will succeed

Absence of Unnecessary Delays

A process ready to use an uncontested critical section will not be delayed

Eventual Entry

Every process that wants a critical section will eventually get it

COP 4520 — Concepts of Parallel and Distributed Processing – 57 – © Charles E. Hughes — UCF Computer Science Dept.

Spin Locks

We now want to consider how to implement the < ... > primitive of text

How do we handle code like <await (!lock) lock = true;> critical; lock = false;?

Test and Set from IBM 360/67 2 processor machine

while (TS(lock)) skip; // returns entry value of lock (before this set)
< boolean initial=lock; lock=true; return initial; >

Problems

one memory cycle -- basically an atomic spin lock
no guarantee of fairness
results in serious memory contention for shared lock

while (lock) skip; while (TS(lock)) { while (lock); skip} // Test and Test and Set

reduces memory contention

COP 4520 — Concepts of Parallel and Distributed Processing – 58 – © Charles E. Hughes — UCF Computer Science Dept.

Implementing Critical Sections

To implement unconditional atomic action < S; >

CSEnter; // CSEnter is entry protocol
S;
CSExit; //CSExit is exit protocol

To implement conditional atomic action <await (B) S; >

CSEnter;
while (!B) { CSExit; [delay]; CSEnter; } // delay may be omitted
S;
CSExit;
If B satisfies at most once property can do < await(B);> as while(!B);

Relation to Java synchronized

synchronized (lock) { S; }
is like <S;> // every process uses same lock object

synchronized (lock) { while (!B) try{wait();}catch(...){} S; notify(); }
is like <await(B) S;>

COP 4520 — Concepts of Parallel and Distributed Processing – 59 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 3.1
1. Consider the following “solution” to the critical section problem for n processes:

shared boolean lock=false;
shared boolean waiting[1:n] = ([n] false); // all slots are false
process p [i=1 to n] {

while (some continuation condition is true for process i) {
while (lock) { waiting[i] = true; while (waiting[i]) delay(); }
lock = true;
// critical section
lock = false;
// wake up at most one process
for (j=1; j<=n; j++) if (waiting[j]) { waiting[j] = false; break; }
// non-critical stuff

}
}

 Which of the following does this achieve? Answer Yes or No for each and give a one sentence
justification.
Mutual exclusion
Avoidance of deadlock
Avoidance of livelock
Absence of unnecessary delays
Eventual entry

COP 4520 — Concepts of Parallel and Distributed Processing – 60 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 3.2
2. In each of the following, specify which Fairness criteria (unconditional, weak and/or strong)

guarantee that the statement S is eventually executed? Check all applicable columns.
Statements unconditional weak strong
int x=0; co <await(x == 5) S; > //
while (true) x = x+1; oc

int x=0; co <S; > //
while (true) x = x+1; oc

int x=0; co <await(x == 5) S; > //
while (true) x = (x<6 ? x+1 : x);
oc

int x=0; co <await(x == 5) S; > //
while (true) x = (x<10 ? x+1 :
0);oc

COP 4520 — Concepts of Parallel and Distributed Processing – 61 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 3.3
3. Consider the following program

int x=0;
co

<await (x != 0) x = x – 1; > # S1
// <await (x == 0) x = x – 4; > # S2
// <await (x != 0) x = x + 3; > # S3

oc
Does the program meet the "At-Most-Once Property"? Explain your answer.

What are the possible final values of x? Show all traces.

Suppose the await statements are replaced by non-atomic if statements, but the assigns become
atomic.

int x=0;
co

if (x != 0) <x = x – 1; > # S1
// if (x != 0) <x = x + 3; > # S2
// if (x == 0) <x = x – 4; > # S3

oc
What are the possible final values of x? Show all traces.

COP 4520 — Concepts of Parallel and Distributed Processing – 62 – © Charles E. Hughes — UCF Computer Science Dept.

Threads

• Thread
– A thread is a sequentially executed stream of commands
– Usually lightweight

• A thread is not a process

– Runs within the resources allocated to a process
• It does have its own execution context (stack, program counter,

register)
– Multiple threads of a process share resources and can refer to common

objects

• Every process has at least one thread

COP 4520 — Concepts of Parallel and Distributed Processing – 63 – © Charles E. Hughes — UCF Computer Science Dept.

Thread Life Cycle

• Create – new thread is allocated
• Running – thread is executing
• Ready – thread is waiting for the processor
• Blocked – thread is waiting on a requested service
• Finished – thread has been stopped and deallocated

Running Creat

Finished

Ready

Yield

Start Servic

Terminate

COP 4520 — Concepts of Parallel and Distributed Processing – 64 – © Charles E. Hughes — UCF Computer Science Dept.

Java Threads

• Like everything else, a thread is an instance of a class.
– Thread

• Part of the java.lang package
• Provides basic behaviors

– Starting
– Stopping
– Sleeping
– Yielding
– Priority management
– A simple form of monitors

• The run method, by default is empty
• There are two ways

– Subclass Thread and override run
– Implement the Runnable interface

COP 4520 — Concepts of Parallel and Distributed Processing – 65 – © Charles E. Hughes — UCF Computer Science Dept.

Sample Java Threads

class SimpleThread extends Thread {
 public SimpleThread(String str) {
 super(str); //sets thread’s name
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println(i + " " +getName());
 try {
 sleep((int)(Math.random() * 1000)); // one second delay
 } catch (InterruptedException e) { }
 }
 System.out.println("DONE! " + getName());
 }
}

public class TwoThreadsTest {
 public static void main (String[] args) {
 new SimpleThread("UCF").start();
 new SimpleThread("Knights").start();
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 66 – © Charles E. Hughes — UCF Computer Science Dept.

Creating and Starting Threads

• Creating a thread instances the class
– No resources have been allocated to it yet
– From here, the only thing you can do is call the start method

myThread = new Thread(this,”My Thread”);
• Used as part of the Runnable interface
• “this” sets the context for the thread
• “My Thread” sets the name

myThread = new MyThreadClass(”My Thread”);
• Used when inheriting
• Context is set to the current object

• Starting a thread

myThread.start();
– Allocates the resource
– Starts the thread running
– Returns control to existing thread

COP 4520 — Concepts of Parallel and Distributed Processing – 67 – © Charles E. Hughes — UCF Computer Science Dept.

Ways to Delay

• Yielding the processor
myThread.sleep(1000);

– Sleeps the number of milliseconds
– Will not run even if processor becomes available
– sleep(0) sees if anything else is ready to run
– can also use yield()

• Blocked

– Waiting on I/O
• System will schedule thread when the data is available

– User defined
• Most often waiting on a shared piece of code or data structure

• Busy Wait

while (okToProceed == false) { };
– Technically stays in runnable state
– Program is constantly checking to see if a resource has become available
– Not a good thing to do with one processor

COP 4520 — Concepts of Parallel and Distributed Processing – 68 – © Charles E. Hughes — UCF Computer Science Dept.

Thread or Runnable?

– Thread is a class
– Java supports only single inheritance

– Runnable is interface
– So it can be multiply inherited

– So, use Runnable when you have to inherit from some other class
– This is required for multithreading in applets

COP 4520 — Concepts of Parallel and Distributed Processing – 69 – © Charles E. Hughes — UCF Computer Science Dept.

Synchronization

• Mutual exclusion of threads.

• Each synchronized method or statement is guarded by an object.

• When entering a synchronized method or statement, the object will be locked until

the block is finished.

• When the object is locked by another thread, the current thread must wait.

COP 4520 — Concepts of Parallel and Distributed Processing – 70 – © Charles E. Hughes — UCF Computer Science Dept.

Granularity

• Synchronized method:

class MyClass{
 synchronized void aMethod(){
 statements
 }
}

• Synchronized block:

synchronized(exp){
 statements
}

COP 4520 — Concepts of Parallel and Distributed Processing – 71 – © Charles E. Hughes — UCF Computer Science Dept.

Threads and Applets

• Applets commonly use threads

• Rule of thumb, if you are going to do something that is going to take a while,

spawn off a thread to do it.
– Loading images or sound files
– Playing sounds

• Implement the Runnable interface to use threads in an applet

• There is a main thread, the Event Thread

– This is the one that the browser talks to
– It is the only one that will stop by default when you leave the page
– You must stop all the others

• If you do complex actions in the Event Thread, your applet becomes totally
non-responsive. – DON’T DO IT!!!!

COP 4520 — Concepts of Parallel and Distributed Processing – 72 – © Charles E. Hughes — UCF Computer Science Dept.

A “Racy” Sort

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import javax.swing.*;
import java.util.*;

public class EOSort extends JApplet implements Runnable {

private static int N = 8;
private static int MAX_DELAY = 500; // half second
private static int MAX_VALUE = 50; //
private Thread[] threads;
private int[] values;

COP 4520 — Concepts of Parallel and Distributed Processing – 73 – © Charles E. Hughes — UCF Computer Science Dept.

Prepare Sort Values and Threads (Start/Stop)

public void init() {
 Random r = new Random();
 String parm = getParameter("N");
 if (parm != null) N = Integer.parseInt(parm);
 values = new int[N];
 for (int i=0; i<N; i++)
 values[i] = r.nextInt(MAX_VALUE) + 1;
}

public void start() {
 threads = new Thread[N];
 for (int i=0; i<N; i++) {
 threads[i] = new Thread(this, Integer.toString(i));
 threads[i].start();
 }
}

public void stop() {
 for (int i=0; i<N; i++) threads[i] = null;
}

COP 4520 — Concepts of Parallel and Distributed Processing – 74 – © Charles E. Hughes — UCF Computer Science Dept.

Display State

public void paint(Graphics g) {
 Vector v = new Vector(N);
 for (int i=0; i<N; i++) v.add(new Integer(values[i]));
 g.clearRect(0, 0, getContentPane().getWidth(),
 getContentPane().getHeight());
 g.drawString(v.toString(), 0, 30);
}

private void swap(int i, int j) {
 int temp = values[i];
 values[i] = values[j];
 values[j] = temp;
}

COP 4520 — Concepts of Parallel and Distributed Processing – 75 – © Charles E. Hughes — UCF Computer Science Dept.

Run Each Thread

public void run() {
 while (threads[0] != null) {
 try {
 Thread.sleep(
 (int)(MAX_DELAY*Math.random()));
 } catch (InterruptedException e) {}
 int me = Integer.parseInt(Thread.currentThread().getName());
 int left = Math.max(0,me-1);
 int right = Math.min(N-1,me+1);
 boolean change = false;
 if (values[me] > values[right]) {swap(me, right);change=true;}
 if (values[me] < values[left]) {swap(me, left);change = true;}
 if (change) repaint();
 }
}

}

COP 4520 — Concepts of Parallel and Distributed Processing – 76 – © Charles E. Hughes — UCF Computer Science Dept.

Thoughts About “Racy” Sort

• Thought Exercise

– Starting from the Java even/odd implementation, add delays (sleep) at
various points to break the atomicity of my solution.

– Discuss which placements of sleep cause semantic problems and which do

not. Explain both as best you can.

– Go back to EOSort. Design and re-implement it using critical section(s) –
synchronized blocks. It's inherently unsafe right now!!

COP 4520 — Concepts of Parallel and Distributed Processing – 77 – © Charles E. Hughes — UCF Computer Science Dept.

Reflexive Transitive Closure

The Problem:

Given a graph, G, determine for which pairs of nodes, (A,B), there is a path
between A and B.

A

B

F

E

G

C

D

Array representation – 1 is True; 0 is False
 A B C D E F G
A 1 0 1 1 0 0 1
B 0 1 0 0 0 0 0
C 0 0 1 0 1 1 0
D 0 0 0 1 1 0 1
E 0 1 0 0 1 0 0
F 0 1 0 0 0 1 0
G 0 1 0 0 1 0 1

COP 4520 — Concepts of Parallel and Distributed Processing – 78 – © Charles E. Hughes — UCF Computer Science Dept.

Warshall’s Algorithm

public void warshallsAlgorithm() {
 //for each pivot try all pairs of nodes
 for (int pivot = 0; pivot < N; pivot++)
 for (int v = 0; v < N; v++)
 for (int w = 0; w < N; w++)
 // if (v != w)
 connectedMatrix[v][w] = connectedMatrix[v][w] ||
 (connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);
}

Analysis easily shows that this is O(N3).

COP 4520 — Concepts of Parallel and Distributed Processing – 79 – © Charles E. Hughes — UCF Computer Science Dept.

Parallelizing Warshall’s Algorithm

Can partition so we change two inner loops to

 co (int v = 0; v < N; v++) (int w = 0; w < N; w++)
 connectedMatrix[v][w] = connectedMatrix[v][w] ||
 (connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);

This then can be carried out in O(N) time with N2 processors. To do so, you would
need a CREW PRAM style machine. The concurrent reads are needed to avoid
contention. An alternative method, if we have just N processors is to run only the
inner loop instances in parallel. This is a form of agglomeration. Here is the new
algorithm.
public void parallelWarshallsAlgorithm() {
 //for each pivot try all pairs of nodes
 for (int pivot = 0; pivot < N; pivot++)
 for (int v = 0; v < N; v++)
 co (int w = 0; w < N; w++)
 connectedMatrix[v][w] = connectedMatrix[v][w] ||
 (connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);
}

This is O(N2). Again, we need a CREW PRAM.

COP 4520 — Concepts of Parallel and Distributed Processing – 80 – © Charles E. Hughes — UCF Computer Science Dept.

Weary Traveler – Shortest Path
The Problem:

Given a graph (a dag), G, with weighted arcs, and two nodes, A and B, determine the minimum weight
path from A to B.
Greedy fails here: Get 3 + 6 + 6 = 15; but can get 5 + 3 + 5 = 13

A

B

F

E

G

C

D

Source

Sink

6
7

5

7

7

3

7

11

614

5

3

Array representation
 A B C D E F G
A 0 ∞ 5 3 ∞ ∞ 14
B ∞ 0 ∞ ∞ ∞ ∞ ∞
C ∞ ∞ 0 ∞ 3 7 ∞
D ∞ ∞ 11 0 7 ∞ 6
E ∞ 5 ∞ ∞ 0 ∞ ∞
F ∞ 7 ∞ ∞ ∞ 0 ∞
G ∞ 6 ∞ ∞ 7 ∞ 0

COP 4520 — Concepts of Parallel and Distributed Processing – 81 – © Charles E. Hughes — UCF Computer Science Dept.

Floyd’s All Shortest Paths Algorithm

final int INFINITY = Integer.MAX_VALUE; // choose value not used in weights

private boolean connected(int v, int w) {
 return adjacencyMatrix[v][w] != INFINITY)
}

public void floydsAlgorithm() {
 for (int pivot = 0; pivot < N; pivot++)
 for (int v = 0; v < N; v++)
 for (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);
}
Analysis again shows that this is O(N3).
Parallelization follows as with Warshall’s.

COP 4520 — Concepts of Parallel and Distributed Processing – 82 – © Charles E. Hughes — UCF Computer Science Dept.

Multi-Threaded Implementation

Let’s consider the case where we have N threads, each holding a row of the
adjacency matrix.

Can the threads progress independently?

If not, when must they synchronize?

Will threads interfere with each other?

If so, will the interference lead to incorrect results?

COP 4520 — Concepts of Parallel and Distributed Processing – 83 – © Charles E. Hughes — UCF Computer Science Dept.

Barrier Synchronization in Java
public class Barrier {
 private int count;
 // Barrier Constructors
 // Default just coordinates one thread (rather meaningless)
 public Barrier() {
 this(1);
 }
 public Barrier (int count) {
 setCount(count);
 }
 // Set count of number of threads to coordinate
 public void setCount(int n) {
 count = n;
 }
 // Block at the barrier until all workers have joined
 // Critical Region -- Must be synchronized
 synchronized public void join() {
 count--;
 while (count > 0)
 try {
 wait();
 } catch (InterruptedException e) {System.out.println(e);}
 notifyAll();
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 84 – © Charles E. Hughes — UCF Computer Science Dept.

More on Parallelizing Floyd’s All Shortest Paths Algorithm

final int INFINITY = Integer.MAX_VALUE; // choose value not used in weights

private boolean connected(int v, int w) {
 return adjacencyMatrix[v][w] != INFINITY)
}

public void floydsAlgorithm() {
 [co | for] (int pivot = 0; pivot < N; pivot++)
 [co | for] (int v = 0; v < N; v++)
 [co | for] (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);
}

COP 4520 — Concepts of Parallel and Distributed Processing – 85 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 1

 for (int pivot = 0; pivot < N; pivot++)
 for (int v = 0; v < N; v++)
 co (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);

This is best run with N processors, each being assigned an element from row w on
which it works. We will need to do N2 barrier synchronizations, one per pivot/row
pair. There is no read contention for the [v][w] elements (except for the cases where
v or w equals pivot and that can be avoided with a judicious if clause), but there is
contention for the pivot elements. Fortunately, there is no write contention, which is
helpful if we are depending on cache. There appears to be a problem of reading an
area that is changing when either v or w is the pivot; however such an element
would never get an improvement from using itself as the pivot.

COP 4520 — Concepts of Parallel and Distributed Processing – 86 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 2

 for (int pivot = 0; pivot < N; pivot++)
 co (int v = 0; v < N; v++)
 for (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);

This is best run with N processors, each being assigned a row on which it works. We
will need to do N barrier synchronizations, one per pivot value. The rest of the
discussion matches that of case#1.

COP 4520 — Concepts of Parallel and Distributed Processing – 87 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 3

 for (int pivot = 0; pivot < N; pivot++)
 co (int v = 0; v < N; v++)
 co (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);

This is best run with N2 processors, each being assigned a single element from the
adjacency matrix. This will take N barrier synchronizations, one per pivot. There is
lots of read contention.

COP 4520 — Concepts of Parallel and Distributed Processing – 88 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 4

 co (int pivot = 0; pivot < N; pivot++)
 for (int v = 0; v < N; v++)
 for (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);

Well, we can use N processors, but this is not valid since we do multiple pivot points
in parallel. It can be made so by encompassing the nested loop with a test to see if
any changes were made on the most recent iteration. You keep iterating until
convergence.

COP 4520 — Concepts of Parallel and Distributed Processing – 89 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 5

 co (int pivot = 0; pivot < N; pivot++)
 for (int v = 0; v < N; v++)
 co (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);

Well, we can use N2 processors, but this again is not valid since we do multiple pivot
points in parallel.

COP 4520 — Concepts of Parallel and Distributed Processing – 90 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 6

 co (int pivot = 0; pivot < N; pivot++)
 co (int v = 0; v < N; v++)
 for (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);

Well, we can use N2 processors, but this again is not valid since we do multiple pivot
points in parallel.

COP 4520 — Concepts of Parallel and Distributed Processing – 91 – © Charles E. Hughes — UCF Computer Science Dept.

Inspecting Case # 7

 co (int pivot = 0; pivot < N; pivot++)
 co (int v = 0; v < N; v++)
 co (int w = 0; w < N; w++)
 if (connected(v,pivot) && connected (pivot,w))
 adjacencyMatrix[v][w] =
 Math.min(
 adjacencyMatrix[v][w],
 adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]);
This can use N3 processors, but it fails to solve the problem. This is still interesting,
since it may be that convergence is quick. Here is the changed program.
boolean changed = true;
while (changed) do {
 changed = false;
 co (int pivot,v,w in [<0,..,N-1>,<0,..,N-1>,<0,..,N-1>])
 if (connected(v,pivot) && connected (pivot,w)) {
 int trial = adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w];
 if (trial < adjacencyMatrix[v][w]) {
 changed = true; adjacencyMatrix[v][w] = trial;
 }
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 92 – © Charles E. Hughes — UCF Computer Science Dept.

Analyzing the Parallel Max

 Parallel Algorithm.

 For k = 1 to lg n do
 For i = 1 to n/2k pardo
 A [i] := max(A[2*i], A[2*i+1]);
 Largest : = A[1].

 p = no. of processors

 Time
 T1 = n - 1
 Tn/2 = log n
 Cost = p × T
 Cost1 = n - 1 ≈ n = Ø (n)
 Costn/2 = n/2 lg n = Ø (n lg n)

 Speed up.
 Sp = T1/Tp = (n–1)/lg n = Ø (1 / lg n)

 Not efficient.

COP 4520 — Concepts of Parallel and Distributed Processing – 93 – © Charles E. Hughes — UCF Computer Science Dept.

Being Efficient

Can we do better?

No. of elements = n
of processors = p
of elements assigned to each processor = n/p
 So, 2 ≤ n/p ≤ n
Since # of elements in each processor is n/p

 Tseq = (n/p–1) [(m - 1) comparisons for max. of m elements]

Once all the p processors have found out their respective maximums, the parallel
computation takes over. With p processes in action, the time to find the maximum takes
lg p time.

Tpar = lg p
Ttol = Tpar + Tseq
 = lg p + n/p – 1
with p = 1. Ttol = lg 1 + n/1 - 1 = n - 1
 p = n/2 Ttol = lg n/2+n/(n/2) - 1 = lg n/2 + 1 = lg n – 1 + 1 = lg n

COP 4520 — Concepts of Parallel and Distributed Processing – 94 – © Charles E. Hughes — UCF Computer Science Dept.

The Right Number of Processors

What is a good value of p? It is one that brings down the cost to match that of the
sequential algorithm and still gains on computational time complexity.

 Let p = n/lg n

of elements in each processor = n/(n/lg n) = lg n

 Tseq = lg n - 1
 Tpar = lg p = lg (n/lg n) = lg n - lg lg n (negligible)

Ttol = lg n - 1 + lg n - lglg n

 ≈ 2 lg n - 1 = Ø (lg n)

Cost = Ø (lg n) * n/lg n = Ø (n)

COP 4520 — Concepts of Parallel and Distributed Processing – 95 – © Charles E. Hughes — UCF Computer Science Dept.

Example of Brent's Scheduling
Example n = 256 lg n = 8 p = n/lg n = 32

Each processor gets 8 elements, so

 Tseq = 8 - 1 = 7

p = 32, so

 Tpar = lg 32 = 5

 Ttol = 7 + 5 = 12.

Cost = 32 * 12 = 384

Now if p = n/2 = 256/2 = 128,

Each processor gets 2 elements, so

 Tseq = 1 and

 Tpar = log 128 = 7

 Ttol = 7 + 1 = 8

 Cost = 128 * 8 = 1024

Using p = n/lg n processors for sequencing is called Brent's scheduling.

COP 4520 — Concepts of Parallel and Distributed Processing – 96 – © Charles E. Hughes — UCF Computer Science Dept.

Parallel Binary Tree Reduction Algorithm

TP(N) = O(N/P + lg P)
CP(N) = O(N + P lg P)
WP(N) = O(N + P) = O(N), provided P is O(N).
ECP(N) = O(1/(1 + P lg P / N))
EWP(N) = O(1/(1 + P/N) = O(1), provided P is O(N).

TN(N) = O(lg N)
CN(N) = O(N lg N)
WN(N) = O(N).
ECN(N) = O(1/(lg N))
EWN(N) = O(1).

TN/lgN(N) = O(lg N)
CN/lgN(N) = O(N)
WN/lgN(N) = O(N).
ECN/lgN(N) = O(1)
EWN/lgN(N) = O(1).

COP 4520 — Concepts of Parallel and Distributed Processing – 97 – © Charles E. Hughes — UCF Computer Science Dept.

Parallel CRCW Max Algorithm

Super Fast CRCW Algorithm:

TN2(N) = O(1)

CN2(N) = O(N2)

WN2(N) = O(N2).

ECN2(N) = O(1/N)

EWN2(N) = O(1/N).

COP 4520 — Concepts of Parallel and Distributed Processing – 98 – © Charles E. Hughes — UCF Computer Science Dept.

How Do We Make Access Fair -- Tie Breaker

Tie Breaker

boolean in1=false, in2=false; int last=1; //
CS1: last=1; in1=true; <await(!in2 or last==2);> S; in1=false;
CS2: last=2; in2=true; <await(!in1 or last==1);> S; in2=false;

boolean in1=false, in2=false; int last=1; //
CS1: last=1; in1=true; while (in2 and last==1) delay; S; in1=false;
CS2: last=2; in2=true; while (in1 and last==2) delay; S; in2=false;

This does not scale very well to n participants.

Need to break tie with all n-1 of them before proceeding.

COP 4520 — Concepts of Parallel and Distributed Processing – 99 – © Charles E. Hughes — UCF Computer Science Dept.

How Do We Make Access Fair -- Ticket

Ticket Algorithm

int number=1, next=1, turn[1:n] = ([n] 0);
process CS[I=1 to n]

…
<turn[i] = number; number++;>
<await (turn[i] == next);>
S;
<next++;>
…

The exit protocol can be non-atomic since only one process can execute it at a time.
The entry protocol is more problematic.

Many machines have an atomic add (Fetch and Add / FA) that returns the old
value.

<turn[i] = number; number++;>
<await (turn[i] == next);>

becomes
turn[i] = FA(number, 1)
while (turn[i] != next) delay();

COP 4520 — Concepts of Parallel and Distributed Processing – 100 – © Charles E. Hughes — UCF Computer Science Dept.

Barrier Synchronization
Shared Counter

<count++;>
<await(count==n);>
or
FA(count, 1);
while (count != n) delay(small);

Flags and Coordinators
int arrive[1:n] ([n] 0), continue[1:n] = ([n] 0);
process Worker[i=1 to n] {

do task i;
arrive[i] = 1;
<await (continue[i] == 1);>
continue[i] = 0;

}
process Coordinator {

while (true) {
for [int i=1 to n] {

<await (arrive[i] == 1);>
arrive[i] = 0;

}
for [int i=1 to n] continue[i] = 1;

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 101 – © Charles E. Hughes — UCF Computer Science Dept.

Combining Tree Barrier Synchronization

Flags and coordinators has two drawbacks

Extra process to coordinate (a referee of sorts)
Coordinator’s effort is proportional to number of workers

Overcome by making each worker serve as a coordinator

Organize workers into a tree
some are leaves; some interior; one is a root

Plus: propagation is lg N (up and down tree)
Minus: this destroys symmetry of workers

COP 4520 — Concepts of Parallel and Distributed Processing – 102 – © Charles E. Hughes — UCF Computer Science Dept.

Symmetric Butterfly Barrier Synchronization

Can use Butterfly structure (a dynamic version of Hypercube)

0 • ----------------------------------- • ----------------------------------- • ------------------------------------• 0

1 • ----------------------------------- • ----------------------------------- • ------------------------------------•1

2 • ----------------------------------- • ----------------------------------- • ------------------------------------•2

3 • ----------------------------------- • ----------------------------------- • ------------------------------------•3

4 • ----------------------------------- • ----------------------------------- • ------------------------------------•4

5 • ----------------------------------- • ----------------------------------- • ------------------------------------•5

6 • ----------------------------------- • ----------------------------------- • ------------------------------------•6

7 • ----------------------------------- • ----------------------------------- • ------------------------------------•7

In our problem we just think of the lines as communication between nodes, starting
from right, moving left. In general this provides a lg N scheme for any processor to
communicate with any other, just like a hypercube. Implementation in hardware is
through switches that can be pass through or cross over.

COP 4520 — Concepts of Parallel and Distributed Processing – 103 – © Charles E. Hughes — UCF Computer Science Dept.

Symmetric Dissemination Barrier Synchronization

The butterfly technique just described requires 2k processors, for some k.

Can set up a pattern that communicates to node+1, node+2, node+4, …, treating the
sequence as a ring. This does not depend on a power of two.

Example n=5:

{ {0,1}, {1,2}, {2,3}, {3,4}, {4,0} }
{ {0,2}, {1,3}, {2,4}, {3,5}, {4,1} }
{ {0,4}, {1,0}, {2,1}, {3,2}, {4,3} }

Process sets the arrival flag of right neighbor and waits for and then clears its own
arrival flag. Time is ⎡lg N⎤ (ceiling rounds up).

Both butterfly and dissemination barrier can lead to a race.

Consider butterfly. Assume process 0 arrives at its first stage and sets its flag
arrive[0]. Suppose process 1 is slow. Suppose 2 and 3 arrive at barrier and set each
other's flags, clear them and proceed to the next stage. In stage 2, process 2 wants to
synchronize with process 0, whose arrive flag is set. So process 2 clears arrive[0] and
proceeds to stage 3. Process 1 never knows that arrive[0] was set for it. Some
processes will exit too soon; others will never exit. Solution is to use a non-boolean
for arrive's value. This is count of number of stages at which task has arrived.

COP 4520 — Concepts of Parallel and Distributed Processing – 104 – © Charles E. Hughes — UCF Computer Science Dept.

Data Parallel

Data Parallel on SIMD machine

MasPar Examples
Don't need barrier synchronization if on SIMD machine

Parallel Prefix in lg N time (N lg N cost, N work)

plural int s, a;
s ← a;
for j ← 0 to ⎡log n⎤ 1 do

if (myProcNumber >= 2^j)
 s ← s + proc[myProcNumber – 2^j].s;

Parallel operations on linked lists

Computing length of list headed by each element in lg N time

plural int length = 1;
plural int partner = next; // linked list of processor numbers
while (partner != null) {

length = length+ proc[partner].length;
partner = proc[partner].partner;

}

COP 4520 — Concepts of Parallel and Distributed Processing – 105 – © Charles E. Hughes — UCF Computer Science Dept.

Bag of Tasks

Bag of Tasks parallel strategy

Each thread involved just grabs a task from the bag and executes it
Can also have separate bags for each thread

Tasks in a single bag are run non-concurrently

Use in Java Event thread

SwingUtilities.invokeLater (new Runnable() { // asynchronous
public void run() { … } }

// Cannot do synchronous call from Event thread -- think about it
SwingUtilities.invokeAndWait(new Runnable() { // synchronous

public void run() { … } }

COP 4520 — Concepts of Parallel and Distributed Processing – 106 – © Charles E. Hughes — UCF Computer Science Dept.

Communication and Coordination

SIMD Machine

Coordinates via a single master node
Communicates over a high speed, low latency dedicated network

SIMD Model

Limits you to data parallelism
Encourages/Forces you into regular communication patterns

MIMD

Requires some means of coordination (synchronization)
Allows you flexibility in your communication paradigms

Distributed Systems

Involve the greatest challenges for coordination
Provide the most flexibility for communication paradigms
Place a burden due to variable speed, high latency shared network

COP 4520 — Concepts of Parallel and Distributed Processing – 107 – © Charles E. Hughes — UCF Computer Science Dept.

Maspar X-Net Adds
/***
This program illustrates the use of DPU timing functions.
**/
#include <mpl.h>
#include <stdio.h>
extern void dpuTimerStart();
extern double dpuTimerElapsed();

int SlowAvg(src)
plural int src;
{
 int i;
 for (i=0; i<100; i++) {
 src += xnetN[1].src + xnetS[1].src + xnetE[1].src + xnetW[1].src +
 xnetNE[1].src +xnetNW[1].src +xnetSE[1].src +xnetSW[1].src;
 src = src/9;
 }
}
int FasterAvg(src)
plural int src;
{ int i;
 for (i=0; i<100; i++) {
 src += xnetN[1].src + xnetS[1].src;
 src += xnetE[1].src + xnetW[1].src;
 src = src/9;
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 108 – © Charles E. Hughes — UCF Computer Science Dept.

int EvenFasterAvg(src)
plural int src;
{
 register int i;
 register plural int tmp;
 for (i=0; i<100; i++) {
 tmp = src;
 tmp += xnetN[1].tmp + xnetS[1].tmp;
 tmp += xnetE[1].tmp + xnetW[1].tmp;
 src = tmp/9;
 }
}
main()
{
 plural int A;
 int sum,i;
 double time;
 /* initialize the array A */
 A = iproc;
 dpuTimerStart();
 SlowAvg(A);
 A = iproc;
 dpuTimerStart();
 FasterAvg(A);
 A = iproc;
 dpuTimerStart();
 EvenFasterAvg(A);
}

COP 4520 — Concepts of Parallel and Distributed Processing – 109 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores

Abstraction with two services P (wait) and V (signal)

sem s;
P(s): <await(s>0) s--;>
V(s): <s++;>

Internal state is a non-negative int value -- counting or general semaphore; or

a binary value (0 or 1) -- binary semaphore
fairness can be assured with proper implementation of await.

Critical section problem and semaphores
sem mutex = 1;
process CS[i=1 to n] {

...
mutex.wait(); critical section; mutex.signal();
...

}

COP 4520 — Concepts of Parallel and Distributed Processing – 110 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Java synchronized

Each object can have a field called mutex (mutual exclusion)
sem mutex = 1;

synchronized(Object obj):

obj.mutex.p(); // used p since wait means something else in Java
// body of synchronized code
obj.mutex.v();

This won't quite work since Java's locks are reentrant.
We should not do p() or v() if we own lock.

Java's wait()/notify() might be implemented by adding another field
sem waitingtask = 0;

and implementing the services by code like

wait():

obj.mutex.v();obj.waitingTask.p(); obj.mutex.p();
notify():

obj.waitingTask.v();
Note: wait() and notify() are actually done by native code in Java.

COP 4520 — Concepts of Parallel and Distributed Processing – 111 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Barriers -- one of many solutions

sem done=0, barrier=0;

process workers[i=1 to n] {

while (true) {
// do task i
done.signal();
barrier.wait();

}
}

process coordinator {

while (true) {
// wait for all n tasks
for [i=1 to n] done.wait();
// let all n tasks through barrier
for [i=1 to n] barrier.signal();

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 112 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Producer/Consumer Problem

typeT buf[n];
int front=0, rear=0;
sem empty=n, full=0, mutexD=1, mutexF=1;

process producer[i=1 to nProducers] {

while (true) {
// produce data to deposit in buffer
empty.wait(); mutexD.wait();
buf[rear] = data; rear = (rear+1) % n;
mutexD.signal(); full.signal();

}
}

process consumer[i=1 to nConsumers] {

while (true) {
full.wait(); mutexF.wait();
result = buf[front]; front = (front+1) % n;
mutexF.signal(); empty.signal();
// consume the result just fetched

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 113 – © Charles E. Hughes — UCF Computer Science Dept.

Dining Philosophers

In our variant, there will be 5 philosophers sitting at a table with dishes and 5 forks.
Each philosopher performs the sequence

 loop
 think;
 /* somehow get forks */
 eat;
 end loop;

To eat, a philosopher must have two forks, one from each side of the plate. A
solution must try to avoid deadlock and starvation, yet retain fairness

Phil

Phyllis
Filly

Frege

Goofy

COP 4520 — Concepts of Parallel and Distributed Processing – 114 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Dining Philosopher Problem

sem fork[n] = ([n] 1);

// a solution that can lead to starvation
process philosopher[i=0 to n-1] {

while (true) {
// think and get hungry
fork[i].wait(); fork[(i+1)%n].wait();
eat();
fork[i].signal(); fork[(i+1)%n].signal();

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 115 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Dining Philosopher Problem (2)

sem fork[n] = ([n] 1);

process philosopher[i=0 to n-1 by 2] { // even numbered

while (true) {
// think and get hungry
fork[i].wait(); fork[(i+1)%n].wait();
eat();
fork[(i+1)%n].signal(); fork[i].signal();

}
}

process philosopher[i=1 to n-1 by 2] { // odd numbered

while (true) {
// think and get hungry
fork[(i+1)%n].wait(); fork[i].wait();
eat();
fork[i].signal(); fork[(i+1)%n].signal();

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 116 – © Charles E. Hughes — UCF Computer Science Dept.

Diners Club – Probabilistic Attack

sem fork[n] = ([n] 1);

process philosopher[i=0 to n-1] {

while (true) {
// think and get hungry
boolean success = false;
while (!success) {

int first = (i + randomChoice(0, 1))%n;
fork[first].wait();
int second = (first==i) ? (i+1)%n : i;
success = fork[second].tryToGet(); // check and decrement if can
if (!success) fork[first].signal();

}
eat();
fork[second].signal();fork[first].signal();

}
}

It can then be proved that the probability of livelock is 0 in above.

COP 4520 — Concepts of Parallel and Distributed Processing – 117 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Readers/Writers Problem – too constrained

sem rw = 1;

process reader[i=1 to nReaders] {

while (true) {
// want to read
P(rw);

// read database
V(rw);

}
}

process writer[i=1 to nWriters] {

while (true) {
// want to write
P(rw);

// write database
V(rw);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 118 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Readers/Writers Problem – readers rule
int nr = 0; // number of active readers
sem rw = 1; // semaphore for DB
sem mutexR = 1; // semaphore for nr
process reader[i=1 to nReaders] {

while (true) {
// want to read
P(mutexR);

if (++nr==1) P(rw) // first reader through grabs DB lock
V(mutexR);

// read database
P(mutexR);

if (--nr == 0) V(rw); // last one out locks the door
V(mutexR);

}
}
process writer[i=1 to nWriters] {

while (true) {
// want to write
P(rw);

// write database
V(rw);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 119 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Readers/Writers – pass baton (coarse grain)
// Invariant: (nr == 0 || nw == 0) && nw <= 1
int nr = 0, nw = 0; // number of active readers/writers
process reader[i=1 to nReaders] {

while (true) {
// want to read
<await(nw == 0) nr++;>

// read database
<nr--;>

}
}
process writer[i=1 to nWriters] {

while (true) {
// want to write
<await(nr == 0 && nw == 0) nw++;>

// write database
nw--;

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 120 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Readers/Writers– pass baton (fine grain)#1
// Invariant: (nr == 0 || nw == 0) && nw <= 1
int nr = 0, nw = 0; // number of active readers/writers
sem e = 1, // entry to critical region

r = 0, w = 0; // used to delay readers/writers
int dr = 0, dw = 0; // number of delayed readers/writers
process reader[i=1 to nReaders] {

while (true) {
// want to read
// <await(nw == 0) nr++;>
P(e);
if (nw > 0) { dr++; V(e); P(r); }
 // or if (nw > 0 || dw > 0) { dr++; V(e); P(r); } // update quicker
nr++;
if (dr > 0) {dr--; V(r);}
else V(e)

// read database
// <nr--;>
P(e);
nr--;
if (nr==0 && dw > 0) { dw--; V(w); }
else V(e);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 121 – © Charles E. Hughes — UCF Computer Science Dept.

Semaphores and Readers/Writers– pass baton (fine grain)#2
process writer[i=1 to nWriters] {

while (true) {
// want to write
// <await(nr == 0 && nw == 0) nw++;>
P(e);
if (nr > 0 || nw > 0) { dw++; v(e); P(w); }
nw++;
V(e);

// write database
P(e);
// <nw--;>
if (dr > 0) { dr--; V(r); }
else if (dw > 0) { dw--; V(w); }
else V(e);
// or if (dw > 0) { dw--; V(w); }
// else if (dr > 0) { dr--; V(r); }
// else V(e);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 122 – © Charles E. Hughes — UCF Computer Science Dept.

Simple Monitor Overview

Monitor is by its very nature exclusive – it is synchronized for all

Threads entering a monitor must check their conditions to be sure they can
productively move forward in the monitor.

cond is a queue at which threads wait.

empty(cv) – true if cv is empty
wait(cv) – thread waits at rear of cv
signal(cv) – awakens thread at head of cv (if non-empty)

can do as SW signal and wait (signaled process gets preference)
or as SC signal and continue (more common, where signaler goes on)

monitor Semaphore {
int s = 0; cond sQueue;
procedure P() { while (s == 0) wait(sQueue); s--; } // use if for SW
procedure V() { s++; signal(sQueue); }

}

COP 4520 — Concepts of Parallel and Distributed Processing – 123 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and Bounded Buffer

monitor BoundedBuffer {
typeT buf[n];
int front=0, rear=0, count=0;
cond notFull, notEmpty;
procedure deposit(typeT data) {

while (count == n) wait(notFull);
buf[rear] = data;
rear = (rear+1) % n;
count++;
signal(notEmpty);

}
procedure fetch(typeT &result) {

while (count == 0) wait(notEmpty);
result = buf[front];
front = (front+1) % n;
count--;
signal(notFull);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 124 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and Readers/Writers

monitor ReaderWriter {
int nr=0, nw=0;
cond okRead, okWrite;
procedure requestRead() {

while (nw > 0) wait(okRead);
nr++;

}
procedure releaseRead() {

if (--nr == 0) signal(okWrite);
}
procedure requestWrite() {

while (nr >0 || nw > 0) wait(okWrite);
nw++;

}
procedure releaseWrite() {
 nw--;

signal(okWrite); signal_all(okRead);
}

}

COP 4520 — Concepts of Parallel and Distributed Processing – 125 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors – Queue Management

All our prior monitors assume FIFO queue management.

We now consider cases where priority queues are desirable.

Extend services on monitor to include

wait(cv, priority) – thread waits in cv based on priority
minrank(cv) – return priority of top thread in cv

Note: signal acts appropriately on a min queue, releasing highest priority (lowest
ranked) thread.

Can use min heap to avoid O(N) inserts or perhaps deletes. Compare:

Unsorted – wait O(1); signal O(N); signal_all O(N); minrank O(N)
Sorted – wait O(N); signal O(1); signal_all O(N); minrank O(1)
Heap – wait O(lg N); signal O(lg N); signal_all O(N); minrank O(1)
Since #wait >= #signal, heap is best

COP 4520 — Concepts of Parallel and Distributed Processing – 126 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and Shortest Job First Scheduling

monitor ShortestJobFirst {
bool free = true;
cond turn;
procedure request (int time) {

if (free)
free = false;

else
wait(turn, time);

}
procedure release () {

if (empty(turn))
free = true;

else
signal(turn);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 127 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and Sleep Timer (Covering Condition)

monitor Timer {
int tod = 0;
cond check;
procedure sleep (int interval) {

int wakeup = tod + interval;
while (wakeup > tod) wait(check);

}
procedure tick () {

tod++;
signal_all(check); // everyone must check covering condition

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 128 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and Sleep Timer (Priority Wait)

monitor Timer {
int tod = 0;
cond check;
procedure sleep (int interval) {

int wakeup = tod + interval;
if (wakeup > tod) wait(check, wakeup);

}
procedure tick () {

tod++;
while (!empty(check) && minrank(check) <= tod)

signal (check); // if awakened, condition is met
}

}

COP 4520 — Concepts of Parallel and Distributed Processing – 129 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and Sleeping Barber (Rendezvous Approach)

monitor BarberShop {
bool barberReady = false, customerWaiting = false, doorOpened = false;
cond barberAvail, chairOccupied, doorOpen, customerLeft;
procedure getHaircut() {

while (!barberReady) wait(barberAvail); barberReady = false;
customerWaiting = true; signal(chairOccupied);
while (!doorOpened) wait(doorOpen); doorOpened = false;
signal(customerLeft);

}
procedure getNextCustomer() {

barberReady = true; signal(barberAvail);
while (!customerWaiting) wait(chairOccupied); customerWaiting = false;

}
procedure finishedHaircut {

doorOpened = true; signal(doorOpen);
while (doorOpened) wait(customerLeft);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 130 – © Charles E. Hughes — UCF Computer Science Dept.

Disk Scheduling Algorithms

SST – Shortest Seek Time First
 Very unfair
 What is queue management strategy?

SCAN – Elevator Algorithm (also called LOOK)
 Fair but can be have large variances
 What does queue data structure look like for this?

CSCAN – Like elevator but takes no one down (also called CLOOK)
 Fair and does not have large variances

COP 4520 — Concepts of Parallel and Distributed Processing – 131 – © Charles E. Hughes — UCF Computer Science Dept.

Scan Disk Scheduling – Separate Scheduler Monitor

monitor DiskScheduler { // CSCAN
int position = -1, c = 0, n = 1;
cond scan[2]; // queues for each direction
procedure request(int cyl) {

if (position == -1) position =cyl;
else if (cyl > position) wait(scan[c], cyl);
else wait(scan[n], cyl);

}
procedure release() {

int temp;
if (!empty(scan[c]) position – minrank(scan[c]);
else if (!empty(scan[n]) {
 temp = c; c = n; n = temp; position = minrank(scan[c]);
}
else position = -1;
signal(scan[c]);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 132 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and One-Way Bridges -- !!non-exclusion!!

monitor Bridge {

cond northbound, southbound; // conds are waiting stations

int northOnBridge, southOnBridge;

procedure enterSouthbound() {

if (northOnBridge>0) wait(southbound);

southOnBridge++;

}

procedure leaveSouthbound() {

southOnBridge--;

if (southOnBridge==0) signal_all(northbound);

}

// + northbound versions

// note: the bridge crossing is not in monitor
}

COP 4520 — Concepts of Parallel and Distributed Processing – 133 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and One-Way Bridges -- !!impolite!!

monitor Bridge {

cond northbound, southbound;

int northOnBridge, southOnBridge;

procedure enterSouthbound() {

while (northOnBridge>0) wait(southbound);

southOnBridge++;

}

procedure leaveSouthbound() {

southOnBridge--;

if (southOnBridge==0) signal_all(northbound);

}

// + northbound versions

// note: the bridge crossing is not in monitor
}

COP 4520 — Concepts of Parallel and Distributed Processing – 134 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and One-Way Bridges – Oops accident again!!

monitor Bridge {

cond northbound, southbound;

int northOnBridge, southOnBridge;

procedure enterSouthbound() {

if ((northOnBridge>0) || !empty(northbound)) wait(southbound);

southOnBridge++;

}

procedure leaveSouthbound() {

southOnBridge--;

if (southOnBridge==0) signal_all(northbound);

}

// + northbound versions

// note: the bridge crossing is not in monitor
}

COP 4520 — Concepts of Parallel and Distributed Processing – 135 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and One-Way Bridges -- !!too polite -- deadlock!!

monitor Bridge {

cond northbound, southbound;

int northOnBridge, southOnBridge;

procedure enterSouthbound() {

while ((northOnBridge>0) || !empty(northbound)) wait(southbound);

southOnBridge++;

}

procedure leaveSouthbound() {

southOnBridge--;

if (southOnBridge==0) signal_all(northbound);

}

// + northbound versions

// note: the bridge crossing is not in monitor
}

COP 4520 — Concepts of Parallel and Distributed Processing – 136 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and One-Way Bridges -- ??just right??

monitor Bridge {
cond northbound, southbound;
int northOnBridge, southOnBridge;
procedure enterSouthbound() {

while ((northOnBridge>0) ||
 ((southOnBridge>0) && !empty(northbound))) wait(southbound);
southOnBridge++;

}
procedure leaveSouthbound() {

southOnBridge--;
if (southOnBridge==0) signal_all(northbound);

}
// + northbound versions
// note: the bridge crossing is not in monitor

}

COP 4520 — Concepts of Parallel and Distributed Processing – 137 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors and One-Way Bridges -- ??better??

monitor Bridge {
cond northbound, southbound;
int northOnBridge, southOnBridge;
procedure enterSouthbound() {

if ((northOnBridge>0) || !empty(northbound)) wait(southbound);
while (northOnBridge>0) wait(southbound);
southOnBridge++;

}
procedure leaveSouthbound() {

southOnBridge--;
if (southOnBridge==0) signal_all(northbound);

}
// + northbound versions
// note: the bridge crossing is not in monitor

}

COP 4520 — Concepts of Parallel and Distributed Processing – 138 – © Charles E. Hughes — UCF Computer Science Dept.

Java Support for Monitors

o Synchronize : specifies critical section using an object as lock
� can do at granularity of method
� can do at granularity of a block

o Java synchronized, wait/notify/notify_all
o Locks are reentrant
o Locks can be temporarily given up : wait and notify

COP 4520 — Concepts of Parallel and Distributed Processing – 139 – © Charles E. Hughes — UCF Computer Science Dept.

Paths as a Declaration of Concurrency

The granularity is at a method level. We say which methods can execute in parallel,
and which are mutually exclusive.

Path expressions:

m – where m is a method is a path expression.

Let e1 and e2 be path expressions, then
e1, e2 e1 and e2 can run in parallel
{ e1 } 0 or more of e1 can run in parallel
e1 ; e2 an instance of e1 must precede each e2
e1 + e2 e1 and e2 may not run in parallel
n: (e1) up to n versions of e1 can run in parallel

Consider
path (start_read; do_read) end
path 1:({ do_read } + do_write) end
path 1:(start_read + { start_write ; do_write }) end

This gives exclusive write and non-exclusive read. Moreover, every do_read must
be preceded by a start_read, and every do_write must be preceded by a start_write.
Also, once write gets going, reads can't even start.
Note: plus above can be replaced by comma, since 1:(…) controls concurrency.

COP 4520 — Concepts of Parallel and Distributed Processing – 140 – © Charles E. Hughes — UCF Computer Science Dept.

Greedy – Basics

Want to Max or Min some objective function. Solution must satisfy some feasibility
constraint.

Any solution satisfying constraints is feasible.

A feasible solution that maxes or mins the objective is optimal.

Greedy solutions are often suboptimal, but always feasible.

For example, our First Fit never overfills a trunk, so it always return a feasible
solution. Its solutions are, however, not guaranteed to be optimal.

General Form of Greedy Algorithm:

solution := {};

FOR i:=1 to NumberOfChoices DO
 X := Select (A); (* where Select is simple *)
 IF Feasible (Solution ∪ X) THEN
 Solution := Solution ∪ X
RETURN Solution

COP 4520 — Concepts of Parallel and Distributed Processing – 141 – © Charles E. Hughes — UCF Computer Science Dept.

Spanning Tree Problem

Assume that G = (V, E), where G is an undirected graph, V is the set of vertices
(nodes), and E is the set of edges.

A spanning tree of G is a subgraph which is a tree that encompasses all nodes in the
original graph. Such a tree will commonly include just a subset of the original
edges. Here, by tree, we mean a graph with no simple cycles. We ignore the normal
designation of a root and we do not order nodes.

If G is a single connected component, then there is always a spanning tree.

Adding weights to edges gives us the minimum spanning tree problem, where we
wish to span with edges whose sum is minimum among all spanning trees.

COP 4520 — Concepts of Parallel and Distributed Processing – 142 – © Charles E. Hughes — UCF Computer Science Dept.

Spanning Trees are Everywhere
Consider four nodes, fully connected as below,

 The spanning trees are:

COP 4520 — Concepts of Parallel and Distributed Processing – 143 – © Charles E. Hughes — UCF Computer Science Dept.

Min Spanning Tree–Prim's Algorithm

Weights could be distances, costs, signal degradation, …

Feasible – There are no simple cycles at every stage.

Greedy – We grab the closest node to one of the ones that has already been included.

There are lots of ways to implement Prim’s algorithm.

We will study an O(N2) way.

Other implementations are O(MlgN), where M = max (|E|, N)

COP 4520 — Concepts of Parallel and Distributed Processing – 144 – © Charles E. Hughes — UCF Computer Science Dept.

Min Spanning Tree–Prim's Algorithm

program PrimMinSpan;
var N, j, k : Integer;
 Adjacency : AdjacencyMatrix;
 V : set of 1..MaxNodes;
 Dist, Source: Array [1..MaxNodes];
begin

(* Assume N nodes, labeled 1 to N *)
GetGraph(N, Adjacency);
Dist := Adjacency[1];
V := [2..N];
Source[1] := 0; { Root has no source }
for j in V do
 Source[j] := 1; { Distances are from root }
while V <> [] do begin
 k := index in V with smallest value in Dist;
 V := V – [k];
 for j in V do
 if Dist[j] > Adjacency[k,j] then begin
 Dist[j] := Adjacency[k,j]; Source[j] := k
 end;
end;

end.

COP 4520 — Concepts of Parallel and Distributed Processing – 145 – © Charles E. Hughes — UCF Computer Science Dept.

Applying Prim’s Algorithm
1 2

3

4

5

6

10

50

15

35

40
45

25
55

20

30

Node Dist/Source Cost Tree
1 [0/0,10/1,∞/1,30/1,45/1,∞/1]
2 [0/0,10/1,50/2,30/1,40/2,25/2] 10 1 2

6 [0/0,10/1,15/6,20/6,40/2,25/2] 25

1 2

6

3 [0/0,10/1,15/6,20/6,35/3,25/2] 15

1 2

6 3

4 [0/0,10/1,15/6,20/6,35/3,25/2] 20

1 2

6 34

5 [0/0,10/1,15/6,20/6,35/3,25/2] 35

1 2

6 34 5

COP 4520 — Concepts of Parallel and Distributed Processing – 146 – © Charles E. Hughes — UCF Computer Science Dept.

Block-Striped Partitioning

Using p processors and N nodes.
Partition N2 Adjacency matrix into p groups of N/p columns.
Partition Dist and Source into p groups of N/p elements.
Processor i, 1≤i≤p, must manage a block of Adjacency columns, and a block of Dist and
Source elements, ranging from the (i-1)*(N/p)+1-th to the iN/p-th.
Need to initialize just N/p elements on each processor.
Min on each processor needs to be computed, and then a global min must be found
(accumulation) and the index of this node reported (one to all broadcast).
After receiving index of min, each processor must update its share of Dist and Source
lists.
This process continues until no more nodes are left to be selected.

COP 4520 — Concepts of Parallel and Distributed Processing – 147 – © Charles E. Hughes — UCF Computer Science Dept.

Analyzing Parallel Prim's Algorithm

Initialization time is just N/p.
The time to find a Min starts with N/p time for local mins, is followed by a single node
accumulation, and then by a one-all broadcast of the selected node.
The time to update the Dist and Source lists is N/p.
The loop runs N times, and there is a TRUE DEPENDENCY between successive
iterations of the loop.
The computation time is O(N2/p).
The communication time is dependent on the architecture. On a Hypercube,
accumulation and one-all broadcast are both O(lg p). On a mesh, these times are O(√p).
Tp (Hypercube) = O(N2/p) + O(N lg p).

Tp (Mesh) = O(N2/p) + O(N √p).
E (Hypercube) = 1/(1 + p lg p / N)
E (Mesh) = 1/(1 + p1.5 / N)
E (Hypercube) = O(1) if p = O(N/ lg N)
E (Mesh) = O(1) if p = O(N2/3)

COP 4520 — Concepts of Parallel and Distributed Processing – 148 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 1 Key
1. Consider the Max Tree we described earlier, but now use p processors to sort N values, where N may be

greater than p. In this case, each processor uses a sequential algorithm to find its local max and then
proceeds with the standard tree approach. Analyze the Time, Cost and Work for

a. p = lg N
b. p = lg lg N
c. p = N / lg N
d. p = N / lg lg N

 Time
TP(N)

Cost
CP(N)

Work
WP(N)

Cost Efficiency
ECP(N)

Work Efficiency
EWP(N)

P = lg N O(N/lg N) O(N) O(N) O(1) O(1)

P = lg lg N O(N/lg lg N) O(N) O(N) O(1) O(1)

P = N / lg N O(lg N) O(N) O(N) O(1) O(1)

P = N / lg lg N O(lg N) O(N lg N/ lg lg N) O(N) O(lg lg N/ lg N) O(1)

2. Consider the problem of sorting a deck of cards into Spades, Hearts, Diamonds, Clubs, and in order Ace
down to 2 within each suit.

a. What is the best way for an individual to do this? There many metric and many answers.
Pick each card and put it in a predetermined slot. Gather up. This requires 52 inspections and 52
fetches from table.

b. Redo this but this time with five people. One of the five starts with all 52 cards.
Original holder hands them out based on assigning one suit to each of the other 4. Each has thirteen
pre-allocated slots. Original collects in batch suit. This requires 52 inspections, a parallel fetch of
13 cards and 4 fetches from partners.

COP 4520 — Concepts of Parallel and Distributed Processing – 149 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 2 Key
a. Prove that each of the Butterfly and Omega networks connects node x to node y when the circuits are switched

by choosing crossover at the i-th switch whenever the i-th most significant bit of x⊕y is 1.

Butterfly: This starts with node x and successively, from left to right, complements (by using a crossover) the
selected bit if the corresponding one in x⊕y is 1. Mathematically, we have that the result
x ⊕ ∨ (i = log n – 1 to 0) (2i ∧ x⊕y) = x ⊕ (x⊕y) = (x⊕x) ⊕ y = 0 ⊕ y = y

Omega: This starts with node x and successively complements the leftmost bit of (x shift left i circularly) if the
left one in (x⊕y shift left i circularly) is 1. Mathematically, this is equivalent to the Butterfly, except that the
potential complementing of a bit (due to crossover) only occurs when that bit becomes the leftmost one as a
result of the successive left shifts at the end of each layer in the circuitry. The final shift just brings us back to
the original permutation of the bits.

b. How many distinct potential communication pairs (a to b, c to d; a≠c, b≠d) exist for p=8? Of these, how many
can occur in parallel without a conflict occurring at some switch? Answer this for both Butterfly and Omega
switching networks.

Butterfly or Omega: a can be any node that connect to any other node, so there are p2 choices for a, b; c can any
node but a and can connect to any of the remaining (p-1) destinations, so there are (p-1)2 choices, but half of
these were already seen (this occurs since there is not difference between the pair {(a,b}, (c,d)} and
{(c,d), (a,b)}. Thus, the number of potential pairs is p2 × (p-1) 2/2, or 2 when p=2, 72 when p=4 and 1568, when
p=8.

Butterfly or Omega: The thing we cannot do is for the path from c to d to intersect the path from a to b. This is a
restriction on the first part where we only limited intersection to the beginning and end nodes. One can see that
a multistage network with lg p stages gives rise to lg p opportunities for intersection. Thus, the number of
potential non-conflicting pairs is p2 × (p-l) × (p – lg p) /2, or 2 when p=2, 48 when p=4 and 1120 when p=8.

COP 4520 — Concepts of Parallel and Distributed Processing – 150 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 3.1 Key
1. Consider the following “solution” to the critical section problem for n processes:

shared boolean lock=false;
shared boolean waiting[1:n] = ([n] false); // all slots are false
process p [i=1 to n] {

while (some continuation condition is true for process i) {
while (lock) { waiting[i] = true; while (waiting[i]) delay(); }
lock = true;
// critical section
lock = false;
// wake up at most one process
for (j=1; j<=n; j++) if (waiting[j]) { waiting[j] = false; break; }
// non-critical stuff

}
}

 Which of the following does this achieve? Answer Yes or No for each and give a one sentence justification.
Mutual exclusion NO Multiple threads can see !lock before one sets it true
Avoidance of deadlock NO Assume one thread sets lock and all others want to wait but are delayed at

start of wait block; first resets lock but sees no one delayed, thus signaling no one; if the first
thread’s condition is now false, it never reenters critical section and other threads are blocked
forever.

Avoidance of livelock NO Threads can get stuck at while (waiting[i]) delay();
Absence of unnecessary delays NO Change deadlock case to have the first thread come back in later and

actually wake some other thread; that thread could have gone earlier.
Eventual entry NO There is a biased wake up, always favoring lower numbered threads. This can

lead to higher numbered ones being blocked forever,

COP 4520 — Concepts of Parallel and Distributed Processing – 151 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 3.2 Key
2. In each of the following, specify which Fairness criteria (unconditional, weak and/or strong)

guarantee that the statement S is eventually executed? Check all applicable columns.
Statements unconditional weak strong
int x=0; co <await(x == 5) S; > //
while (true) x = x+1; oc

int x=0; co <S; > //
while (true) x = x+1; oc

X X X

int x=0; co <await(x == 5) S; > //
while (true) x = (x<5 ? x+1 : x); oc

 X X

int x=0; co <await(x == 5) S; > //
while (true) x = (x<10 ? x+1 : 0);oc

 X

COP 4520 — Concepts of Parallel and Distributed Processing – 152 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 3.3 Key
3. Consider the following program

int x=0;
co

<await (x != 0) x = x – 1; > # S1
// <await (x == 0) x = x – 4; > # S2
// <await (x != 0) x = x + 3; > # S3

oc
Does the program meet the "At-Most-Once Property"? Explain your answer.
No – Just one critical reference per statement, but each assigns a value used by other
What are the possible final values of x? Show all traces.
{-2} {S2, S1, S3} x = -2; {S2, S3, S1} x = -2;
Suppose the await statements are replaced by non-atomic if statements, but the assigns become
atomic.

int x=0;
co

if (x != 0) <x = x – 1; > # S1
// if (x != 0) <x = x + 3; > # S2
// if (x == 0) <x = x – 4; > # S3

oc
What are the possible final values of x? Show all traces.
{-1, -2, -4, -5}
{S1, S2, S3} x = -4; {S1, S3, S2} x = -1; {S1, S3a, S2, S3b} x = -4; {S2, S1, S3} x = -4; {S2, S3, S1} x = -5;
{S2, S3a, S1, S3b} x = -4; {S3, S1, S2} x = -2; {S3a, S1, S3b, S2} x = -1; {S3a, S1, S2, S3b } x = -4;
{S3, S2, S1} x = -2; {S3a, S2, S3b, S1} x = -5; {S3a, S2, S1, S3b } x = -4

COP 4520 — Concepts of Parallel and Distributed Processing – 153 – © Charles E. Hughes — UCF Computer Science Dept.

Assignment # 4.2 Key
2. Suppose there are m producer processes and n consumer processes. The producer processes periodically call

broadcast(message) to send a copy of message to all n consumers. Each consumer receives a copy of the
message by calling fetch(message, myId), where message is a result argument and myId ranges from 0 to n-1.
Write a monitor that implements broadcast and fetch. Use the Signal and Continue discipline. The monitor
should store only one message at a time, which means that after one producer calls broadcast, any future call of
broadcast has to delay until every consumer has received a copy of the previous message.

monitor PC {
string next;;
int need = 0;
boolean ready[n]; // assume all false at start
cond wantToBroadcast, wantToFetch;
procedure broadcast(string msg) {

// Must use “while” to prevent amore than one broadcaster from getting through.
while (need > 0) wait(wantToBroadcast);
next = msg; need = n;
for (int i=0; i<n; i++) ready[i] = true;
signal_all(wantToFetch);

}
procedure fetch(string msg, int myId) {

// Can use “if” provided id’s are unique to threads.
if (!ready[myId]) wait(wantToFetch);
msg = next; ready[myId] = false; need--;

 if (need == 0) signal(wantToBroadcast);
 }

}

COP 4520 — Concepts of Parallel and Distributed Processing – 154 – © Charles E. Hughes — UCF Computer Science Dept.

Midterm#1 Topics and Promises
Topics

1. Concurrent Programming Concepts
2. Introduction, even-odd transposition algorithm, analysis
3. Concepts of analysis of parallel algorithms

o Architectural considerations -- synchronous versus asynchronous; barrier synchronization; centralized control
o Issues of communication and coordination in parallel and distributed implementations
o Time, Cost, Speedup, Work, Cost Efficiency and Work Efficiency.
o Virtualizing an algorithm -- focus on even-odd transposition.

4. Taxonomies (control, address space, interconnection network, granularity)
o SIMD, MIMD, data versus task parallel

5. Taxonomies (address space)
o private memory (separate address spaces), also called distributed memory, vs shared address space (often called shared

memory). UMA (uniform / symmetric multiprocessors (SMP)) versus NUMA (non-uniform) memory access. Cache
and the cache coherence (consistency) problem.

6. Taxonomies (interconnection network)
o static vs dynamic interconnections.
o Dynamic: butterfly, Omega, crossbar, bus-based networks.
o Static: completely-connected, star connected, linear array, ring, 2-d mesh and torus, 3-d mesh and torus, tree,

hypercube.
7. Programming Styles

o Iterative parallelism: co // and process notation
o Recursive parallelism
o Producer / Consumer
o Client / Server
o Peers: worker, send and receive notation

8. State, history, properties
o s1 -> s2 -> s3 ... ->sk : trace or history states; can have many traces in concurrent system
o safety property : never enter a bad state
o liveness property : eventually enter a good state

COP 4520 — Concepts of Parallel and Distributed Processing – 155 – © Charles E. Hughes — UCF Computer Science Dept.

9. Notation for concurrency
o co s1; // s2; // ... // sn; oc : concurrency
o process name { ... } : background process
o < S; > : atomic action; critical section; mutual exclusion; granularity considerations
o < await(B) > : conditional synchronization; barrier synchronization
o < await(B) S; > : conditional atomic action
o { precondition } actions { postcondition } : basis for axiomatic proofs of correctness

10. Java Support for Concurrency
o Threads : either inherit from Thread class or implement Runnable interface
o Synchronized : specifies critical section using an object as lock
o Locks are reentrant
o Locks can be temporarily given up : wait and notify

11. Critical References
o Critical reference is one changed by another process
o At Most Once Property (x = e); appearance of atomicity

12. Fairness
o Unconditional, Weak and String Fairness

13. SpinLocks
o Critical section problem

� mutual exclusion
� absence of deadlock and livelock
� absence of unnecessary delays
� eventual entry (relates to fairness)

o How do we handle code like <await (!lock) lock = true;> critical; lock = false;?
� CSEnter: while (TS(lock)) delay; // returns entry value of lock (before this set)

o To implement unconditional atomic action < S; >
� CSEnter; S; CSExit; // CSEnter is entry protocol; CSExit is exit protocol

o To implement conditional atomic action <await (B) S; >
� CSEnter; while (!B) { CSExit; delay; CSEnter; } S; CSExit;
� if B satisfies at most once property can do < await(B);> as while(!B);

o Relation to Java synchronized
� synchronized (lock) { S; } is like <S;> // in simple notation, every process uses same lock object
� synchronized (lock) { while (!B) try{wait();}catch(...){} S; notify(); } is like <await(B) S;>

14. Fair Solutions
o Tie Breaker
o Ticket Algorithm

COP 4520 — Concepts of Parallel and Distributed Processing – 156 – © Charles E. Hughes — UCF Computer Science Dept.

15. Barrier Synchronization

o Shared Counter
o Flags and Coordinators
o Symmetric Barriers

16. Data Parallel
o MasPar Example
o Parallel Prefix and Parallel Linked List Length

17. Semaphores
o Abstraction with two services P (wait) and V (signal)
o Critical section problem and semaphores
o Java synchronized and semaphores
o Barriers and semaphores
o Producer / Consumer Problem; Dining Philosophers Problem; Reader/Writer Problems

18. Monitors
o monitors and conds
o wait(cv), wait(cv, rank), signal(cv), signal_all(cv), empty(cv), minrank(cv)

� signal and wait versus signal and continue
� queues, priority queues, BPOTs, heaps and analysis

o monitor examples
� semaphores, bounded buffers, readers/writers, shortest-job-next, sleeping barber
� CSCAN/SCAN disk scheduler (bitonic lists)

o Java synchronized, wait/notify/notify_all
19. Single lane bridge problem using semaphores and monitors

Promises
1. A question on Even-Odd Transposition sort
2. A question on analysis of parallel algorithms
3. A question on taxonomies (control, address, interconnection)
4. A question on Java synchronized
5. A trace question on co s1; // s2; // ... // sn; oc
6. A question on locks
7. A question on fairness
8. A question on barriers
9. A question on semaphores (analysis, not synthesis)
10. A question on monitors

COP 4520 — Concepts of Parallel and Distributed Processing – 157 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#1

 1. Easy Start ☺ Apply the even-odd parallel algorithm presented in
class for sorting the 6 elements in the following ring of 6
processors. Show the results of each of the up to 5 passes that it
takes to complete this ascending (low to high) sort.

7 8 4 1 6 5 Initial Contents
7 8 1 4 5 6 After Pass 1
6 1 8 4 5 7 After Pass 2
1 6 4 8 5 7 After Pass 3
1 4 6 5 8 7 After Pass 4
1 4 5 6 7 8 After Pass 5

COP 4520 — Concepts of Parallel and Distributed Processing – 158 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#2

2. In each of the following, specify which Fairness criteria
(unconditional, weak and/or strong) guarantee that the statement
S is eventually executed? Check all applicable columns. For
some, the applicable criteria could include all, some or none.

Statements unconditional weak strong
int x=0, y=0; co <await(x > y) S; > //
while (true) x = x+1; //
while (true) y = (y+1) % 10; oc

 X X

int x=0, y=0; co <await(x == y) S; > //
while (true) x = x+1; //
while (true) y = (y+1) % 10; oc

int x=0; y=0; co <await(x == y) S; > //
while (true) x = x+1; //
while (true) y = y+1; oc

 ?

int x=0, y=0; co <S; > //
while (true) x = x+1; //
while (true) y = y+1; oc

X X X

COP 4520 — Concepts of Parallel and Distributed Processing – 159 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#3

3. Briefly explain the meanings of notify() and notifyAll() in Java
synchronized blocks. Differentiate one from the other.

Each is used by a thread when it leaves a critical
(synchronized) region. The purpose is to wake up thread(s)
that are waiting for changes that might satisfy their
conditional entries to the critical region. Notify wakes up just
one thread (assuming at least one has issued a wait on the
synchronization object. NotifyAll wakes up all threads waiting
on this object for changes.

COP 4520 — Concepts of Parallel and Distributed Processing – 160 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#4

4. Consider the following to solve the critical section problem:
var lock = 0;
process P[i=1 to n] {
 while true do {
 <await lock == 0>; lock = i;
 while (lock != i) do { <await lock == 0>; lock = i; }
 S1: // critical section
 lock = 0;
 S2; // non-critical section
 }
}
Does this ensure mutual exclusion? If so, why? If not, why not?
No. P1 and P2 see lock equal to 0. P1 sets lock to 1and enters
S1. P2 sets lock to 2 and enters S1.
Does this approach avoid livelock? If so, why? If not, why not?
Yes. When lock is not equal to 0, it is equal to the index of one
of the Pi that wants the critical section. This one will pass
through when lock is reset to 0. Thus, we never have a case
where all who want the critical section are needlessly spinning.

COP 4520 — Concepts of Parallel and Distributed Processing – 161 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#5

5. Fill in the following. All are about characteristics of parallel
machines based on interconnection newtorks

What is the diameter of
A hypercube with 64 processors? 6 = (lg 64)
A wraparound mesh with 64 processors? 8 = (2 * (√64)/2)
A ring with 64 processors? 32 = (64/2)
A star network with 64 processors? 2 = (center then partner)

What is the bisection width of
A hypercube with 64 processors? 32 = (everyone has partners)
A wraparound mesh with 64 processors? 16 = (cut 8 + 8)
A ring with 64 processors? 2 = (cut linear and wrap)
A star network with 64 processors? 1 = (cut someone off)

COP 4520 — Concepts of Parallel and Distributed Processing – 162 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#6

6. The following is the Ticket Algorithm for a Fair Critical Section solution.
Add <…> where necessary to make parts of this atomic. Justify each
addition. You need to have as little as possible forced to be atomic.
int number=1, next=1, turn[1:n] = ([n] 0);
process CS[i=1 to n] {

while (true) {
turn[i] = number++;
await (turn[i] == next);
S1; // critical section
next++;
S2; non-critical section

}
}

The italicized statement must be made atomic.
The first of the other statements satisfies the at-most-once property (turn[i]
== next) and the second is in a place where only one process can be (the
next++ right at the end of the critical section). However, <turn[i] =
number++;> must be atomic, else the value of number could be seen as the
same by two processes (so they may enter S1 concurrently).

COP 4520 — Concepts of Parallel and Distributed Processing – 163 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#7

7. Consider the following program
int u=0, v=1, w=2, x;
co

x = u + v + w;
// <u = v + w;>
// <v = 4;>
// <w = 5;>

oc
Does the program meet the "At-Most-Once Property"? Explain your answer.
No. x = u + v + w involves three variables modified by others
processes.
What are the possible final values of x? You need to be concerned about the
fact that your compiler may take advantage of the commutivity of addition.
Explain your answers.
u = {0, 3, 6, 9}, v = {1, 4}, w = {2, 5}. Here u can be 0 or any of the sums of
v and w, since all relative orderings are possible.
x = {3, 6, 9, 12, 15, 18}. Here x can be the sum of any combination of the
possible values of u, v, w, since commutivity allows us to grab these in any
order.

COP 4520 — Concepts of Parallel and Distributed Processing – 164 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#8

8. We have looked at various ways to use P processors to quickly and
efficiently find the largest element in a list A[0…N–1]. Regarding
efficiency, we have sometimes focused on Cost Efficiency and other
times on Work Efficiency. One of the early algorithms we looked at
was based on binary tree reduction. Assuming this algorithm, fill in
the following table for values of P = 1, N/2 and N/lg N. I filled in the
first row since I'm a nice guy, and it was real easy.

 Time
TP(N)

Cost
CP(N)

Work
WP(N)

Cost Eff.
ECP(N)

Work Eff.
EWP(N)

P = 1 O(N) O(N) O(N) O(1) O(1)

P = N/2 O(lg N) O(N lg N) O(N) O(1/lg N) O(1)

P = N /
lg N

O(lg N) O(N) O(N) O(1) O(1)

COP 4520 — Concepts of Parallel and Distributed Processing – 165 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#9

9. The Unix kernel provides two atomic operations similar to:
sleep(): // block the executing thread
wakeup(): // awaken all blocked threads
A call of sleep always blocks the caller. A call of wakeup awakens every thread that has called sleep since the
last time that wakeup was called.

 A call to wakeup should awaken all tasks that entered sleep prior to the time wakeup is started, but not any
that arrive later. The following “solution” has a serious problem in that it can wake up the wrong tasks.
Explain how this undesirable result can happen.
sem e = 1, delay = 0; int count = 0;
sleep(): P(e) ; count++; V(e); P(delay);
wakeup(): P(e); while (count > 0) { count--; V(delay); } V(e);
There is a race condition occurring in the sleep(), right after the V(e) (end of
atomized) code and the P(delay) (sleep until awakened)
Here’s the scenario:
P1 executes sleep() and gets just past V(e) – count == 1
P2 executes wakeup() performing one V(delay) – count == 0
P3 executes sleep() and gets o P(delay) before P1 – count == 1 and P3 awakened
P1 gets to P(delay) and sleeps

Results is P1 asleep and P3 awake, even though P1 was the only one that preceded
P2’s awake

COP 4520 — Concepts of Parallel and Distributed Processing – 166 – © Charles E. Hughes — UCF Computer Science Dept.

Quiz#1 Sample#10

10. Write a Barrier monitor with two services init(int n) and
join(). Init must be called just once, prior to any process being
started that must use the barrier. The monitor must be reusable.
You must state if you are using signal and wait (SW) or signal
and continue (SC) semantics, and explain why you made the
choice you did.

monitor Barrier {
int expected, arrivals;
cond queue;
procedure int (int n) {

expected = n; arrivals = 0;
}
procedure join () {

if (++arrivals == expected) {
arrivals = 0; signal_all(queue); // SC or SW since done

 } else wait (queue)
}

}

COP 4520 — Concepts of Parallel and Distributed Processing – 167 – © Charles E. Hughes — UCF Computer Science Dept.

Message Passing

Alternative to shared memory

We can use messages for communication and coordination of processes, typically
running on separate nodes in a network or cluster.

A cluster uses a dedicated network, sometimes with very low latency.

MPI is a standard C or C++ API. The specific messages have evolved, with lots of
influence from researchers at Oak Ridge National Labs.

• Two key primitives:

– Send

– Receive

COP 4520 — Concepts of Parallel and Distributed Processing – 168 – © Charles E. Hughes — UCF Computer Science Dept.

Key Message Passing Issues

• Distinguishing messages

– different applications

– messages intended for other processes

• Reliability

– reliability

– sequencing

• Deadlock

COP 4520 — Concepts of Parallel and Distributed Processing – 169 – © Charles E. Hughes — UCF Computer Science Dept.

Distinguishing Among Messages

• Criteria:

– Communicator (application group -- a set of processes)

– sender (process ID)

– tag – user defined channel number

COP 4520 — Concepts of Parallel and Distributed Processing – 170 – © Charles E. Hughes — UCF Computer Science Dept.

Send and Receive

int MPI_Send(
 void *data, // obviously points to data
 int count, // how many units of data
 MPI_Datatype datatype, // e.g., MPI_INT
 int destination, // receiver pid
 int tag, // essentially a channel #
 MPI_Comm communicator // group
)

int MPI_Recv(
 void *data, // obviously points to data
 int count, // how many units of data
 MPI_Datatype datatype, // e.g., MPI_INT
 int sender, // sender pid
 int tag, // essentially a channel #
 MPI_Comm communicator, // group
 MPI_Status *status // receipt status
)

COP 4520 — Concepts of Parallel and Distributed Processing – 171 – © Charles E. Hughes — UCF Computer Science Dept.

Send and Receive Characteristics

• MPI Preserves Message Order
• MPI Guarantees (some) Message Integrity
• Type Conversions

– converting between types
– big-endian/little-endian issues
– sending structures/classes

• MPI_BYTE

• MPI_Send and MPI_Recv are blocking

– block until data is available for read
– block until it is safe to write to data
– deadlock is possible

COP 4520 — Concepts of Parallel and Distributed Processing – 172 – © Charles E. Hughes — UCF Computer Science Dept.

Utility Services

• int MPI_Init (int *argc, char **argv[]);

– must be called before any other MPI function

• int MPI_Finalize (void);
– no MPI function can be called after MPI_Finalize
–

• Processes are assigned IDs (ranks)

– consecutive integers starting with 0

• int MPI_Comm_size (MPI_Comm communicator, int *process_count);
– number of processes in communicator (all if MPI_COMM_WORLD)

• int MPI_Comm_rank (MPI_Comm communicator, int *process_ID);

– ID (rank) of the processor (in communicator)

COP 4520 — Concepts of Parallel and Distributed Processing – 173 – © Charles E. Hughes — UCF Computer Science Dept.

First MPI Program

#include “mpi.h”
#include <fstream.h>
void main(int argc, char *argv[]) {
 int pid; // process ID
 int np; // number of processes

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &pid);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 if(pid = = 1) {
 int data[3] = {1, 2, 3};
 MPI_Send(data, 3, MPI_INT, 0, 26, MPI_COMM_WORLD);
 }
 if(pid = = 0) {
 int receive_data[100];
 MPI_Status status;
 MPI_Recv(receive_data,100,MPI_INT,1,26,MPI_COMM_WORLD,&status);
 cout<<“received data from p1. First element is “<<receive_data[0]<<endl;
 }
 MPI_Finalize();
}

COP 4520 — Concepts of Parallel and Distributed Processing – 174 – © Charles E. Hughes — UCF Computer Science Dept.

MPI from Quinn’s Text

See Chapter 4 and Chapter 6 Notes (linked off of course web page).

COP 4520 — Concepts of Parallel and Distributed Processing – 175 – © Charles E. Hughes — UCF Computer Science Dept.

Floyd’s Algorithm from Quinn (declarations)

#include <stdio.h>
#include <mpi.h>
#include "../MyMPI.h"
typedef int dtype;
#define MPI_TYPE MPI_INT

int main (int argc, char *argv[]) {
 dtype** a; /* Doubly-subscripted array */
 dtype* storage; /* Local portion of array elements */
 int i, j, k;
 int id; /* Process rank */
 int m; /* Rows in matrix */
 int n; /* Columns in matrix */
 int p; /* Number of processes */
 double time, max_time;

 void compute_shortest_paths (int, int, int**, int); // should be dtype

COP 4520 — Concepts of Parallel and Distributed Processing – 176 – © Charles E. Hughes — UCF Computer Science Dept.

Floyd’s Algorithm from Quinn (main)

 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &id);
 MPI_Comm_size (MPI_COMM_WORLD, &p);

 read_row_striped_matrix (argv[1], (void *) &a,
 (void *) &storage, MPI_TYPE, &m, &n, MPI_COMM_WORLD);

 if (m != n) terminate (id, "Matrix must be square\n");

 print_row_striped_matrix ((void **) a, MPI_TYPE, m, n,
 MPI_COMM_WORLD);
 MPI_Barrier (MPI_COMM_WORLD);
 time = -MPI_Wtime();
 compute_shortest_paths (id, p, (dtype **) a, n);
 time += MPI_Wtime();
 MPI_Reduce (&time, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0,
 MPI_COMM_WORLD);
 if (!id) printf ("Floyd, matrix size %d, %d processes: %6.2f seconds\n",
 n, p, max_time);
 print_row_striped_matrix ((void **) a, MPI_TYPE, m, n,
 MPI_COMM_WORLD);
 MPI_Finalize();
}

COP 4520 — Concepts of Parallel and Distributed Processing – 177 – © Charles E. Hughes — UCF Computer Science Dept.

Floyd’s Algorithm from Quinn

void compute_shortest_paths (int id, int p, dtype **a, int n) {
 int i, j, k;
 int offset; /* Local index of broadcast row */
 int root; /* Process controlling row to be bcast */
 int* tmp; /* Holds the broadcast row */

 tmp = (dtype *) malloc (n * sizeof(dtype));
 for (k = 0; k < n; k++) {
 root = BLOCK_OWNER(k,p,n);
 if (root == id) {
 offset = k - BLOCK_LOW(id,p,n);
 for (j = 0; j < n; j++)
 tmp[j] = a[offset][j];
 }
 MPI_Bcast (tmp, n, MPI_TYPE, root, MPI_COMM_WORLD);
 for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);
 }
 free (tmp);
}

COP 4520 — Concepts of Parallel and Distributed Processing – 178 – © Charles E. Hughes — UCF Computer Science Dept.

Adjacency Matrix Generator

#include <stdio.h>
int main(int argc, char *argv[]) {
 int i,j,n, MAX, DEBUG=0;
 FILE *outfile;
 int data;
 if (argc<4) {
 printf("Usage: generate nodes_in_graph max_value binary_output_file [DEBUG]\n");
 exit(1);
 }
 sscanf(argv[1], "%d", &n); sscanf(argv[2], "%d", &MAX);
 outfile = fopen(argv[3], "w");
 printf("… for graph with %d nodes into %s; MAX value is %d\n", n, argv[3], MAX);
 if (argc>4)
 if (strcmp(argv[4],"DEBUG") == 0) DEBUG = 1;
 fwrite(&n, sizeof(int), 1, outfile);
 fwrite(&n, sizeof(int), 1, outfile);
 for (i=0; i<n; i++) {
 if (DEBUG) printf("\n");
 for (j=0; j<n; j++) {
 if (i == j) data = 0;
 else data = rand() % (MAX+1);
 fwrite(&data, sizeof(int), 1, outfile);
 if (DEBUG) printf("%6d", data); // hopefully MAX is no greater than 99999
 }
 }
 if (DEBUG) printf("\n");
 fclose(outfile);
}

COP 4520 — Concepts of Parallel and Distributed Processing – 179 – © Charles E. Hughes — UCF Computer Science Dept.

Programming Assignment#2

Let λ be latency and β be bandwidth, then the time needed to send an n-byte message is λ + n /
β. Write an MPI program to determine λ and β on the Zephyr cluster using the “ping pong”
test. Design the program to run on exactly two processes. Process 0 records the time and then
sends a message to process 1. After process 1 receives the message, it immediately sends the
message back to process 0. Process 0 receives the message and records the time. The elapsed
time divided by 2 is the average message-passing time. Create your program so it has two
command line parameters, both integers. The first is the value of n, the message length, and
the second is the value of m, the number of times the experiment is run before an average time
is computed. Run this on sufficient sizes of n and m so that you can get an estimate of λ and β.
Now, run it a bunch more times to verify or refine your estimates.

Now, redo this experiment, but this time cycle the message from node 0 to node 1 … to node k-
1 and back to 0. The time is the elapsed time divided by k. The value of k is the only parameter
on your command line. Note: If k=2, then it’s the same as above. If k=1, then you have no
external communication, but node 0 does talk to itself. Thus, the order of sending and
receiving is quite important. Reject values of k<1. Compare these results with those above,
treating k=1 as a special case since no external transmission actually occurs.

You must turn in the program (both as c code and as an executable), a spreadsheet in Excel
format that records all your experiments and a write-up that discusses your experiments, your
hypotheses and your final conclusions. All assignments are turned in electronically to me.

Due: October 20.

COP 4520 — Concepts of Parallel and Distributed Processing – 180 – © Charles E. Hughes — UCF Computer Science Dept.

Programming Assignment#3

Implement Prim's algorithm on the Zephyr cluster. You must analyze and
benchmark your implementation as was done in Quinn's book for Floyd's
algorithm, except that you need to run on 1 to 16 processors. We have provided you
with a generator (see two slides previous for program generate) for a set of large
arrays in the form of a binary file that starts with N then N again (to match Quinn's
routines for reading striped matrices) followed by the N2 values of the adjacency
matrix. These values will all be integers (MPI_INT) and the matrix will always be in
row major order. This does not inhibit you, as Quinn provides routines to distribute
these in either row or column striped fashion. Your output of the tree must be
optional (see how I do this for the matrix in generate.c), so a single parameter can
turn this on or off. Moreover, the output should be timed (see floyd.c to do this). The
argument list to your program, whose executable must be named prim is as follows
AdjacencyFileName [TREE]. If the keyword TREE is omitted, the tree is not
printed.

Due: 10/27

COP 4520 — Concepts of Parallel and Distributed Processing – 181 – © Charles E. Hughes — UCF Computer Science Dept.

Distributed Computing Paradigms (in Java)

This material is in Power Point Slides at DistributedParadigms.ppt

COP 4520 — Concepts of Parallel and Distributed Processing – 182 – © Charles E. Hughes — UCF Computer Science Dept.

Project Suggestions

1) For Vision people

a) Parallel or distributed edge detection
i) Don’t do Canny, as that was already done

b) Parallel or distributed depth calculation
i) Might use disparity maps from stereo

2) For Graphics people
a) Parallel tone or color mapping

i) Map tone from one image to another
ii) Do for image sequences
iii) Use background color shift to alter rendering of foreground objects
iv) Map tones from neighboring parts of image (a smoothing technique)
v) Compare various color theories

b) Parallel or distributed compression/decompression of HDR images
i) Do for single images
ii) Do for film clips rather than single images
iii) Compare various representations

3) For Systems people
a) RMI that supports both synchronous and asynchronous calls

i) Might experiment with a new class called “Future”
b) Spaces implementation in C# or C++

i) Could do pure tuple spaces or some variant
4) For Algorithms people

a) Parallel or distributed evaluation of constraints
i) For instance, Gaussian elimination delayed due to non-linearity

b) Parallel or distributed graph rewriting
i) Perhaps synthesized attribute evaluation on a tree, e.g., constant propagation

c) Parallel or distributed term rewriting
d) Parallel or distributed Cocke-Kasami-Younger algorithm
e) Parallel or distributed reconstruction of phylogenies

In all cases, you must design experiments to determine the scalability of your solution. If you have a team of two, you might have a
run-off of a parallel versus a distributed solution.

COP 4520 — Concepts of Parallel and Distributed Processing – 183 – © Charles E. Hughes — UCF Computer Science Dept.

An Improved Parallel Sort

The Shearsort

• Assume N is a Perfect Square

• Organize into a √N × √N Array of Cells

• Alternately Sort Rows and Columns
(In the Manner of Shearing Sheep)

• Sort Odd Numbered Rows Left to Right
Sort Even Numbered Rows Right to Left

• Conceptually Algorithm Uses Two Clocks

• Standard clock tells everyone to participate in one more step of a simple row or
column sort

• Added clock tells cells to alternate between rows and columns

• IDs √N(i-1)+1 to i√N Cooperate on Row i;
i, i+√N, .., i+N–√N Cooperate on Column i

COP 4520 — Concepts of Parallel and Distributed Processing – 184 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Algorithm

Managing with One Clock

 At Each Clock Tick and For Each Pi do

 Step := Step+1;

 MajorStep := (Step-1) div √N + 1;

 if odd(MajorStep) then

 if odd((i-1) div √N + 1) then

 SortLeftToRight // Bubble √N

 else SortRightToLeft // Bubble √N

 else

 SortTopToBottom // Bubble √N

COP 4520 — Concepts of Parallel and Distributed Processing – 185 – © Charles E. Hughes — UCF Computer Science Dept.

An Example Shearsort

7 61611Initially

12 31310

5 9215

14 184

• N = 16, √N = 4: Use 4 × 4 Matrix

COP 4520 — Concepts of Parallel and Distributed Processing – 186 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Pass#1

6 16117Sort Rows

13 31012

2 1595

14 148

COP 4520 — Concepts of Parallel and Distributed Processing – 187 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Pass#2

2 145Sort Cols

6 397

13 15108

14 161112

COP 4520 — Concepts of Parallel and Distributed Processing – 188 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Pass#3

1 542Sort Rows

9 367

8 151310

16 111214

COP 4520 — Concepts of Parallel and Distributed Processing – 189 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Pass#4

1 342Sort Cols

8 567

9 111210

16 151314

COP 4520 — Concepts of Parallel and Distributed Processing – 190 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Pass#5

1 432Sort Rows

8 567

9 121110

16 131415

COP 4520 — Concepts of Parallel and Distributed Processing – 191 – © Charles E. Hughes — UCF Computer Science Dept.

Efficiency of Shearsort

How’d We Do? Not Bad!

• T1(N) = N log N Optimal Sequential

• TN(N) = √N × logN Parallel Shearsort

• SN(N) = √N Speedup

• CN(N) = W N(N) = N × √N × logN Cost

• EN(N) = 1 / √N Efficiency

COP 4520 — Concepts of Parallel and Distributed Processing – 192 – © Charles E. Hughes — UCF Computer Science Dept.

Properties of Odd-Even Transposition

In Some Things Luck Shines Our Way

• Algorithm Uses Compare / Exchange Operations

• The Algorithm is Oblivious

• Communication Independent of Prior Results

• All Oblivious Comparison-Exchange (OCE) Algorithms are Easy to Analyze

COP 4520 — Concepts of Parallel and Distributed Processing – 193 – © Charles E. Hughes — UCF Computer Science Dept.

How Can Algorithm Fail?

Properties of a Faulty Permutation Sort

• Assume X1, X2, … , Xn is to be Sorted

• Assume Xπ(1), … , Xπ(N) is a Correct Sort

• Assume Xσ(1), … , Xσ(N) is an Incorrect Permutation Produced by Some Faulty
"Sort"

• Let k be Smallest Index Where Xσ(k) > Xπ(k)

• Then, the Permutation is Correct up to k-1

Xσ(1) = Xπ(1), Xσ(2) = Xπ(2), …, Xσ(k-1) = Xπ(k-1)

COP 4520 — Concepts of Parallel and Distributed Processing – 194 – © Charles E. Hughes — UCF Computer Science Dept.

The 0-1 Sorting Lemma

A Faulty OCE Sort also Fails on 0, 1 Data

• Define Yi = 0 if Xi ≤ Xπ(k) ,
 Yi = 1 if Xi > Xπ(k)

• Xσ(i) ≤ Xσ(j) implies Yσ(i) ≤ Yσ(j), Since Oblivious

• Thus, Output on 0,1 Data is

• 0, 0, 0, …, 0, 1, …, 1, 0, …,

• There is a 0 after the 1 in the k-th cell

• ∴ Any Faulty Sort Fails on Some 0, 1 Data

COP 4520 — Concepts of Parallel and Distributed Processing – 195 – © Charles E. Hughes — UCF Computer Science Dept.

Correctness of Odd-Even Sort

Proof Based on 0-1 Sorting Lemma

• Consider Rightmost Cell Pk Containing a 1

• If k is even then it won't move at step 1

• But it will shuttle right at all subsequent steps until it reaches N-th cell

• If k is odd, it starts moving at step 1

• And it will shuttle right at all subsequent steps until it reaches N-th cell

• Consider the i-th Rightmost 1

• By step i+1, no 1's block right shuttle

• So i-th 1 starts moving by step i+1

• i-th rightmost 1 is home (cell N-i+1) in at most N-i moves

• i-th rightmost is home no later than by i+(N-i) = N-th step

• This Shows Correctness and Timing

COP 4520 — Concepts of Parallel and Distributed Processing – 196 – © Charles E. Hughes — UCF Computer Science Dept.

Correctness of Shearsort

Proof Based on 0-1 Sorting Lemma

• Each Pair of Passes Sorts at Least Half of the Unsorted Rows

• To See This, Consider Three Categories
• All 0 rows
• All 1 rows
• Dirty rows - some 0's, some 1's

• Can Divide Rows into Categories
• Upper all 0-rows
• Lower all 1-rows
• Dirty rows in middle

COP 4520 — Concepts of Parallel and Distributed Processing – 197 – © Charles E. Hughes — UCF Computer Science Dept.

Halving in Shearsort

Each Pair of Passes Cuts Dirty Rows in Half

• A Row Sorting Pass Will Leave Dirty Pairs
0…0…01…1 0…01 …… 1 0 … 01 … 1
1…10 …… 0 1…1…10…0 1 … 10 … 0
(more 0's) (more 1's) (equal 0's 1's)

• Dirty Pairs After Column Sorting Pass
0……………0 0…01…10…0 0 … …0
1…10…01…1 1……………1 1 … …1
(more 0's) (more 1's) (equals)

COP 4520 — Concepts of Parallel and Distributed Processing – 198 – © Charles E. Hughes — UCF Computer Science Dept.

Convergence of Shearsort

How Much Work Before It’s Sorted?

• Number of Halvings is Bounded by log √N

• But We Do Two Passes per Halving

• Number of Passes is 2 × log √N + 1 =
log √N2 + 1 = log N + 1
The + 1 is for One Dirty Row Left

• Each Pass Requires a Sort of √N Cells
We Can Parallel Bubble Sort in √N Steps

• Total is √N × (log N + 1) = O(√N × log N)

COP 4520 — Concepts of Parallel and Distributed Processing – 199 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Proof – Prelims.

The crux of this correctness and analysis proof for ShearSort is to show that each row/column pair of sorts
reduces the number of dirty rows by ½. Moreover, after each row/column sort, all the clean 0 rows are at the top
(lowered numbered rows), and all the clean 1 rows are at the bottom (higher numbered rows.)
Notation: Assume R rows and C columns.

Lemma 1. After any row sort, each even/odd pair of rows is sorted low to high, high to low, respectively.

Proof: This is a direct consequence of the proof that the Even-Odd Transposition algorithm works.

Lemma 2. After the first column comparison exchange (there are number of rows of these CE’s for a
complete column sort), the number of dirty rows is reduced to no more than half of what there were after
the preceding row sort. Moreover, each clean 0 row will be in the lower numbered row of such a pair, and
each clean 1 row will be in the higher numbered row.

Proof: This is done by showing the interaction of all possible combinations of dirty pairs (more 0’s than 1’s,
more 1’s than 0’s, equal number of 0’s and 1’s.) There is an overhead that does this.

Lemma 3: Each column comparison-exchange (there are number of rows of them for a complete column
sort) in which there is pair of clean rows leaves each clean 0 row in the lower numbered row of such a
pair (on the top), and each clean 1 row will be in the higher numbered row (on the bottom).

Proof: This case is no different than the other case above in which we had an equal number of 0’s and 1’s in
dirty rows.

COP 4520 — Concepts of Parallel and Distributed Processing – 200 – © Charles E. Hughes — UCF Computer Science Dept.

Shearsort Proof

Theorem 1: Each row/column pair of sorts reduces the number of dirty rows by at least one half.
Moreover, after each row/column, all the clean 0 rows are at the top (lowered numbered rows), and all
the clean 1 rows are at the bottom (higher numbered rows) of the mesh.

Proof: By Lemma 1, we know that each column sort starts with even-odd pairs of rows sorted low to high and
high to low, respectively. By Lemmas 2 and 3, the first comparison-exchange operation of the column sort will
result in all row pairs being of one of the forms clean 0/dirty, dirty/clean 1 or clean 0/clean 1. The remaining R-
1 comparison-exchange operations of the column sort will, in effect, move each clean 0 row up, so they are all
together at the top (low numbered) rows of the mesh. Similarly, the clean 1’s will move down to be together at
the bottom of the mesh. The reason that this is doable in the R-1 remaining passes is that the clean 0’s are
already on the top of the pairs from which they formed and the clean 1’s are on the bottom of these pairs,
leaving at most R-1 moves to find their respective destinations.

Theorem 2: The parallel ShearSort algorithm correctly sorts an R×C mesh in O(R+C)lg R steps.

Proof: By Theorem 1, the parallel ShearSort sorts all but, perhaps, one row of an R×C mesh containing 0-1 data
in lg R row/column parallel even-odd transposition sorts. By previous analysis, we know that the row sorts take
R steps and the column sorts take C steps. Thus, each row/column pair of sorts takes (R+C) steps. The final
cleanup of the last unordered row takes R steps, so the total number of steps is (R+C)lg R + R. By the OCE
(oblivious comparison exchange) lemma, an OCE sort that works on 0-1 data works on arbitrary data. Thus, the
parallel ShearSort is correct and runs in O(R+C)lg R. When the mesh is square, this is 2√N lg √N = √N lg N.

COP 4520 — Concepts of Parallel and Distributed Processing – 201 – © Charles E. Hughes — UCF Computer Science Dept.

Revsort: An Improvement of Shearsort

The Revsort

• Revsort is a Column / Row Alternating Sort

• For Convenience We Number Cells from 0

• Define rev(i) = Bit Reversal of i

• Revsort Sorts the Columns Downwards

• It Then Sorts Rows to the Right,
Viewing Row i as Cyclically Starting at Column rev(i)

• Clearly the Wraparound Property That We Didn't Need in Shearsort is Critical
Here

COP 4520 — Concepts of Parallel and Distributed Processing – 202 – © Charles E. Hughes — UCF Computer Science Dept.

Boundary Conditions and Complexity

• Revsort does Not Actually Complete a Sort

 • But It Leaves at Most 8 Dirty Rows

 • These Rows Can be Handled by Shearsort

• Let d be the Number of Dirty Rows

 • On Each Column / Row Pass With d > 8

 Reduces Dirty Rows by O(√d)

• Running Time is 2 × √N × (lg lg √N + 2)

COP 4520 — Concepts of Parallel and Distributed Processing – 203 – © Charles E. Hughes — UCF Computer Science Dept.

Revsort on an Old Example

7 61611Initially

12 31310

5 9215

14 184

• We Underscored the Starting Column of Each Row.

COP 4520 — Concepts of Parallel and Distributed Processing – 204 – © Charles E. Hughes — UCF Computer Science Dept.

Revsort Pass#1

5 124Sort
Cols

7 3810

12 61311

14 91615

COP 4520 — Concepts of Parallel and Distributed Processing – 205 – © Charles E. Hughes — UCF Computer Science Dept.

Revsort Pass#2

1 542Sort
Rows

8 7310

13 12116

14 91615

COP 4520 — Concepts of Parallel and Distributed Processing – 206 – © Charles E. Hughes — UCF Computer Science Dept.

Revsort Pass#3

1 532Sort
Cols

8 746

13 91110

14 121615

COP 4520 — Concepts of Parallel and Distributed Processing – 207 – © Charles E. Hughes — UCF Computer Science Dept.

Revsort Pass#4

1 532Sort
Rows

7 648

13 11109

14 121615

Revsort is Stuck
At This Point Can Use Shearsort

COP 4520 — Concepts of Parallel and Distributed Processing – 208 – © Charles E. Hughes — UCF Computer Science Dept.

Bitonic Sort – Making a List Bitonic
20

10

17

21

4

16

30

45

6

2

9

21

16

13

7

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

20

10

17

21

4

16

30

45

6

2

9

21

16

13

7

11

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

20

10

17

21

4

16

30

45

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

6

2

9

21

16

7

11

13

COP 4520 — Concepts of Parallel and Distributed Processing – 209 – © Charles E. Hughes — UCF Computer Science Dept.

Bitonic Merge – Finishing the Sort
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

20

10

17

21

4

16

30

45

6

2

9

21

16

7

11

13

10

6

2

7

11

13

9

4

20

17

21

16

30

45

21

16

COP 4520 — Concepts of Parallel and Distributed Processing – 210 – © Charles E. Hughes — UCF Computer Science Dept.

Bitonic Sort

20

18

17

29

24

26

30

15

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

–

––

–

–

20

20

20 20 20

20

1818

1818

18

1717

17

17

17

18

17

29

2929

29

2929

2424

2424 24

24

262626262626

30

30

303030

30

15

15

15

151515

Time =

ii=1
lg n∑ = (lg n + 1) lg n / 2 = O(lg2n).

COP 4520 — Concepts of Parallel and Distributed Processing – 211 – © Charles E. Hughes — UCF Computer Science Dept.

Bitonic Sort on Hypercube

• The Mapping is Natural – Use 3-Cube for 8 Values

000 001

010 011

100 101

110 111

30

20 18

17 29

24 26

15

COP 4520 — Concepts of Parallel and Distributed Processing – 212 – © Charles E. Hughes — UCF Computer Science Dept.

Use Hypercube to Make List Bitonic

30

2018

1729

24 26

15

+

+

–

–

30

20

18 17

29

24

26

15

+
+

–
–

30

20

1817

29

24

26

15

+

+

–

–

Phase 1 Phase 2, Steps 1 & 2 – Bitonic Now

COP 4520 — Concepts of Parallel and Distributed Processing – 213 – © Charles E. Hughes — UCF Computer Science Dept.

Use Hypercube to Sort Bitonic List

30

20

1817

2924

26

15

+ +

++

30

20 18

17

29

24 26

15

+
+

+ +

30

2018

17

29

24 26

15
+

+

+

+

Phase 3, Steps 1, 2 & 3 – Sorting the Bitonic List

COP 4520 — Concepts of Parallel and Distributed Processing – 214 – © Charles E. Hughes — UCF Computer Science Dept.

A Fast, Inefficient Max

• Quick, but Not Blindingly Fast

• Use a Doubly Logarithmic-Depth Tree

• If N=22k, then root has 22k–1 children

• At ith level, 0≤i<k, each node has 22k–i–1 children

• At level k, each node has 2 leaves as children

COP 4520 — Concepts of Parallel and Distributed Processing – 215 – © Charles E. Hughes — UCF Computer Science Dept.

Example of Doubly Log Depth Tree

 If N = 64K = 216 = 224, then

 level 0 (root) has 256 = 28 = 223 children

 level 1 nodes have 16 = 24 = 222 children

 level 2 nodes have 4 = 22 = 221 children

 level 3 nodes have 2 = 21 = 220 children

 level 4 nodes have 2 children

 Number of leaves = 2×2×4×16×256 = 21+1+2+4+8 = 216

• Each Internal Node Gets Max of Subtree

• Using super fast max, each level takes O(1),
so T(N) = O(lg lg n)

• Work is O(N lg lg N), E = 1 / lg lg N – Non-Optimal

COP 4520 — Concepts of Parallel and Distributed Processing – 216 – © Charles E. Hughes — UCF Computer Science Dept.

Doubly Logarithmic Max
Doubly Logarithmic Tree Algorithms (N = 22k

):
 we count levels from leaves up
level #trees #kids time work/tree work
 /tree fast lg fast lg fast lg

0 N/2 2 1 1 1 1 N/2 N/2
1 N/22 2 1 1 1 1 N/4 N/4
2 N/24 22 1 2 24 22 N N/22
3 N/28 24 1 4 28 24 N N/24
4 N/216 28 1 8 216 28 N N/28
• • • • • • • • •
• • • • • • • • •

k-1 22k-1
 22k-2

 1 2k-2 22k-1
 22k-2

 N N/22k-2

k 1 22k-1
 1 2k-1 22k

 22k-1
 N N/22k-1

Order of Totals lglgN lgN Nlg
lgN

N

Conclusions:
• Doubly Logarithmic Max with fast algorithm is fast and reasonably efficient.
• Doubly Logarithmic Max with tree algorithm is no faster than standard binary tree

reduction algorithm but is still work efficient.

COP 4520 — Concepts of Parallel and Distributed Processing – 217 – © Charles E. Hughes — UCF Computer Science Dept.

Fast, Efficient CRCW Max

• Accelerated Cascading

• Use Work Optimal Binary Tree Reduction Algorithm to Get Problem Size
Reduced -- Don’t go too far; don’t quit too soon

• Finish with Work Suboptimal, Fast Algorithm

• In Case of max

• Use lg N algorithm for lg lg lg N levels

• Reduces size to N / 2 lg lg lg N = N/lg lg N elements in
lg lg lg N steps = O(lg lg N), taking O(N) work.

• Next, use CRCW doubly log-depth super fast algorithm.

• This requires no more than O(lg lg N) steps,
Work is O(N/lg lg N × lg lg (N / lg lg N)) = O(N)

• The Total is O(lg lg N) Time and O(N) Work

COP 4520 — Concepts of Parallel and Distributed Processing – 218 – © Charles E. Hughes — UCF Computer Science Dept.

Taking Max to the Max

Summary of Accelerated Cascading

Accelerated Cascading:
• Use work optimal, not super fast algorithm to reduce problem size.
• Use work suboptimal, super fast algorithm on remaining subproblem.

Reduce problem using lg tree algorithm for lg lg lg N levels
Work is O(N) since work for lg N levels is O(N)
Time is number of levels = lg lg lg N = O(lg lg N)
of nodes left is N / 2 lg lg lg N = N / lg lg N

Attack remaining problem using CRCW doubly log algorithm
Time is clearly O(lg lg N) since it is this fast on N values
Work is O(N/lg lg N × lg lg (N / lg lg N)) = O(N)

Conclusions:
• Accelerated Cascading Max is fast and optimally work efficient.
• This is another case of using two types of specialists.

One is work efficient and reasonably fast
The other is very fast, but not real work efficient

 The sum total is a fast, work efficient algorithm

COP 4520 — Concepts of Parallel and Distributed Processing – 219 – © Charles E. Hughes — UCF Computer Science Dept.

PCN – Program Composition Notation

Principle:

First-Class Concurrency: not an add-on
Controlled Non-Determinism: do it out of intent
Compositionality: easy to understand compositions
Mapping Independence: results independent of mapping

Realization of Principles:
Definitional Variables: an abstract machine-independent model of

communication and synchronization
Concurrent Composition: compose simple components into lightweight

concurrent tasks that communicate and synchronize through definitional
variables

Non-Deterministic Choice: while predictable computation is usually
desirable, reactive programs can benefit from non-determinism

Encapsulation of State: disallow sharing of data structures that are subject to
change in order to avoid unintended non-determinism

COP 4520 — Concepts of Parallel and Distributed Processing – 220 – © Charles E. Hughes — UCF Computer Science Dept.

Definitional versus Mutable Variables

Definitional:

Initially have undefined value
Can be defined just once – like in Strand
The definition operator is =
Can receive a tuple, int, double or char value
An attempt to read an undefined definitional variable blocks the reader.
Are recognized by being undeclared variables
Can be shared across parallel compositions

Mutable:

Initially are arbitrary value
Can be defined many times – like in C
The assignment operator is :=
Can receive an int, double or char value
An attempt to read a mutable variable always succeeds.
Are recognized by being explicitly declared variables
Cannot be shared across parallel compositions

COP 4520 — Concepts of Parallel and Distributed Processing – 221 – © Charles E. Hughes — UCF Computer Science Dept.

Compositions (Sequential and Parallel)

Sequential: uses no operator or the semicolon (;)

{ ; block0, block1, … , blockk }
blocks are executed in the given order

Parallel: uses the double bar ()
{ block0, block1, … , blockk }
blocks are executed concurrently with the guarantee of fairness in that each

must eventually make progress

COP 4520 — Concepts of Parallel and Distributed Processing – 222 – © Charles E. Hughes — UCF Computer Science Dept.

Compositions (Choice)

Choice: uses the question mark (?)
{ ? guard0 → block0, guard1 → block1,… , guardk → blockk }
guards may be evaluated in any order or in parallel; each guard’s Boolean

expression is evaluated left to right; a guard blocks if it references an
undefined definitional variable; if all guards fail, no action occurs; if one
succeeds, its block is executed; if more than one succeeds, one of the
selected blocks is non-deterministically chosen

each guard is a sequence of one or more tests using
arithmetic comparison (a < b, a > b, a <= b, a >= b)
equality tests (a == b, a != b)
type tests (int(a), char(a), double(a), tuple(a))
synchronization tests (data(a))
tuple matches (?=)
default action (default)

Note this is based on CSP notation
(cooperating sequential processes)

COP 4520 — Concepts of Parallel and Distributed Processing – 223 – © Charles E. Hughes — UCF Computer Science Dept.

Tuples

Tuple Form:

{ term0, term1, … , termk-1 }, k≥0
where each term is a definitional data structures, including _ which is an

anonymous definitional variable
examples: {a, b} {“abc”} {} {12, {13, {} }} {5.2, _, _, c}

Tuple Creation and Access:
{ proc(1, {x, y, {z} }), x = “abc”, y = {123} }

passes the tuple {“abc”, {123}, {z}} as proc’s 2nd argument
the same effect can be achieved by

{ make_tuple(3,tup), proc(1, tup),
tup[0] = “abc”, tup[1] = {123}, tup[2] = {z} }

from above it is clear that indices can be used to access tuple parts
A tuple guard test (?=) can be used for matching as in

tup ?= {“abc”, a, {b}} which matches the above tuple with
a = {123} and b = z.

Note tuple guards are not unification. Defns. are passed from left to right, only.
List access can also be used where {1, {2, {3, {} } } } can be denoted as [1, 2,

3] and this is of form [h | t] where h=1 and t=[2, 3]. This is like in Prolog and
LISP.

COP 4520 — Concepts of Parallel and Distributed Processing – 224 – © Charles E. Hughes — UCF Computer Science Dept.

PCN Examples

Define r as TRUE if e is a member of the list l.
#define TRUE 1
#define FALSE 0
member(e, l, r)
{? l ?= [v | l1], v == e → r = TRUE,
 l ?= [v | l1], v != e → member(e, l1, r),
 l ?= [] → r = FALSE
}
Compute the height z of binary tree t.
Use {left, root, right} to represent a node.
height(t, z)
{? t ?= {left, _, right} →
 { height(left, l), height(right, r),
 {? l >= r → z = l+1,
 l < r -> z = r+1 }
 } ,
 t ?= { } → z = 0
}

COP 4520 — Concepts of Parallel and Distributed Processing – 225 – © Charles E. Hughes — UCF Computer Science Dept.

Another PCN Example

Compute the preorder traversal in p of binary tree t.
Use {left, root, right}
 to represent a node.

preorder(t, p)
{ build_pre(t, p, [])
}

build_pre(t, b, e)
{? t ?= {left, val, right} →
 { b = [val | m1],
 build_pre(left, m1, m2),
 build_pre(right, m2, e)
 } ,
 t ?= { } → b = e
}

COP 4520 — Concepts of Parallel and Distributed Processing – 226 – © Charles E. Hughes — UCF Computer Science Dept.

 Pre-Order Traversal in PCN

The expression tree

+

B

C

*

A

is represented as:

*

+

C[] []

B

[] []A

[] []

COP 4520 — Concepts of Parallel and Distributed Processing – 227 – © Charles E. Hughes — UCF Computer Science Dept.

Invoking the PCN Code

t =

*

+

C[] []

B

[] []A

[] []

 b = Undefined e = []

This matches the first condition, so we bind

left =

+ B

[] []A

[] []

 value = * right = C[] []

b = m1* m1 = Undefined m2 = Undefined

COP 4520 — Concepts of Parallel and Distributed Processing – 228 – © Charles E. Hughes — UCF Computer Science Dept.

Level 2 Invocation of build_pre

t =

+ B

[] []A

[] []

b = Undefined
e = Undefined (bound to parallel calls b)

This matches the first condition, so we bind

left = [] []A
value = +

right = B[] []

b = m1+
m1 = Undefined
m2 = Undefined

COP 4520 — Concepts of Parallel and Distributed Processing – 229 – © Charles E. Hughes — UCF Computer Science Dept.

Parallel Level 2 Invocation of build_pre

t = C[] []
b = Undefined (bound to parallel calls e)
e = []
This matches the first condition, so we bind
left = []
value = C
right = []

b = C m1
Due to easy case with [] call we have
m1 = m2 (since b = e in the new call)
Due to easy case with [] call we have
m2 = e = []
and, in consequence,

b = C [] , and this is also value of parallel e

COP 4520 — Concepts of Parallel and Distributed Processing – 230 – © Charles E. Hughes — UCF Computer Science Dept.

Level 3 Invocation of build_pre

t = A[] []

b = Undefined
e = Undefined (bound to parallel calls b)

This matches the first condition, so we bind
left = []
value = A
right = []

b = A m1
Due to easy case with [] call we have
m1 = m2 (since b = e in the new call)
Due to easy case with [] call we have
m2 = e = parallel calls b

COP 4520 — Concepts of Parallel and Distributed Processing – 231 – © Charles E. Hughes — UCF Computer Science Dept.

Parallel Level 3 Invocation of build_pre

t = B[] []

b = Undefined (bound to parallel calls e)

e = C [] (bound to parallel level 2)

This matches the first condition, so we bind
left = [] value = B right = []

b = B m1
Due to easy case with [] call we have
m1 = m2 (since b = e in the new call)
Due to easy case with [] call we have

m2 = e = C [] and, in consequence,

b = C []B , and this is also value of parallel e
All the pieces are now defined, and original

b =
C []BA+*

COP 4520 — Concepts of Parallel and Distributed Processing – 232 – © Charles E. Hughes — UCF Computer Science Dept.

Logic Programming – A Prolog Program

First Program

chase(X, Y) :- dog(X), cat (Y).
cat(fuzzy).
cat(pumpkin).
dog(rover).

Query
?-chase(X, fuzzy).

Answer
X = rover

Query
?-chase(fuzzy, Y).

Answer
No

Query
?-chase(X, Y).

Answer
X = rover, Y = fuzzy
X = rover, Y = pumpkin

COP 4520 — Concepts of Parallel and Distributed Processing – 233 – © Charles E. Hughes — UCF Computer Science Dept.

The Vocabulary of Logic Programming

The basic element in a Prolog program is a term.

Terms can be simple – variable or constant
or complex – a functor and arguments or a list.

A variable is an upper case name.

A constant is a number or a lower case name.

A functor is also lower case.

A list is a predefined functor of two arguments which is written in the form
[head | tail], where head is the first element of the list and tail is the
remainder. The corresponding functor is just concatenation.

A variable can be bound only once to another term

Binding normally occurs through unification, where a variable must match
another term

A clause has a head and an optional body.

COP 4520 — Concepts of Parallel and Distributed Processing – 234 – © Charles E. Hughes — UCF Computer Science Dept.

Programs and Clauses

Example general forms of clauses are
H.
or
H :– B1 , B2 , … , Bn.
The first clause states a fact, e.g.,
factorial (5, 120).

The second states that proposition H is supported by the truth of all of B1 ,
… Bn. We read
factorial (N, Fact1) :–
 N>0, factorial (N-1, Fact2), Fact1 = N * Fact2.
as “the proposition that N is related to Fact1 by the functor factorial is
supported if N>0, and N-1 is related to Fact2 by the functor factorial, and
Fact1 is equal to N times Fact2.”

We also say that we can achieve the goal factorial(N, Fact1), if we can
achieve the other subgoals.

Running a Prolog program consists of posing a query, e.g.,
?– factorial (5, Fact)

COP 4520 — Concepts of Parallel and Distributed Processing – 235 – © Charles E. Hughes — UCF Computer Science Dept.

Another Prolog Program

Second Program

append([], Y, Y).
append([H | X], Y, [H | Z]) :- append(X, Y, Z).

Query
?-append([a, b], [c, d], Z).

Answer
Z = [a, b, c, d]

Query
?-append([a, b], Y, [a, b, c, d]).

Answer
Y = [c, d]

Query
?-append(X, [c, d], [a, b, c, d]).

Answer
X = [a, b]

Query
?-append(X, [c], [a, b]).

Answer
No

COP 4520 — Concepts of Parallel and Distributed Processing – 236 – © Charles E. Hughes — UCF Computer Science Dept.

Abstract Prolog Sample

Prolog Program

p(X, Y) :- q(X), r(X, Y).
q(4).
q(X) :- s(X), t(X).
r(X, Y) :- u(X), v(Y).
r(X, 3) :- w(X).
s(5).
s(6).
t(6).
u(1).
v(3).
w(6).

Query
?-p(X, Y).

Answer
X = 6, Y = 3

COP 4520 — Concepts of Parallel and Distributed Processing – 237 – © Charles E. Hughes — UCF Computer Science Dept.

Solution Tree (Depth First)

p(X,Y)

q(X), r(X,Y)

r(X,Y) s(X), t(X), r(X,Y)

u(X), v(Y) w(X)
t(X), r(X,Y) t(X), r(X,Y)

fail fail fail r(X,Y)

fail

w(X)u(X), v(Y)

solution

X=4

Y=3 X=5 X=6

Y=3

COP 4520 — Concepts of Parallel and Distributed Processing – 238 – © Charles E. Hughes — UCF Computer Science Dept.

Prolog Sort of Knows Numbers

Triangular Numbers

tri (0, 0).
tri (N, R) :-
 N1 = N - 1,
 tri (N1, R1),
 R = N + R1.

Query
?-tri (4, Ans).

Answer
Ans = 10

Query
?-tri (Row, 10).

Answer
Maybe

COP 4520 — Concepts of Parallel and Distributed Processing – 239 – © Charles E. Hughes — UCF Computer Science Dept.

CLP-R Really Knows Real Numbers

Triangular Numbers

tri (0, 0).
tri (N, N + R) :-
 N ≥ 1,
 tri (N-1, R).

Query
?-tri (4, Ans).

Answer

Ans = 10

Query
?-tri (Row, 10).

Answer

Row = 4

COP 4520 — Concepts of Parallel and Distributed Processing – 240 – © Charles E. Hughes — UCF Computer Science Dept.

Logic Programming and Parallelism
In logic programming there are 3 clear opportunities for parallelism. Or-
parallel pursues multiple choices. This requires separate traces with
separate data spaces for each option so backtracking can be done and so
the variable bindings of the choices are kept separate. And-parallel makes
a choice and then follows one or more of the terms in this clause in
parallel. Only one data space is required since each path shares the same
bindings. The problem here is variable locking or data flow (generator-
consumer) analysis to avoid variable locking. Unification-parallel matches
heads of clauses in parallel. This is orthogonal to the other two types of
parallelism. It is, in fact, possible to combine all three in a given system.

COP 4520 — Concepts of Parallel and Distributed Processing – 241 – © Charles E. Hughes — UCF Computer Science Dept.

And-Parallelism

In the clause

 H :– B1 , B2 , … , Bn.

The subgoals B1 , B2 , … , Bn must be simultaneously satisfied. An
obvious form of parallelism is to do all n subgoals in parallel. There are
some associated problems

1) What if two or more of the subgoals reference the same variable? This

can create a problem if both try to write it at the same time. They might
both assume success if the variable starts as unbound (free to receive a
value.)

2) What happens if a conflict is found? Won’t backtracking be very

complicated?

COP 4520 — Concepts of Parallel and Distributed Processing – 242 – © Charles E. Hughes — UCF Computer Science Dept.

Sharing a Variable

Example:
 F(X,Y) :– G(X), H(X,Y).
 G(0).
 H(1,1).
 H(0,0).
Clearly
 ?– F(X,Y)
should be answered X=0,Y=0.

But, how do we protect X if we are matching G(X) to G(0) at the same time
as we are matching H(X,Y) to H(1,1)? The conflict may go unnoticed!

We could add a lock to X’s access. But that would make access very time
consuming.

We could apply data flow analysis – either static or dynamic.

We could use a generator / consumer approach.

COP 4520 — Concepts of Parallel and Distributed Processing – 243 – © Charles E. Hughes — UCF Computer Science Dept.

Data Flow Analysis

Consider the following abstract clause

p0

p3

p4

p2

p1

p5

t,v u

t

v,w

v

u

w

p0(t, u, v, w) :–
 p1(t,v),
 p2(t,w),
 p3(v,w),
 p4(u),
 p5(u,v).

Once p0 is unified to some goal, we must satisfy the subgoals p1, p2, p3 ,
p4 and p5. We could run p1 and p4 in parallel. Once p1 is done we could
start a process for p2. p3 has to await completion of p2, and p5 must await
completion of both p3 and p4. This approach would retain the LR
semantics whenever a choice is possible.

COP 4520 — Concepts of Parallel and Distributed Processing – 244 – © Charles E. Hughes — UCF Computer Science Dept.

Generator / Consumer

A problem with the data flow approach is that it doesn’t work very
effectively if we can’t distinguish clauses that assign from clauses that use
bindings. The generator consumer approaches are similar to data flow,
except that they release a subgoal for processing as soon as its turn
comes or its variables have bindings assigned by others. So for the
previous example, we would release all subgoals if p0’s unification bound
all variables. Or less dramatically, we would release p2 with p1 and p4, if
p0 provided a binding for t.

COP 4520 — Concepts of Parallel and Distributed Processing – 245 – © Charles E. Hughes — UCF Computer Science Dept.

Backtracking

Once an error is found in one of the subgoals of a goal B, we must
backtrack in an intelligent manner. This is a difficult topic that I will not
really cover, but I’ll point out a few problems.

Bindings must be undone.

We cannot backtrack above some choice point that could have succeeded.

It is foolish to try an option that is guaranteed to fail.

Backtracking is considerably harder if we add in or-parallelism.

COP 4520 — Concepts of Parallel and Distributed Processing – 246 – © Charles E. Hughes — UCF Computer Science Dept.

Guarded Clauses

A guarded clause is one that starts with a set of right-hand conditions that
must be satisfied for the clause to apply. Guards are like selects in Ada
and can be used effectively to control parallelism.

A clause of the form

H :– G1 , G2 , … , Gm | B1 , B2 , … , Bn.

means that the m guards, G1 , G2 , … , Gm, must be satisfied in order to
satisfy H through the n subgoals, B1 , B2 , … , Bn.

COP 4520 — Concepts of Parallel and Distributed Processing – 247 – © Charles E. Hughes — UCF Computer Science Dept.

Strand
Strand focuses on what is called committed choice. That is, it commits to
one of the or choices and parallelizes on the ands. This avoids keeping
multiple traces and having to backtrack, but does not avoid the problems of
data flow. Since Strand is a write-once (single assignment) language, a
variable whose value is bound cannot be overwritten. In fact, an attempt to
change the value is an error that leads to backtrack in normal Prolog, but
denotes an error in a committed choice language.

General forms of clauses in Strand are

H :– G1 , G2 , … , Gm | B1 , B2 , … , Bn. where m,n≥0

Recall that lower case names are constants (or predicates or functions) and
upper case names are variables.

max(X,Y,Z) :- X>Y | Z := X.

max(X,Y,Z) :- X=<Y | Z := Y.

In standard Prolog, we would write as

max(X,Y,X) :- X>Y.

max(X,Y,Y) :- Y>=X.

COP 4520 — Concepts of Parallel and Distributed Processing – 248 – © Charles E. Hughes — UCF Computer Science Dept.

Examples in Strand
power(X,N,R) :- N==0 | R := 1. % := is simple assign
power(X,N,R) :- N == 1 | R := X.
power(X,N,R) :- N>1 |
 N1 is N-1, % is means calculation
 power(X,N1,R1),
 R is X * R1.
Consumer-Producer in Strand:
main() :- % initial process pool
 producer(100, Buffer),
 consumer (Buffer). % buffer is shared by tasks
producer(Count, Buffer) :- Count > 0 | % guard
 get_input(Input), % keyboard
 Buffer := [Input | Buffer1] % push
 Count1 is Count-1, % single assignment
 producer(Count1,Buffer1). % new producer
producer(Count, Buffer) :- Count == 0 | % guard
 Buffer := [] % no new data
consumer([Head | Tail]) :-
 Output := Head, % display
 consumer(Tail). % new consumer
consumer([]) :- % empty buffer
 Output := “Finished”. % display

COP 4520 — Concepts of Parallel and Distributed Processing – 249 – © Charles E. Hughes — UCF Computer Science Dept.

Summation in Strand
main() :- % initial process pool
 generator(5,Stream), % gen 1 … 5
 sum (Stream,Sum). % capture the sum

generator(N,S) :- N > 0 | % more to go
 S := [N|S1], % add N to list
 N1 is N-1, % one fewer to do
 generator(N1,S1) % new generator

generator(0,S) :- % implicit guard
 S := [] % no new data

sum(L,Sum) :-
 sum1(L,0,Sum). % intial sum is 0

sum1([X | Rest], A, Sum) :-
 A1 is A + X, % add X
 sum1(Rest, A1, Sum). % complete the sum

sum1([], A, Sum) :-
 Sum := A. % all done

COP 4520 — Concepts of Parallel and Distributed Processing – 250 – © Charles E. Hughes — UCF Computer Science Dept.

Philosophical Programmers

There are four programmers and only two keyboards and two monitors.
Each programmer has a keyboard on one side and a monitor on the other.
Programmers ponder until inspired. Once inspired, a programmer tries to
acquire a keyboard and a monitor. Having completed a problem, the
programmer returns to pondering.

main :–
 prog(ponder, P1), prog(ponder, P2),
 prog(ponder, P3), prog(ponder, P4),
 merger([merge(P1), merge(P2), merge(P3), merge(P4)],S),
 monitor(S).

monitor(In) :– initial(C),monitor(In,0,Q,Q,C).

initial(S) :– S := [set,set].

In Strand, a Merger is like a blackboard or message center. It guarantees
that the order in which messages are received is the order in which they
are output.

COP 4520 — Concepts of Parallel and Distributed Processing – 251 – © Charles E. Hughes — UCF Computer Science Dept.

More Philosophical Programmers

monitor([req(R)|In],N,F,B,[]) :–
 B := [R|B1], N1 is N+1,
 monitor(In,N1,F,B1,[]).
monitor([req(R1)|In],N,F,B,[R|C]) :–
 R1 := R,
 monitor(In,N,F,B,C).
monitor([rel(R)|In],N,[R1|F],B,C) :–
 R1 := R, N1 is N-1,
 monitor(In,N1,F,B,C).
monitor([rel(R)|In],0,F,B,C) :–
 monitor(In,0,F,B,[R|C]).
monitor([],0,_,_,_).

prog(ponder,S) :– prog(inspired,S).
prog(inspired,S) :–
 S := [req(R)|S1],
 prog1(inspired,S1,R).
prog(program,S) :–
 S := [rel(set)|S1],
 prog(ponder,S1).
prog1(inspired,S,set) :– prog(program,S).

COP 4520 — Concepts of Parallel and Distributed Processing – 252 – © Charles E. Hughes — UCF Computer Science Dept.

Binary Tree Building in Strand

main(BinTree) :–
generator(5, Stream),
streamInsert(Stream, [], Bintree).

generator(Count, Buffer) :– Count > 0 |
get_input(Data), % Bind kb input (a number) to Data
Buffer := [Data | Buffer1],
Count1 is Count – 1,
generator(Count1, Buffer1).

generator(Count, Buffer) :– Count == 0 |
Buffer := [].

streamInsert([], A, A).
streamInsert([X | Rest], A, B) :–

insert(X, A, C),
streamInsert(Rest, C, B).

insert(X, [], [X]). % [X] is same as [X | Rest] where Rest == []
insert(X, [X | Rest], [X | Rest]).
insert(X, [Y | Rest], [Y | [X]]) :– Rest == [], X < Y |

true. % just need to satisfy the guards
insert(X, [Y | Rest], [Y | [[] | [X]]]) :– Rest == [], X>Y|

true. % just need to satisfy the guards
insert(X, [Y | [L | R]], [Y | [L1 | R]]) :– X < Y | insert(X, L, L1).
insert(X, [Y | [L | R]], [Y | [L | R1]]) :– X > Y | insert(X, R, R1).

COP 4520 — Concepts of Parallel and Distributed Processing – 253 – © Charles E. Hughes — UCF Computer Science Dept.

Monitors via Semaphores

Shared variables

sem e= 1; // one per monitor
int nc = 0; // one per cond
queue q; // one per cond
sem private [N]; // one entry per process

entry: P(e);

wait(cv): cv.nc++; cv.q.insert(myId); V(e); P(private[myId]); P(e);

signal(cv): if (cv.nc > 0) {
 cv.nc--;
 V(private[cv.q.remove()]);
 }

exit: V(e);

COP 4520 — Concepts of Parallel and Distributed Processing – 254 – © Charles E. Hughes — UCF Computer Science Dept.

Channels

chan ch (signature)
 chan input (char) // used for character messages
 chan disk_access (int cylinder, int block, int count, char* buf)

chan result[n] (int)

send ch (args)
receive ch (args) // blocking
empty (ch); // predicate

COP 4520 — Concepts of Parallel and Distributed Processing – 255 – © Charles E. Hughes — UCF Computer Science Dept.

Line Assembly – not assembly line

chan input(char), output(char[MaxLine]);

process charToLine {

char line[MaxLine]; int i = 0;
while (true) {

receive input (line[i]);
while (line[i]!=CR && i<MaxLine) receive input (line[++i]);

}
line[i] = EOL;
send output (line);
i = 0;

}

COP 4520 — Concepts of Parallel and Distributed Processing – 256 – © Charles E. Hughes — UCF Computer Science Dept.

Sorting Network

chan in1(int), in2(int), out(int);

process merge {

int v1, v2;
receive in1(v1);
receive in2(v2);
while (v1 != EOS && v2 != EOS) {

if (v1 <= v2) { send out(v1); receive in1(v1); }
else { send out(v2); receive in2(v2); }

}
if (v1==EOS)

while (v2 != EOS) { send out(v2); receive in2(v2); }
else

while (v1 != EOS) { send out(v1); receive in1(v1); }
send out(EOS);

}

COP 4520 — Concepts of Parallel and Distributed Processing – 257 – © Charles E. Hughes — UCF Computer Science Dept.

Client/Server – one service

chan request(int clientID, types of input values);
chan reply[n](result type);

process server {

int clientID;
while (true) {

receive request(clientID, inputs);
// carry out operation
send reply[clientID](results);

}
}
process client [j=0 to n-1] {

send request(j, args);
receive reply[j](results);

}

COP 4520 — Concepts of Parallel and Distributed Processing – 258 – © Charles E. Hughes — UCF Computer Science Dept.

Client/Server – several services

chan request(int clientID, op, types of input values);
chan reply[n](result type);

process server {

int clientID; op_kind kind;
while (true) {

receive request(clientID, kind, inputs);
// cases to carry out various kinds of ops
send reply[clientID](results);

}
}
process client [j=0 to n-1] {

send request(j, op, args);
receive reply[j](results);

}

COP 4520 — Concepts of Parallel and Distributed Processing – 259 – © Charles E. Hughes — UCF Computer Science Dept.

Self-Scheduling Disk Driver

chan request(int clientID, int cyl, other arg types);
chan reply[n](result type);
process diskDriver {

queue left, right; int clientID, cyl, headpos=1, nsaved=0;
while (true) {

while (!empty(request) || nsaved==0) {
receive request(clientID, cyl, …);
if (cyl<=headpos) left.insert(clientId, cyl, …);
else right.insert(clientId, cyl, …);
nsaved++;

}
if (left.size() == 0) get request from right
if (right.size() == 0) get request from left
else get better of two
change head pos; nsaved--;
send reply[clientId](result);

}
}

COP 4520 — Concepts of Parallel and Distributed Processing – 260 – © Charles E. Hughes — UCF Computer Science Dept.

CSP – Communicating Sequential Processes

Simple Communication

B ! e
send expression e to process B

A ? x
accept an expression copied into variable x from process A

Each process blocks until a match occurs (rendezvous)

More complex version of this is
 Destination ! port (e1, e2, … , e4);
 Source ? port (x1, x2, … , xn);

do B1 → S1 [] B2 → S2 [] … [] Bk → Sk od
if B1 → S1 [] B2 → S2 [] … [] Bk → Sk fi

are guarded commands that lead to choice if more than one guard is true
and failure if all are false. Think of [] as “or.” More complex guarded
communications will be discussed later.

COP 4520 — Concepts of Parallel and Distributed Processing – 261 – © Charles E. Hughes — UCF Computer Science Dept.

GCD in CSP

process GCD {
 int id, x, y;

do true →
Client[*] ? args(id, x, y);
do

x>y → x = x – y;
[]

x<y → y = y – x;
od
Client[id] ! result(x);

od
}

Client[i] does GCD ! args(i,v1,v2); GCD ? result(r);

COP 4520 — Concepts of Parallel and Distributed Processing – 262 – © Charles E. Hughes — UCF Computer Science Dept.

Guarded Communication

B; C → S1
B is an optional Boolean expression; C is a communication primitive
B and C together are the guard.
A guard succeeds if B is true and C causes no delay.
A guard blocks if B is true but C is not ready.
A guard fails if B is false.
A do or if will choose non-deterministically when multiple choices succeed.
A do or if will block if none of its choice succeed and at least one blocks.
A do terminates if all its guarded choices fail.
An if fails if all its guarded choices fail.

COP 4520 — Concepts of Parallel and Distributed Processing – 263 – © Charles E. Hughes — UCF Computer Science Dept.

Allocator in CSP

process allocator {
int avail = MaxUnits; set units = initial values;
int index. unitId;
do avail>0;

Client[*] ? acquire(index) →
avail --;
remove(units, unitId);
Client[index] ! reply(unitId);

[]
Client[*] ? release(index) →

avail++;
insert(units, unitId);

od
}

COP 4520 — Concepts of Parallel and Distributed Processing – 264 – © Charles E. Hughes — UCF Computer Science Dept.

Program Flow Analysis

Basic type is Scalar Analysis

 Concentrates on simple variable names

 Indexed array ref. A[I] is treated as a reference to all of object A

 This basic coverage ignores aliasing (multiple names for same object)

Basic Block

 One in, one out sequence of code

Local Analysis – done on single basic blocks

Intraprocedural Analysis – done within procedures

Interprocedural Analysis – done across procedures

Control Flow

 intra creates flow graph with procedure entry as initial node

 inter creates a call graph with main body as initial node

Data Flow

 determines accessibility of definitions and uses to each other

 UD chaining – given a variable use, what definitions reach this use

 DU chaining – given a variable definition, what uses are made of it

COP 4520 — Concepts of Parallel and Distributed Processing – 265 – © Charles E. Hughes — UCF Computer Science Dept.

Data Flow Notations

Program P consists of procedures, one of which is denoted p.

We assume one entry / one exit procedures.
A flowgraph G = (N, E, s) refers to a directed graph (N, E) and an initial node s in N, where there is a path
from s to every node of G. Nodes can be statements or basic blocks. Commonly, they are the latter.

Program SquareRoot;
var L, N, K, M : integer; C : boolean;
begin
 (* start of block B1 *) read(L); N := 0; K := 0; M := 1; (* end of block B1 *)
 loop
 (* start of block B2 *)
 K := K + M; C := K > L;
 if C then break; (* end of block B2 *)
 (* start of block B3 *) N := N + 1; M := M + 2 (* end of block B3 *)
 end loop;
 (* start of block B4 *) write(N) (* end of block B4 *)
end. (* SquareRoot *)

COP 4520 — Concepts of Parallel and Distributed Processing – 266 – © Charles E. Hughes — UCF Computer Science Dept.

Extracting Loops

Let G = (N,E,s)

(1) a node s’ ∈ N is the entry point for a loop in G iff there is an n’ ∈ N such that
(n’,s’) ∈ E and s’ ≤ n’. (n’ branches back)

(2) Let s’ be an entry point of a loop. The max loop with entry s’ is G’ = (N’,E’,s’), where
N’ = {n” | ∃ a path from n” to s’ which contains only nodes “dominated” by s’}.
s’ dominates n” if s’ is on every path from s (start node) to n”. E’=E ∩ (N’×N’)

To do data flow analysis we wish to obey dominances, doing loop entries before their bodies, if conditions
before their choices, etc.

COP 4520 — Concepts of Parallel and Distributed Processing – 267 – © Charles E. Hughes — UCF Computer Science Dept.

Depth First Numbering

A depth first traversal can be used to number nodes so that

n’ < n (n’ dominates n) implies #(n’) < #(n).

This is a total ordering that obeys all the restrictions of the partial ordering ≤.

DFT(G : flowgraph) (* G = (N,E,s) *)
 E’ = { };
 i := | N |;
 for every n in N do mark[n] := false;
 search(s)

Search(n : node)
 mark[n] := true;
 while unmarked_successors[n] ≠ { } do begin
 n’ := select(unmarked_successor[n]);
 E’ := E’ + { (n,n’) };
 Search(n’)
 end; (* while *)
 rPostOrder[n] := i;
 i := i – 1

This produces one of the natural orders. Visiting nodes based on these numbers speeds up data flow
analysis.
Note n ≤ n’ implies rPostOrder[n] ≤ rPostOrder[n’].
Arcs are forward (unvisited node); back (visited but not numbered); cross (numbered).
Back arcs denote loops.

COP 4520 — Concepts of Parallel and Distributed Processing – 268 – © Charles E. Hughes — UCF Computer Science Dept.

Categorizing Arcs in DFS Tree

1

2

4

5

6

9

3

10

78 cross

back

back

forward

COP 4520 — Concepts of Parallel and Distributed Processing – 269 – © Charles E. Hughes — UCF Computer Science Dept.

More Notation

S_DEFS = { s | s is a statement that defines variables }

S_USES = { s | s is a statement that uses variables }

DEF[s] = { v | s is a definition of variable v }

USE[s] = { v | s is a use of variable v }

DEF[n] = { v | ∃ an outward exposed defn of v in n }

USE[n] = { v | ∃ an outward exposed use of v in n }

PRE[n] = VAR – DEF[n] /* preserved defs */

S_DEF[n] = { s | s is an outward exposed defn in n }

S_USE[n] = { s | s is an outward exposed use in n }

S_PRE[n] = { s’ | s’ ∈ S_DEFS and, for all
s ∈ S_DEF[n], DEF[s'] ≠ DEF[s] } // PRE stands for preserves

Reaching Definitions

RD[n] = { s | s ∈ S_DEFS and s reaches n }

UD[n, v] = { s’ | s’ ∈ RD[n] and v ∈ DEF[s'] }

DU[n’, v] = {s | s ∈ S_USE[n] for some n ∈ N,
v ∈ USE[s] and s’ ∈ UD[n, v] }

COP 4520 — Concepts of Parallel and Distributed Processing – 270 – © Charles E. Hughes — UCF Computer Science Dept.

Types of Data Flow

Notation: For any node n, pred[n] is the set of all immediate predecessors of n and
succ[n] is the set of all immediate successors.

ReachIn[n] = { s | p ∈ pred[n] and s ∈ ReachOut[p] }

ReachOut[n] = (ReachIn[n] ∩ S_PRE[n]) ∪ S_DEF[n]

In some papers this is (In[n] - Kill[n]) + Gen[n]

In any case, we have a recurrence relation and hence seek a fixed point. We want the least fixed point.

MAY – determine if a property may be possible. This is attacked by assuming no elements satisfy, then

union in all those that might have the property. By starting with the empty set, we get the Least Upper
Bound (LUB). This is conservative.

MUST – determine if a property must be true. This is attacked by assuming all elements satisfy, then
intersecting all those that must have the property. By starting with the everything, we get Greatest
Lower Bound (GLB). This is conservative.

FORWARD FLOW – information flows from the root towards leaves of the control flow graph.

BACKWARD FLOW – information goes from the leaves towards the root of the control flow graph.

Reaching Definitions is MAY / FORWARD FLOW

COP 4520 — Concepts of Parallel and Distributed Processing – 271 – © Charles E. Hughes — UCF Computer Science Dept.

Reaching Definitions Algorithm

For i := 1 to NBlocks do begin

 ReachOut[i] := S_DEF[i];

 ReachIn[i] := { }

end;

change := true;

while change do begin

 change := false;

 for i := 1 to NBlocks do begin

 newIn := { s | p ∈ pred[n] & s ∈ ReachOut[p] };

 if ReachIn[i] ≠ newIn then begin

 ReachIn[i] := newIn;

 oldOut := ReachOut[i];

 ReachOut[i] :=

 (ReachIn[i] ∩ S_PRE[i]) ∪ S_DEF[i];

 if oldOut ≠ ReachOut[i] then change := true

 end

 end

end

COP 4520 — Concepts of Parallel and Distributed Processing – 272 – © Charles E. Hughes — UCF Computer Science Dept.

Scalar Data Dependence
S1: A := 1.0;
S2: B := A + 3.1415;
S3: A := .333 * (C – D);
… …
S4: A := (B * 3.8) / 2.718;

S2 is true dependent on S1
S3 is anti-dependent on S2
S4 is output dependent on S3

S1

S2

S3

S4

ou t

tru e

tru e

an ti

ou t

Can use scalar data flow analysis to determine these dependencies.

COP 4520 — Concepts of Parallel and Distributed Processing – 273 – © Charles E. Hughes — UCF Computer Science Dept.

Vector Data Dependence

 for i := 1 to 100 do begin
S: A[2*i] := B[i] + 1;
S’: D[i] := A[2*i + 1]
 end

If treat A, B and D as scalars then S’ is true dependent on S and S is anti-dependent on S’. But it can’t be so
since S references only even numbered elements of A and S’ references only off numbered elements of A.
Thus, we can do the iterations independently. But how do we recognize this? The basis is Diophantine
analysis – provided indices are linear in the for variable. In above, we can ask if there is an integral solution
to

1 ≤ X, Y ≤ 100 such that 2X = 2Y + 1

The answer is no, hence the indices cannot overlap. Even if we had for i:=1 to N, we can determine this.

 for i := 2 to 10 do begin
S: A[i] := B[i] + 1;
S’: D[i] := A[i – 1]
 end

The relation is X = Y – 1, for 2 ≤ X, Y ≤ 10. Can solve for all 2 ≤ X ≤ 9, so there is true dependence.

COP 4520 — Concepts of Parallel and Distributed Processing – 274 – © Charles E. Hughes — UCF Computer Science Dept.

Testing Data Dependence

There are exact and inexact (but faster) tests for the existence of solutions to linear Diophantine equations.
There is no test for polynomials of degree ≥ 4, and in fact exact solutions for lower degree polynomials are
very hard.
One simple test is the GCD (Greatest Common Divisor) test. It is easiest seen by example.
 for i := 1 to N do
 for j := 2 to M do begin
S: A[2*i + 2*j] := …;
… …
S’: … := A[4*i – 6*j + 3]
 end

These are independent if there is no solution to 2 A + 2 B = 4 C – 6 D + 3
Can rewrite as 2 A + 2 B – 4 C + 6 D = 3
But evenness of left says no solution is possible. This is recognized by gcd(left) = 2, gcd(right) = 3, but 2 is
not a divisor of 3.
The technique is conservative, especially since it ignores regions. So, it says the following are possibly
dependent

 for i := 0 to 10 do
 for j := 0 to 10 do begin
S: A[2*i + j] := …;
… …
S’: … := A[–i + 2*j – 21]
 end

which translates to 2 A + B + C – 2 D = -21. gcd(left)=1; gcd(right) = 21. But the restriction that
0 ≤ A, B, C, D ≤ 10 can be used to deny a solution since the left side can be no smaller than -20.

COP 4520 — Concepts of Parallel and Distributed Processing – 275 – © Charles E. Hughes — UCF Computer Science Dept.

Examples of Vectorizing

 for i := 1 to N do
S: A[i + 1] := A[i] * B[i] (* True Dependence *)
==
 for i := 1 to 100 do begin
S: D[i] := A[i – 1] * D[i]; (* S depends on S’ *)
S’: A[i] := B[i] + C[i]
 end
Reorder S and S’
 for i := 1 to 100 do begin
S’: A[i] := B[i] + C[i]
S: D[i] := A[i – 1] * D[i]; (* S depends on S’ *)
 end
Loop Distribution
 for i := 1 to 100 do
S’: A[i] := B[i] + C[i]
 for i := 1 to 100 do
S: D[i] := A[i – 1] * D[i]; (* S depends on S’ *)
Change to Vector Operations
S’: A[1:100] := B[1:100] + C[1:100]
S: D[1:100] := A[0:99] * D[1:100];
==
 for i := 1 to N do
 for j := 1 to N do
 C[i, j] := C[i – 1, j] – D[i – 1, j + 1]
Dependence is on outer loop only, so vectorize as
 for i := 1 to N do
 C[i, 1:N] := C[i – 1, 1:N] – D[i – 1, 2:N+1]

COP 4520 — Concepts of Parallel and Distributed Processing – 276 – © Charles E. Hughes — UCF Computer Science Dept.

Program Transformations Used to Parallelize Code

Privatization -- Give each process a copy of a variable

Scalar Expansion -- Replace a scalar by an array

Loop Distribution -- Split one loop into two separate ones

Loop Fusion -- Combine two loops into one

Loop Interchange -- Interchange inner and outer loops

Loop Unrolling -- Replace loop body and do fewer iterations

Strip Mining -- Divide iterations of one loop into two nested loops

Unroll and jam -- Combine interchange, strip mining and unrolling

Loop Skewing -- Alter loop bounds to expose wavefront parallelism

Loop Blocking (Tiling) -- Divide iteration space into rectangular blocks

COP 4520 — Concepts of Parallel and Distributed Processing – 277 – © Charles E. Hughes — UCF Computer Science Dept.

Processes Scheduling Problem

A Process Scheduling Problem can be described by

m processors P1, P2, …, Pm,

processor timing functions S1, S2, …, Sm, each describing how the corresponding
processor responds to an execution profile,

additional resources R1, R2, …, Rk, e.g., memory and other serially reusable items,

a transmission cost matrix Cij (1 ≤ i , j ≤ m), based on processor data sharing,

tasks to be executed T1, T2, …, Tn,

task execution profiles A1, A2, …, An,

a partial order defined on the tasks
such that Ti < Tj means that Ti must complete before Tj can start execution,

a communication matrix Dij (1 ≤ i , j ≤ n) where Dij can be non-zero only if Ti < Tj,

weights W1, W2, …, Wn interpreted as the cost of deferring execution of a task.

COP 4520 — Concepts of Parallel and Distributed Processing – 278 – © Charles E. Hughes — UCF Computer Science Dept.

Scheduling of Processes and NP-Completeness

The intent of a scheduling algorithm is to minimize the sum of the weighted completion
times of all tasks, while obeying the constraints of the task system. Weights can be made
unusually large to impose actual deadlines.

The general scheduling problem is quite complex, but even simpler instances, where the
processors are uniform, there are no additional resources, there is no data transmission,
the execution profile is just processor time and the weights are uniform, are very hard.

In fact, if we just specify the time to complete each task and we have no partial ordering,
then finding an optimal schedule on two processors is an NP-complete problem. (The
notion of NP Complete is on other overheads.)

COP 4520 — Concepts of Parallel and Distributed Processing – 279 – © Charles E. Hughes — UCF Computer Science Dept.

2-Processor Scheduling

The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 processors with an
empty partial order < is the same as that of dividing a set of positive whole numbers into
two subsets, such that the numbers are as close to evenly divided. So, for example, given
the numbers

3, 2, 4, 1

we could try a “greedy” approach as follows:
put 3 in set 1
put 2 in set 2
put 4 in set 2 (total is now 6)
put 1 in set 1 (total is now 4)

This is not the best solution. A better option is to put 3 and 2 in one set and 4 and 1 in the
other. Such a solution would have been attained if we did a greedy solution on a sorted
version of the original numbers. In general, however, sorting doesn’t always work.

COP 4520 — Concepts of Parallel and Distributed Processing – 280 – © Charles E. Hughes — UCF Computer Science Dept.

2-Processor Scheduling

Try the unsorted list
7, 7, 6, 6, 5, 4, 4, 5, 4

Greedy (Always in one that is least used)
7, 6, 5, 5 = 23
7, 6, 4, 4, 4 = 25

Optimal
7, 6, 6, 5 = 24
7, 4, 4, 4, 5 = 24

Sort it
7, 7, 6, 6, 5, 5, 4, 4, 4

7, 6, 5, 4, 4 = 26
7, 6, 5, 4 = 22

Even worse than greedy unsorted

COP 4520 — Concepts of Parallel and Distributed Processing – 281 – © Charles E. Hughes — UCF Computer Science Dept.

2-Processor with Partial Ordering

T1
1

T6
3

T5
3

T4
3

T2
2

T3
4

T1

T4T2

T3 T5 T6

List Schedule with L = {T1,T2,T3,T4,T5,T6}

T1 T3

T5 T6

T1 T3

T5 T6

T4

T2

T4

T2

T3

Non-Preemptive, Delays Allowed

Preemptive

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

COP 4520 — Concepts of Parallel and Distributed Processing – 282 – © Charles E. Hughes — UCF Computer Science Dept.

Anomalies Everywhere

T1

3

T6

4

T7

4

T5

4

T4

2

T9

9

List Schedule with L = {T1,T2,T3,T4,T5,T6,T7,T8,T9}
2 6 8

T2

2

T3

2

T8

4

T1

T4T2

T3

T5

T6

1 3

4

5 7 9

10

11
T9

12

13

14

15

16

17

18

19

20

T7

T8

List Schedule with L = {T9,T8,T7,T6,T5,T4,T3,T2,T1}

T1

T4
T3

T2

T5

T6

1

2

3

4

5

6

7

8

9

10

11

T9

12

13

14

15

16

17

18

19

20

T7

T8

Use Original List with 4 Processors

T1

T4

T2

T3

T5

T6

1 3 5 7 9 11

T9

13 15 17 19

T7

T8

4 10 12 14 16 18 202 86

COP 4520 — Concepts of Parallel and Distributed Processing – 283 – © Charles E. Hughes — UCF Computer Science Dept.

More Anomalies

Original List Schedule but with All Times Reduced by 1
2 6 8

T1

T4T2
T3

T5
T6

1 3

4

5 7 9

10

11

T9

12

13

14

15

16

17

18

19

20
T7

T8

Original List Schedule but with T5 and T6 Independent
2 6 8

T1

T4T2
T3 T5

T6
1 3

4

5 7 9

10

11
T9

12

13

14

15

16

17

18

19

20

T7

T8

COP 4520 — Concepts of Parallel and Distributed Processing – 284 – © Charles E. Hughes — UCF Computer Science Dept.

NP Problems

There is a large class of problems for which no fast algorithms have been devised, but for
which no proof has ever been presented that confirms the inherent intractability of these
problems.

Of particular interest is a class of problems that can be solved in polynomial time,
provided we can always make the correct decision whenever the algorithm has a choice
between courses of action.

For example, consider the simple 2-processor scheduling problem, restructured as a
decision problem. We could just guess which processor to assign to each task. Then it
would be a simple matter to check to see if our guesses were correct. This algorithm
would clearly be polynomial, but it would only work if our guesses were correct on the
first try. If, in contrast, we had to try another guess and then another guess, we would be
no better off than running a try all combinations algorithm.

Such problem are said to be in NP, the class of problems solvable in polynomial time by
a non-deterministic algorithm.

COP 4520 — Concepts of Parallel and Distributed Processing – 285 – © Charles E. Hughes — UCF Computer Science Dept.

NP Problems and Parallelism

The class NP includes all easy problems, since, if we can solve a problem in polynomial
time without guessing, we can clearly solve it in polynomial time with guesses.

The class NP can also be categorized as consisting of problems that can be solved in
polynomial time on a machine that has an unbounded number of processors (the ultimate
parallelism). This should be evident, since we could alter the non-determinism so that it
starts a separate machine for each guess. We might have an exponential number of
processors running in parallel, but no one of them will take more than polynomial time to
gets its task done. We then say “yes” to the original question if any of the processors
says “yes”.

COP 4520 — Concepts of Parallel and Distributed Processing – 286 – © Charles E. Hughes — UCF Computer Science Dept.

NP-Complete Problems

The class NP has some members that are the hardest ones in this class. These problems
are called NP-Complete, and are such that, if any of them submits to a fast algorithm,
then all the NP problems will have been shown to be easy. Similarly, if any can be
shown to be intractable then all NP-complete problems will have been shown to be
intractable. The 2-processor scheduling and the bin packing problems are instances of
NP-complete problems.

One of the big problems of modern computer science is the question
“Is P = NP?”
Here P stands for the class of problems that can be solved in polynomial time by a
conventional, deterministic algorithm running on a machine with a bounded number of
processors. The solution to this question lies in our being able to determine the
complexity of any NP-complete problem. If we can demonstrate a conventional
polynomial algorithm for any NP complete problem, then all such problems are in P, and
hence are tractable. If any NP-complete problem can be shown inherently exponential,
then P ≠ NP.

COP 4520 — Concepts of Parallel and Distributed Processing – 287 – © Charles E. Hughes — UCF Computer Science Dept.

Heuristics and NP-Completeness

While it is not known whether or not P = NP?, it is clear that we need to “solve”
problems that are NP-complete since many practical scheduling and networking problems
are in this class. For this reason we often choose to find good “heuristics” which are fast
and provide acceptable, though not perfect, answers. The First Fit and Best Fit
algorithms we previously discussed are examples of such acceptable, imperfect solutions
to bin packing.

COP 4520 — Concepts of Parallel and Distributed Processing – 288 – © Charles E. Hughes — UCF Computer Science Dept.

Critical Path or Level Strategy – UET

A UET is a Unit Execution Tree. Our Tree is funny. It has a single leaf by standard
graph definitions.

1. Assign L(T) = 1, for the leaf task T

2. Let labels 1, …, k-1 be assigned. If T is a task with lowest numbered immediate
successor then define L(T) = k (non-deterministic)

This is an order n labeling algorithm that can easily be implemented using a breadth first
search.

Note: This can be used for a forest as well as a tree. Just add a new leaf. Connect all the
old leafs to be immediate successors of the new one. Use the above to get priorities,
starting at 0, rather than 1. Then delete the new node completely.

Note: This whole thing can also be used for anti-trees. Make a schedule, then read it
backwards. You cannot just reverse priorities.

COP 4520 — Concepts of Parallel and Distributed Processing – 289 – © Charles E. Hughes — UCF Computer Science Dept.

Applying Level Strategy to UET

1

2 3 4

5 6 7

8 9 10 11 12

13 14

TREE

14

13

11

10

12

9

8

7

5

6

4

3

2

1

M=3

Theorem: Level Strategy is optimal for unit execution, m arbitrary, forest precedence

COP 4520 — Concepts of Parallel and Distributed Processing – 290 – © Charles E. Hughes — UCF Computer Science Dept.

Level Strategy – DAG with Unit Time

1. Assign L(T) = 1, for an arb. leaf task T

2. Let labels 1, …, k-1 be assigned. For each task T such that

{L(T’) is defined for all T’ in Successor(T)}

Let N(T) be decreasing sequence of set members in

{S(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.

This is an order n2 labeling algorithm. Scheduling with it involves n union / find style
operations. Such operations have been shown to be implementable in nearly constant
time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence.

COP 4520 — Concepts of Parallel and Distributed Processing – 291 – © Charles E. Hughes — UCF Computer Science Dept.

Sample Scheduling Question#1

Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of
processors, and we wish to minimize the time at which the last task completes.

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto
four processors? Answer by showing a Gantt chart for the resulting schedule (write the task ID into each
time/processor slot used.)
(T1,1) (T2,1) (T3,3) (T4,3) (T5,2) (T6,2) (T7,4)

Now show what would happen if the times were sorted non-decreasing.

Now show what would happen if the times were sorted non-increasing.

This problem is, in general, NP-complete. Given this fact, what is the complexity of the best known optimal
scheduling algorithm? Is this the theoretical lower bound on the problem’s inherent complexity? If not, why not?
If so, how do we know this?

COP 4520 — Concepts of Parallel and Distributed Processing – 292 – © Charles E. Hughes — UCF Computer Science Dept.

Sample Scheduling Question#2

Some scheduling problems can be efficiently solved using a level (critical path) algorithm. The first step of such
an algorithm is the assignment of priorities (lowest is 1) to each task and the creation of a list schedule based on
these priorities. Unit execution time tasks with a forest (or anti-forest) task graph are amenable to a level
algorithm. Given the following such system, assign priorities to the right of each task as represented by a dot (•),
then show the resultant 3-processor schedule.

 •

•
••

•

•

•
•

•

•

•

• •
•

COP 4520 — Concepts of Parallel and Distributed Processing – 293 – © Charles E. Hughes — UCF Computer Science Dept.

HLA Time Management

Timing Problems

Critical when there’s an observer/interactor

Time (real-time)

A

B

C

fire event

destroyed
event

Message Ordering

Receive Order

Priority Order

Time Stamp Order

Causal Order
CATOCS (causally and totally ordered communications support)

COP 4520 — Concepts of Parallel and Distributed Processing – 294 – © Charles E. Hughes — UCF Computer Science Dept.

IBM TSpaces and our Bid.com Example -- BidItem

package bid;

import java.io.Serializable;

/**
 * Title: TSpaces bid.com
 * Description: A prototypical bid system implemented using IBM TSpaces
* @author Charles E. Hughes
*/

public class BidItem implements Serializable {

 String item;
 String price;

 public BidItem(String item, String price) {
 this.item = item;
 this.price = price;
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 295 – © Charles E. Hughes — UCF Computer Science Dept.

BidTuple # 1

package bid;

import com.ibm.tspaces.*;
import java.io.Serializable;

public class BidTuple extends SubclassableTuple implements Serializable {

 /**
 ** Default constructor will build a template that would match
 ** all bid tuples in the space.
 */
 public BidTuple() throws TupleSpaceException {
 super(new Field(String.class),new Field(String.class));
 }

 /**
 ** Constructor with only key specified will build a template
 ** for retrieving the data
 */
 public BidTuple(String key) throws TupleSpaceException {
 super(key,new Field(String.class));
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 296 – © Charles E. Hughes — UCF Computer Science Dept.

BidTuple # 2

 /**
 ** Constructor with both key and data specified will create
 ** a Tuple that can be written to BidSpaces
 */
 public BidTuple(String key, String data) throws TupleSpaceException {
 super(key,data);
 }

 /**
 ** This is an example of defining a method within the SublassableTuple
 ** that will hide some of the ugly Tuple and Field code.
 ** This method will return the data Field from the tuple.
 */
 public String getData() throws TupleSpaceException {
 // extract the contents of the 2nd field.
 return (String)this.getField(1).getValue();
 }

 public boolean matches(SuperTuple t) {
 // This message will show up in the output from the TSServer.
 Debug.out("SubclassMyTuple.matches() called by server!!!!");
 return super.matches(t);
 } // end matches()
}

COP 4520 — Concepts of Parallel and Distributed Processing – 297 – © Charles E. Hughes — UCF Computer Science Dept.

RegisterTuple # 1

package bid;

import com.ibm.tspaces.*;
import java.io.Serializable;

public class RegisterTuple extends SubclassableTuple implements Serializable {

 // Default constructor will build a template that would match registration tuples in space.
 public RegisterTuple() throws TupleSpaceException {
 super(new Field(String.class), new Field(String.class));
 }
// Constructor with only key specified will build a template for retrieving the data
 public RegisterTuple(String key) throws TupleSpaceException {
 super(key,new Field(String.class));
 }

 // Constructor with both key and data for a Tuple that can be written to BidSpaces
 public RegisterTuple(String key, String data) throws TupleSpaceException {
 super(key,data);
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 298 – © Charles E. Hughes — UCF Computer Science Dept.

RegisterTuple # 2

 /**
 ** Access fields without the ugly Tuple and Field code.
 */
 public String getData() throws TupleSpaceException {
 // extract the contents of the 2nd field.
 return (String)this.getField(1).getValue();
 }

 public String getName() throws TupleSpaceException {
 // extract the contents of the 2nd field.
 return (String)this.getField(0).getValue();
 }

 /**
 * Tuple matching will now be traced
 */
 public boolean matches(SuperTuple t) {
 // This message will show up in the output from the TSServer.
 Debug.out("SubclassMyTuple.matches() called by server!!!!");
 return super.matches(t);
 } // end matches()

COP 4520 — Concepts of Parallel and Distributed Processing – 299 – © Charles E. Hughes — UCF Computer Science Dept.

TSpacesBidDotCom # 2

package bid;
import javax.swing.UIManager;
import java.awt.*;
import com.ibm.tspaces.*;

public class TSpacesBidDotCom {
 boolean packFrame = false;

 /**Construct the application*/
 public TSpacesBidDotCom() {
 BidFrame frame = new BidFrame();
 // Pretty up the window …
 Debug.setDebugOn(true);
 BidAgent agent = new BidAgent();
 frame.setAgent(agent); agent.setFrame(frame); agent.sayHello();
 }
 /**Main method*/
 public static void main(String[] args) {
 try { UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName()); }
 catch(Exception e) {e.printStackTrace();}
 new TSpacesBidDotCom();
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 300 – © Charles E. Hughes — UCF Computer Science Dept.

BidAgent # 1

package bid;
import java.util.Vector;
import com.ibm.tspaces.*;
import java.io.Serializable;

public class BidAgent implements Serializable, Callback {
 TupleSpace space;
 int myId;
 BidFrame frame;

 BidAgent() {
 try {
 space = new TupleSpace("TSpaceBidDotCom");
 Transaction trans = new Transaction(); trans.addTupleSpace(space);
 trans.beginTrans();
 Tuple id = space.take("ID", new Field(Integer.class));
 if (id == null) {myId = 1; space.write("Offer", new Vector()); }
 else myId = ((Integer)id.getField(1).getValue()).intValue();
 space.write("ID", new Integer(myId+1));
 trans.commitTrans();
 Tuple hello = new Tuple("Hello", new Integer(myId), new Field(Integer.class));
 space.eventRegister(TupleSpace.WRITE, hello, this, true);
 Tuple offer = new Tuple("Offer", new Field(Vector.class));
 space.eventRegister(TupleSpace.WRITE, offer, this, true);
 } catch (Exception e) {System.out.println(e); System.exit(1);}
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 301 – © Charles E. Hughes — UCF Computer Science Dept.

BidAgent # 2
 void sayHello() {
 try {for (int i = 1; i < myId; i++) space.write("Hello", new Integer(i), new Integer(myId)); } catch …
 }
 void offer(String item, String price) {
 try {
 Tuple offer = space.take("Offer", new Field(Vector.class));
 Vector offerings = (Vector)(offer.getField(1).getValue()); offerings.add(item); offerings.add(price);
 space.write("Offer", offerings);
 } catch (Exception e) {System.out.println("Offer " + e); System.exit(1);}
 }
 public boolean call(String eventname, String tsName, int seqNum, SuperTuple tuple, boolean exception) {
 try { if (!exception) {
 if (((String)tuple.getField(0).getValue()).equals("Hello")) {
 int friend = ((Integer)tuple.getField(2).getValue()).intValue();
 System.out.println("Hello to #"+myId+" from #"+friend); }
 else if (((String)tuple.getField(0).getValue()).equals("Offer"))
 frame.setOfferings((Vector)tuple.getField(1).getValue()); }
 } catch (Exception e) {System.out.println("Call " + e); System.exit(1);}
 return false;
 }
 void setFrame(BidFrame frame) {
 this.frame = frame;
 try {
 Tuple tuple = space.read("Offer", new Field(Vector.class));
 frame.setOfferings((Vector)tuple.getField(1).getValue());
 } catch (Exception e) {System.out.println("Offer " + e); System.exit(1);}
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 302 – © Charles E. Hughes — UCF Computer Science Dept.

BidFrame # 1

package bid;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import com.ibm.tspaces.*;

public class BidFrame extends JFrame {
 BidAgent agent;

 JPanel contentPane;
 JLabel bidListLabel = new JLabel();
 JButton offerButton = new JButton();
 JButton acceptButton = new JButton();
 JToggleButton bidButton = new JToggleButton();
 JTextField itemField = new JTextField();
 JLabel itemLabel = new JLabel();
 JTextField priceField = new JTextField();
 JLabel priceLabel = new JLabel();
 JComboBox offeringsList = new JComboBox();

COP 4520 — Concepts of Parallel and Distributed Processing – 303 – © Charles E. Hughes — UCF Computer Science Dept.

BidFrame # 2

 /**Construct the frame*/
 public BidFrame() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
 /**Component initialization*/
 private void jbInit() throws Exception {

// Initialize GUI stuff …
 offerButton.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 offerButton_actionPerformed(e);
 }
 });
 }
 /**Overridden so we can exit when window is closed*/
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 System.exit(0);
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 304 – © Charles E. Hughes — UCF Computer Science Dept.

BidFrame # 3

 void offerButton_actionPerformed(ActionEvent e) {
 agent.offer(itemField.getText(), priceField.getText());
 }

 void setAgent(BidAgent agent) {
 this.agent = agent;
 }

 void setOfferings(Vector offerings) {
 Iterator iter = offerings.iterator();
 offeringsList.removeAllItems();
 while (iter.hasNext()) {
 String item = (String)iter.next();
 String price = (String)iter.next();
 offeringsList.addItem(item + " at " + price);
 offeringsList.revalidate();
 }
 }

}

COP 4520 — Concepts of Parallel and Distributed Processing – 305 – © Charles E. Hughes — UCF Computer Science Dept.

Simulating Pure Tuple Space in an Applet

public class Tuple extends Object {
 static private int tupleCount = 0;
 private String key;
 private String who;
 private int id;
 private Object value;

 public Tuple(String key, String who, Object value) {
 this.key = key; this.who = who; this.value = value; id = ++tupleCount;
 }
 public void setFields(Tuple tuple) {
 key = tuple.key; who = tuple.who; id = tuple.id; value = tuple.value;
 }
 public void appendHelper(String helper) {
 who = who + "+" + helper;
 }
 public String key() { return key; }

 public String who() { return who; }

 public String id() { return String.valueOf(id); }

 public Object value() { return value; }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 306 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpace Applet # 1
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class TupleSpace extends Applet {
 private MultiHashtable tuples = new MultiHashtable();
 private List display = new List(10);

 // adds tuple to tuples. tuple.key() is used as key
 public void out(Tuple tuple) {
 tuples.put(tuple.key(),tuple);
 displayKeys();
 }

 // uses tuple.key() to get and delete matching tuple;
 // passed tuple is replaced by one extracted from tuple space;
 // passed who and value are irrelevant
 // blocks until successful
 public void in(Tuple tuple) {
 Tuple t;
 while ((t = (Tuple) tuples.remove(tuple.key())) == null) {
 try {Thread.sleep(100);} catch (InterruptedException e){}
 }
 tuple.setFields(t);
 displayKeys();
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 307 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpace Applet # 2
 // uses tuple.key() to get and delete matching tuple;
 // passed tuple is replaced by one extracted from tuple space;
 // passed who and value are irrelevant
 // true if success, false otherwise
 public boolean inp(Tuple tuple) {
 Tuple t = (Tuple) tuples.remove(tuple.key());
 if (t != null) {
 tuple.setFields(t);
 }
 displayKeys();
 return t != null;
 }

 // uses tuple.key() to get matching tuple;
 // passed tuple is replaced by one read from tuple space;
 // passed who and value are irrelevant
 // blocks until successful
 public void rd(Tuple tuple) {
 Tuple t;
 while ((t = (Tuple) tuples.get(tuple.key())) == null) {
 try {Thread.sleep(100);}
 catch (InterruptedException e){}
 }
 tuple.setFields(t);
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 308 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpace Applet # 3
 // uses tuple.key() to get matching tuple;
 // passed tuple is replaced by one read from tuple space;
 // passed who and value are irrelevant
 // true if success, false otherwise
 public boolean rdp(Tuple tuple) {
 Tuple t = (Tuple) tuples.get(tuple.key());
 if (t != null) {
 tuple.setFields(t);
 }
 return t != null;
 }

 // randomly selects one of the TupleSpaceClient applets;
 // invokes its eval service with tuple as arg
 public void eval(Tuple tuple) {
 Vector collection = new Vector();
 Enumeration e = getAppletContext().getApplets();
 while (e.hasMoreElements()) {
 Applet applet = (Applet)e.nextElement();
 if (applet instanceof TupleSpaceClient) {
 collection.addElement(applet);
 }
 }
 if (!(collection.isEmpty())) {
 int select = (int) (collection.size()*Math.random());
 ((TupleSpaceClient) collection.elementAt(select)).eval(tuple);
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 309 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpace Applet # 4
 public void displayKeys() {
 display.removeAll();
 Enumeration e = tuples.keys();
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 display.add(key + "(" + String.valueOf(tuples.size(key)) + ")");
 }
 }

 public void init() {
 Label label = new Label("Tuple Space Server",Label.CENTER);
 add(label);
 add(display);
 }

 public void paint(Graphics g) {
 g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);
 }

 public String getAppletInfo() {
 return "TupleSpace by Charles E. Hughes";
 }

}

COP 4520 — Concepts of Parallel and Distributed Processing – 310 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpaceClient # 1
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Enumeration;

public class TupleSpaceClient extends Applet {
 protected TextField key = new TextField("Enter Key", 24);
 protected TextField sender = new TextField("Sender Name", 24);
 protected TextField tupleId = new TextField("Tuple Number", 24);
 protected String object = "OBJECT";
 protected String appletName;
 protected TupleSpace tupleSpace = null;

 protected void delay(int maxSeconds) {
 try {Thread.sleep((int)(maxSeconds*1000 * Math.random()));}
 catch (InterruptedException e){}
 }

 protected void getServer() {
 if (tupleSpace == null) {
 Enumeration e = getAppletContext().getApplets();
 while (e.hasMoreElements()) {
 Applet applet = (Applet)e.nextElement();
 if (applet instanceof TupleSpace) tupleSpace = (TupleSpace) applet;
 }
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 311 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpaceClient # 2
 protected void clearResultFields() {
 sender.setText("");
 tupleId.setText("");
 }

 class OUTButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 getServer();
 delay(5);
 tupleSpace.out(new Tuple(key.getText(),appletName,object));
 clearResultFields();
 }
 }

 class INButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 getServer();
 Tuple tuple = new Tuple(key.getText(),appletName,object);
 clearResultFields();
 delay(5);
 tupleSpace.in(tuple);
 sender.setText(tuple.who());
 tupleId.setText(tuple.id());
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 312 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpaceClient # 3
 class INPButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 getServer();
 Tuple tuple = new Tuple(key.getText(),appletName,object);
 clearResultFields();
 delay(5);
 if (tupleSpace.inp(tuple)) {
 sender.setText(tuple.who());
 tupleId.setText(tuple.id());
 } else {
 sender.setText("NO TUPLE");
 }
 }
 }

 class RDButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 getServer();
 Tuple tuple = new Tuple(key.getText(),appletName,object);
 clearResultFields();
 delay(5);
 tupleSpace.rd(tuple);
 sender.setText(tuple.who());
 tupleId.setText(tuple.id());
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 313 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpaceClient # 4
 class RDPButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 getServer();
 Tuple tuple = new Tuple(key.getText(),appletName,object);
 clearResultFields();
 delay(5);
 if (tupleSpace.rdp(tuple)) {
 sender.setText(tuple.who());
 tupleId.setText(tuple.id());
 } else {
 sender.setText("NO TUPLE");
 }
 }
 }

 class EVALButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 getServer();
 clearResultFields();
 delay(5);
 tupleSpace.eval(new Tuple(key.getText(),appletName,object));
 }
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 314 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpaceClient # 5
 class EVALTuple extends Thread {
 private Tuple tuple;

 public EVALTuple(Tuple tuple) {
 this.tuple = tuple;
 }

 public void run() {
 delay(10);
 getServer();
 tuple.appendHelper(appletName);
 tupleSpace.out(tuple);
 }
 }

 public void eval(Tuple tuple) {
 new EVALTuple(tuple).start();
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 315 – © Charles E. Hughes — UCF Computer Science Dept.

TupleSpaceClient # 6
 public void init() {
 appletName = getParameter("NAME");
 Label label = new Label(appletName, Label.CENTER);
 add(label); add(key); add(sender); add(tupleId);
 Button outButton = new Button("OUT"); add(outButton);
 outButton.addActionListener(new OUTButtonHandler());
 Button inButton = new Button("IN"); add(inButton);
 inButton.addActionListener(new INButtonHandler());
 Button inpButton = new Button("INP"); add(inpButton);
 inpButton.addActionListener(new INPButtonHandler());
 Button rdButton = new Button("RD"); add(rdButton);
 rdButton.addActionListener(new RDButtonHandler());
 Button rdpButton = new Button("RDP"); add(rdpButton);
 rdpButton.addActionListener(new RDPButtonHandler());
 Button evalButton = new Button("EVAL"); add(evalButton);
 evalButton.addActionListener(new EVALButtonHandler());
 }

 public void paint(Graphics g) {
 g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);
 }

 public String getAppletInfo() {
 return "TupleSpaceClient by Charles E. Hughes";
 }

}

COP 4520 — Concepts of Parallel and Distributed Processing – 316 – © Charles E. Hughes — UCF Computer Science Dept.

MultiHashtable # 1
import java.lang.*;
import java.util.*;
public class MultiHashtable extends Hashtable {

 public synchronized Object get(Object key) {
 Object obj = super.get(key);
 if (obj == null) return null;
 if (!(obj instanceof Vector)) return null;
 return ((Vector) obj).elementAt((int)(((Vector) obj).size()*Math.random()));
 }

 public synchronized Object remove(Object key) {
 Object obj = super.get(key);
 if (obj == null) return null;
 if (!(obj instanceof Vector)) return null;
 int choice = (int)(((Vector) obj).size()*Math.random());
 Object result = ((Vector) obj).elementAt(choice);
 ((Vector) obj).removeElementAt(choice);
 if (((Vector) obj).size() == 0) super.remove(key);
 return result;
 }

COP 4520 — Concepts of Parallel and Distributed Processing – 317 – © Charles E. Hughes — UCF Computer Science Dept.

MultiHashtable # 2
 public synchronized Object put(Object key,Object value) {
 Object obj = super.get(key);
 if (obj == null) {
 obj = new Vector();
 }
 if (!(obj instanceof Vector)) return null;
 Object result = ((Vector) obj).clone();
 ((Vector) obj).addElement(value);
 super.put(key,obj);
 return result;
 }

 public synchronized int size(Object key) {
 Object obj = super.get(key);
 if (obj == null) return 0;
 if (!(obj instanceof Vector)) return 0;
 return ((Vector) obj).size();
 }
}

COP 4520 — Concepts of Parallel and Distributed Processing – 318 – © Charles E. Hughes — UCF Computer Science Dept.

Centralized versus symmetric versus ring reduction

Reduction is so common that it deserves another visit.

The issues that arise here are all related to how much parallel
communication we can sustain. That is highly dependent on the
architecture with which we are working. Specifically, it depends on the
interconnection network, a topic we studied earlier in the term.

The next two overheads summarize results concerning the effects of such
interconnections on various communication tasks. Vipin Kumar’s book is
an excellent source of detailed discussions of this topic.

COP 4520 — Concepts of Parallel and Distributed Processing – 319 – © Charles E. Hughes — UCF Computer Science Dept.

Store and Forward Broadcasting

Operation Ring 2d Mesh Hypercube

One-to-all (ts + tw m)
* ⎡p/2⎤

2(ts + tw m)
* ⎡√p/2⎤

(ts+tw m) lg p

All-to-all (ts+twm)
* (p–1)

2ts(√p–1)
+ twm (p–1)

ts lg p
+ twm (p–1)

One-to-all
personalized

(ts+tw m)
* (p–1)

2ts(√p–1)
+twm (p–1)

ts lg p
+ twm (p–1)

All-to-all
personalized

(ts+tw m p/2)
* (p–1)

(2ts+tw m p)
* (√p–1)

(ts+tw m p/2)
* lg p

Circular

q-shift

(ts+tw m)
* ⎣p/2⎦

(ts+tw m)
* (2⎣√p/2⎦+1)

(ts+tw m)
* (2 lg p – 1)

COP 4520 — Concepts of Parallel and Distributed Processing – 320 – © Charles E. Hughes — UCF Computer Science Dept.

Cut Through Broadcasting

Operation Ring 2d Mesh Hypercube

One-to-all (ts+tw m) lg p
+ th(p–1)

(ts+tw m) lg p
+ 2th(√ p–1)

All-to-all
personalized

 (ts+tw m) (p–1)
+ (th/2) p lg p

Circular

q-shift

 ts+tw m
+ th (lg p – γ(q))

 γ(q) is the number of times 2 divides q. lg p – γ(q) is longest path for a circular q-shift

COP 4520 — Concepts of Parallel and Distributed Processing – 321 – © Charles E. Hughes — UCF Computer Science Dept.

THE END

