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Basic Information 
Meeting Times: TR 15:00 - 16:15, CS 221 

Instructor: Charles E. Hughes, ceh@cs.ucf.edu, CSB-206, 823-2762 

TA: None 

Home Pages:  
Instructor http://www.cs.ucf.edu/~ceh/;  
Course http://www.cs.ucf.edu/courses/cop4520/NotesFall2005.html 

Office Hours: TR 13:15-14:30 

References:  
Gregory R. Andrews, Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000.  
Ananth Grama et al, Introduction to Parallel Computing, Addison-Wesley, 2003. 
Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2003.  
Tarek El-Ghazawi, UPC: Distributed Shared Memory Programming, John Wiley and Sons, 2005. 

Prerequisites: COP3530 (CS3), COT3100 (Discrete Structures), CDA3103 (Computer Organization), COP3402 
(Computer System Concepts). 

Implementation Environments: Java – Eclipse. MPI. UPC. 

Assignments: 4 to 6 small to moderate programming assignments (some are multi-part) using a variety of parallel 
and distributed programming paradigms; 4 to 6 non-programming assignments; one project. 
Exams: Two midterms and a final. 
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Evaluation 
Evaluation: 
This is an approximation, subject to restructuring based on increases or decreases in assignments or in complexity 
of assignments over what I am currently considering. 
Quiz – 60 points; Mid Term – 90 points; Final Exam – 150 points 
Actually the weight of a quiz and its corresponding exam varies to your benefit. 
Assignments – 200 points; Available Points – 500 
A – ≥90% 
B+ – 87%-89% 
B – 80%-86% 
C+ – 77%-79% 
C – 70%-76% 
D – 50%-69% 
F – <50% 

Important Dates (Quiz Date is Subject to Change): 
Quiz – MidTerm1 – October 6; MidTerm2 – November 3; Withdraw Deadline – October 14;  
Thanksgiving – November 24; Final – December 8, 13:00-15:50 
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Concept and Some Analogies 
 

• Mowing and Edging Grass Takes Time 

• Can Share the Work in Several Ways 

o Generalists: Many People have Mowers and Edgers 

o Specialists: Half Have Mowers, Half Have Edgers 

o Agenda-based: Set an Agenda for the Whole Gang 

• There are Problems with Relative Speeds 

• There are Problems with Shared Resources 

o Brooms, Trash Cans, … 

 

• There are similar problems when many threads running on one or more computers, 
each with one of more processors, is attacking a single problem 
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Terminology 
 

• Concurrent programming 

• Multithreaded programming 

• Multiprogramming 

• Multiprocessing 

• Distributed processing 
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Topics of Course 
 

• Architectures (hardware and software) 

• Protocols (hardware and software) 

• Communication and Coordination Primitives 

• Algorithms 

• Algorithm Complexity Analysis 

• Reasoning about algorithms 

o Correctness, Safety, Liveness 

o Meta results 

• Java Distributed Computing Paradigms 

• MPI Message-Based Computing 

• UPC SPMD Paradigm 

• and other paradigms 
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A Model 
 

Fixed Connection Network 

 

• Processors Labeled P1, P2, … , PN  

• Each Processor knows its Unique ID 

• Local Control 

• Local Memory 

• Fixed Bi-directional Connections 

• Synchronous 
 Global Clock Signals Next Phase 
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Operations at Each Phase 
 

Each Time the Global Clock Ticks 

 

• Receive Input from Neighbors 

• Inspect Local Memory 

• Perform Computation 

• Generate Output for Neighbors 

• Update Local Memory 
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A Model of Cooperation: Bucket Brigades 
 
 

…P1 P2 P3 PN
 

 

 

• N Processors, Labeled P1 to PN 

 

• Processor Pi is connected to Pi+1, i<N 
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A Sort Algorithm 
 

Odd-Even Transposition on Linear Array 

…P1 P2 P3 PN
 

 

• The Array is X[1 : N] 

• Pi's Local Variable X is X[i] 

• Pi's have a Local Variables Y and a Global/Singular variable Step  

• Step is initialized to Zero (0) at all Pi 

• Compares and Exchanges are done alternately at Odd/Even - Even/Odd Pairs 
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Odd-Even Transposition 
 

Algorithmic Description of Parallel Bubble Sort 

 

At Each Clock Tick and For Each Pi  do { 

 Step ++; 

 if parity(i) = = parity(Step)  &  i < N then 

  Read from Pi+1 to Y; 

  X = min(X,Y) 

 else if i > 1 then 

  Read from Pi-1 to Y; 

  X = max(X,Y); 

} 
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Example of Parallel Bubble Sort 
 

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors 

 

1 732

2 317

7 132

2 371

 

Case of 4, 3, 2, 1 Takes 4 Steps 
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Measuring Benefits 
 

How Do We Measure What We Have Gained? 

 

• Let T1(N) be the Best Sequential Algorithm 

• Let TP(N) be the Time for Parallel Algorithm (P processors)  

• The Speedup SP(N) is T1(N)/TP(N) 

• The Cost CP(N)  is P×TP(N), assuming P processors 

• The Work WP(N)  is the summation of the number of steps taken by each of the 
processors.  It is often, but not always, the same as Cost. 

• The Cost Efficiency CE P(N) (often called efficiency Ep(N))  is 
  SP(N)/P = C1(N) / CP(N) = T1(N) / (P×TP(N)) 

• The Work Efficiency WEP(N)  is 
  W1(N) / WP(N)  = T1(N) / WP(N) 
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Napkin Analysis of Parallel Bubble 
 

How'd We Do ? - Well, Not Great ! 

• T1(N) = N lg N Optimal Sequential 

• TN(N) = N Parallel Bubble 

• SN(N) = lg N Speedup 

• CN(N) = WN(N)  = N2 Cost and Work 

• EN(N)  = lg N / N Cost and Work Efficiency 

 

But Good Relative to Sequential Bubble 

SN(N)  = N2/N = N ; EN(N)  = SN(N) /N = 1 ! 
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Non-Scalability of Odd-Even Sort 
 
Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling 
number of values (N), each time we double number of processors (P) in a ring. The cost 
of the parallel sort requires each processor to sort its share of values (N/P), and then do P 
swaps and merges. Since P processors are busy, the cost is N lg N/P. After the local sort, 
sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P 
processors, for a Cost of N, and P-1 such merges occur, for a total cost of N×(P-1). 
Efficiency is then 
E = N lg N / (N lg N/P + N×(P-1)) = lg N / (P - 1 + lg N - lgP) 
First 2 columns double N as P doubles. Second three try to increase N to keep efficiency 
when P doubles. 

N P E  N P E 
64 1 1.0000  64 1 1.0000
128 2 1.0000  4096 2 1.0000
256 4 0.8889  16777216 4 0.9600
512 8 0.6923  2.81475E+14 8 0.9231
1024 16 0.4762  7.92282E+28 16 0.8972
2048 32 0.2973  6.2771E+57 32 0.8807
4096 64 0.1739  3.9402E+115 64 0.8707
8192 128 0.0977  1.5525E+231 128 0.8649
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Cost for Finding Max Value in a List 
 
 
Given a sequence A of n elements find the largest of these elements. 
 Serial Algorithm. 
   Largest = A [0]  
   For i = 1 to n-1 do { if A [i] > Largest then Largest = A [i] } 
  n - 1 comparison. 
 
 A Parallel Algorithm 
 

3  •     8  •     5  •     7  •      •  2      •  1      •  9     •  4

8  •              7  •                 •  2          •  9

8  •                                •9

9  • time 3

time 2

time 1

log    n2

P1 P2 P3 P4  
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Efficiency of Binary Tree Max 

 

Assume Full Binary Tree 

• TN/2(N)  = TN/4(N/2) + 1, N > 1 

 T1(2) = 1 

 TN/2(N)  = lg N  = O(lg N) 

• CN(N)  = N lg N  = O(N lg N) 

E N(N)  = N  / N lg N  = O( 1 / lg N) 

• WN/2(N) = WN/4(N/2) + N/2, N > 2 

 W1(2)  = 1 

 W N/2(N) = N  – 1 = O(N) 

• This is optimally work efficient. 

• But it is not optimally cost efficient. 
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Finding the Maximum by Controlled Anarchy 
Step#1:  Everyone’s an Optimist 
 12 6 15 7 

12
We're #1 We're #1 We're #1 We're #1

  

Ok

 

6  
We're #1 We're #1 We're #1 We're #1

  

Ok

 

15
We're #1 We're #1 We're #1 We're #1

  

Ok

 

7  
We're #1 We're #1 We're #1 We're #1

  

Ok
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This is the Meatiest Part 
Step#2:  Realism Sets In 
 12 6 15 7 

12
Just 
Kidding

  

Rats!

 

   6  
Just 
Kidding

Just 
Kidding

Just 
Kidding

  

Rats!

  

15    

7  
Just 
Kidding

Just 
Kidding

  

Rats!
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That’s All Folks 
Step#3:  Reporting the Answer 
 12 6 15 7 

12    

6     

15   

15 is boss

 

7     
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Analysis of Very Fast Max 

 

Optimal in Time, Not Work on CRCW (Concurrent Read Concurrent Write) PRAM 
(Parallel Random Access Machine) 

 

• Assign N processors to initialize M in 1 step. 

 

• Assign all N2 processors to first statement to fill B in 1 step. 

 

• Assign all N2 processors to 2nd statement to fill M in 1 step. 

 

• Assign N processors to 3rd statement to select maxVal in 1 step. 
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That Was Inefficient but Real Fast 
 

• Can Solve Any Size Problem in 3 Steps 
But we need to make unreasonable assumptions about memory (CRCW) 

• Use Lots of Processors 
Over a Million to Find Max of 1000 

• We Want Fast but Not Too Expensive 
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Sense of Optimality of Max 

 

 

It Depends on Model and Goals 

 

• Can use N2 processors to find max of N elements on O(1) time. 

• Work is O(N2) on CRCW PRAM. 

 

• Minimal work on EREW or CREW PRAM requires O(lg N) time. 

 

• Can achieve O(lg lg N) time on CRCW doing minimal work. 
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Fast, Inefficient Max in Unity Notation  
|| is parallel composition 

 

Program max 

declare  B : array [1..N, 1..N] of boolean 
   M : array [1..N] of boolean 
   maxVal : integer 

initially <   i  : 1≤i≤N  ::  M[i]  = false> 

assign 

 <   i ,j  : 1≤i≤N & 1≤j≤N  ::  B[i,j]  = A[i] ≥ A[j] ) > 
   
 <   i  : 1≤i≤N  ::  M[i]  = < & j  : 1≤j≤N  :: B[i,j] > > 
   
 <   i  : 1≤i≤N  ::  maxVal = A[i] if M[i]   > 

end { max } 
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Synchronous Parallel Max on Balanced Tree 

Make A[i] the parent of nodes A[2×i] and A[2×i+1].  In this case A[0] is the parent of 
A[0] and A[1]!  But that’s good – think about it. 
Hint: if this weren’t so and A[0]’s value was the max, it would be lost. 

 

Program max 

 declare  t : integer 

 initially  t = N 

 assign 

  <   i : 0≤i<t/2 ::  

   A[i]  = max(A[2*i], A[2*i+1] )  if 2*i+1<N 

    ~ A[2*i]     if 2*i+1=N 

  > 

     t = t/2 

end { max } 
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Efficiency of Balanced Tree Max 

 

Study Work Efficiency 

• TN/2+1(N)  = TN/4+1(N/2) + 1, N > 1 

 T2(2) = 1 

 TN/2+1(N)  = lg N  = O(lg N) 

 

• WN/2+1(N) = WN/2(N/2) + N/2 + 1 , N > 2 

 W2(2)  = 2 

 W N/2+1(N) = N  - 1 + lg N  = O(N) 

 

• Tree Max is optimally work efficient within a constant factor 
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Assignment # 1 
 

1. Consider the Max Tree we described earlier, but now use p processors to sort N 
values, where N may be greater than p. In this case, each processor uses a 
sequential algorithm to find its local max and then proceeds with the standard tree 
approach. Analyze the Time, Cost and Work for 

a. p = lg N 
b. p = lg lg N 
c. p = N / lg N 
d. p = N / lg lg N 

2. Consider the problem of sorting a deck of cards into Spades, Hearts, Diamonds, 
Clubs, and in order Ace down to 2 within each suit.  

a. What is the best way for an individual to do this? Describe the approach and 
analyze the number of comparisons and inspections (e.g., what suit is this) 
done. 

b. Redo this but this time with five people. One of the five starts with all 52 
cards. You will need to analyze the additional number of times a card is 
passed from one person to another. We assume random access; that is, any 
person can pass a card to any other at the same cost. The ending state of the 
system is that all 52 cards must be in one person’s hand, sorted. 

 
Due: Week#2 (9/1) 
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Taxonomies 

 
Control 
 
Communication Model / Address space 
 
Interconnection network 
 
Granularity 
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Taxonomies -- Control 

 
SISD (typical single instruction on single data stream) 
 
SIMD (single instruction applied to many data streams) 
 
MISD (multiple instructions on single data stream – pipeline) 
 
MIMD (multiple instructions on multiple data streams – typical multiprocessing) 
 
Programming models 
1. Control Parallel assumes separate independent functions that can be solved simultaneously.  These separate 

functions are then assigned to separate cpu's. 
2. Data Parallel assumes there is a large data set that needs to be processed and that there is single processor for 

each data element in set.  The same set of instructions is applied to all elements in the data set. (Aggregation is 
needed if actual number of elements exceeds available processors.) 

 
Control (task)-parallel 
Assign one (or more) processors to each function.  The information from one function is passed to the next like on 
an assembly line. Often the communication mechanism can do double duty as the coordination mechanism. 
Alternatively, we can use a form of “barrier synchronization.” In either case, we need to design our solution so 
subtasks take about the same amount of time. 
 
Data-parallel 
The same function is applied to each page simultaneously.  Hence we process the pages independently in parallel. 
The processors need to be synchronized in reporting the results. SIMD architectures imply data parallelism, 
although MIMD can also be used. 
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Even-Odd Transposition on a SIMD Machine 
 
plural int value; // need to set to some value on each processor 
… 
int stage = 0; 
if (iproc %2 == 0) // let even numbered do the work 

while (stage < N-1) { // do two stages 
if (xnetE[1].value < value) { 

int temp = value; 
value = xnetE[1].value; 
xnetE[1].value = temp; 

} 
if (xnetW[1].value > value) { 

int temp = value; 
value = xnetW[1].value; 
xnetW[1].value = temp; 

} 
stage += 2; 

} 
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Taxonomies – Communication Model / Address Space 
 
Private memory (separate address spaces, also called distributed memory) 
Shared address space (often called shared memory).  
 
UMA (uniform / symmetric multiprocessors (SMP))  
NUMA (non-uniform) memory access.  
 
Cache and the cache coherence (consistency) problem. 
 
A multicomputer is a distributed memory multiprocessor in which the nodes and network 
are in a single cabinet. Such a system is tightly coupled and communication is over a 
dedicated high-speed interconnection network. 
 
A network of workstations is a form of distributed memory multiprocessor. Such a 
system is loosely coupled and communication is usually through message passing. 
 
Distributed, shared memory refers to a distributed implementation of the shared memory 
model. 
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Taxonomies -- Interconnection Network 
 
Dynamic interconnections, e.g., bus and crossbar 
Dynamic interconnection networks use switches (indirect), rather than direct connects.  
Network is dynamic (bus like). 
Crossbar performance scales well (no blocking), but cost is a problem. N2 
Bus scales poorly on performance but nicely on cost. 
Multistage compromises are usually used. (Butterfly is nice example -- n lg n switches, lg 

n set for any communication, blocking occurs) 
 
Static interconnections, e.g., linear, completely connected and hypercube. 
Some examples are completely-connected, star connected, linear array, ring, 2-d  
mesh, torus, 3-d mesh and torus, tree, hypercube. 
Note that the central node in a star is the bottleneck, just as the bus is in a bus scheme. 
This is also true of the root of a tree. 
 
BLACKBOARD TIME 
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Metrics for Static Networks 
 

• Diameter – Maximum distance 
o Routing algorithms 

� Ring (shortest distance left or right) 
� 2D mesh (XY dimensional routing) 
� Hypercube (E dimensional routing) 

• Note Hamming distance and Hypercube 
• Connectivity – Number of paths between nodes 

o Arc connectivity is minimum number of edges that can be removed before 
network is disconnected 

• Bisection Width – Minimum number of edges removed to partition network into 
“equal” halves 

• Channel Width – simultaneous bits that travel over each link 
• Channel Rate – Peak data rate over a single link 
• Channel Bandwidth – Product of Channel Width and Channel Rate 
• Bisection Bandwidth – Product of Bisection Width and Channel Bandwidth 

o Measure of how much can be pushed between halves of network 
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Characteristics of Topologies 
 
Network Diameter Arc Connectivity Bisection Width Cost (# links) 
Complete 1 p – 1 p2 / 4 p (p – 1) / 2 
Star 2 1 1 p – 1 
Binary tree 2 lg((p + 1)/2) 1 1 p – 1 
Linear array p – 1 1 1 p – 1 
Ring ⎣p / 2⎦ 2 2 p 
2d mesh 2 (√p – 1) 2 √p 2 (p – √p)  
2d torus 2 ⎣√p / 2⎦ 4 2 √p 2 p 
Hypercube lg p lg p p / 2 (p lg p) / 2 
k-ary d-cube d ⎣k / 2⎦ 2 d 2 kd – 1 d p 
 

• Note the hypercube is a 2-ary, d-cube, having 2d processors. A ring is a p-ary, 1-
cube. A 2d torus of p processors is a √p-ary, 2-cube. A k-ary, d-cube can be created 
from k k-ary (d-1) cubes by connecting identical positions. 
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Assignment # 2 
Due: Week#3 (9/8) 

Consider the Omega and Butterfly versions of multistage dynamic interconnection networks. Each is specified on networks with 
p processors, where p is some power of 2.  
Butterfly network with p=8 (connect crossover at stage i of line j with stage i+1 switch at line j ⊕ 2lg p – i – 1). 

Stage 0 1 2 3 
0 • ------------------------------------ • ----------------------------------- • ------------------------------------• 0 
1 • ------------------------------------ • ----------------------------------- • ------------------------------------• 1 
2 • ------------------------------------ • ----------------------------------- • ------------------------------------• 2 
3 • ------------------------------------ • ----------------------------------- • ------------------------------------• 3 
4 • ------------------------------------ • ----------------------------------- • ------------------------------------• 4 
5 • ------------------------------------ • ----------------------------------- • ------------------------------------• 5 
6 • ------------------------------------ • ----------------------------------- • ------------------------------------• 6 
7 • ------------------------------------ • ----------------------------------- • ------------------------------------• 7 

Omega network with p=8 (connect output of line j at stage i to line (j shift left 1 circular) at stage i+1). 
Note: You can read or write this network backwards from what I show below. 

Stage 0 1 2 3 
0     0 
1     1 
2    2 
3    3 
4    4 
5    5 
6    6 
7    7 

a. Prove that each of these connects node x to node y when the circuits are switched by choosing crossover at the i-th switch 
whenever the i-th most significant bit of x⊕y is 1. 

b. How many distinct potential communication pairs (a to b, c to d; a≠c, b≠d) exist for p=8? Of these, how many can occur in 
parallel without a conflict occurring at some switch? 
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Embedding Lower Order Networks into Hypercubes 
 

• Reflected Grey Code 
 
• Applying Code to Rings and Meshes 
 
• Using Code to map onto Hypercube 
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Reduction and Broadcast 
 

• Reduction (all to one) 
o Tree Reduction Algorithms 
o Mapping onto a Hypercube 
o Ring version 
o 2d torus version 

• Broadcast (one to all) 
o Hypercube 
o Ring 
o 2d torus 

• Broadcast (all to all) 
o Hypercube 
o Ring 
o 2d torus 
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Routing on Static Networks 
 

• Communication costs associated with static networks.  
Parameters are Startup Time (ts), Per-Hop Time (th), Per-Word Transfer Time (tw).  

• Switching Techniques:  

o Store-and-forward cost for m words traversing l links is tcomm = ts + (mtw + th) l. 
Since th is usually quite small, we simplify this to tcomm = ts + mtwl.  

o Cut-through routing advances the message as soon as it arrives at a node. 
Wormhole routing is a specific type of cut-through in which the message is 
divided into small parts called flits (flow-control digits). Flits are pipelined 
through the network with an intermediate node needing to store the flit, but not 
the whole message. Since flits are of fixed size, the communication cost is  
tcomm = ts + lth+ mtw .  

o Thus, store-and-forward is O(ml), whereas cut-through is O(m+l).  

• Deadlocking can occur in wormhole routing  
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Granularity 
 

• Fine grain (often data parallel) 
• Coarse grain (often control / function parallel) 

 
• One measure is time for each computation step versus communication required 

before next step 
 

• BSP Model 
o Bulk Synchronous Parallel 

� Compute then communicate 
� Loop {Superstep; Barrier Synch; communicate;} 

o Granularity is ratio of size of superstep to communication time  
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Programming Styles 
 
Iterative parallelism: co // and process notation 
 
Recursive parallelism (divide and conquer) 
 
Producer / Consumer 
 
Client / Server 
 
Peers: worker, send and receive notation 
 
 
Common orthogonal ways to attack are: 
  

Functional Decomposition 
 
Data Decomposition  
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Foster’s Design Methodology – Partitioning 
 

• Divide computation and data into many pieces  
o Often this is done by dividing data first and then determine what computations 

are associated with each piece of data; it is typical to do this with a focus on the 
primary data structures 

o Alternatively, we can be function driven, dividing the computation into pieces 
and then associating data with each computation part 

• In either case, the goal is to find as many primitive tasks as possible. 
 

• Desirable attributes 
o Flexible – There are orders of magnitude more tasks than available processors 
o Efficient – Redundant computations and data are minimized 
o Balanced – Primitive tasks are roughly the same size 
o Scalable – The number of tasks increases with problem size 
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Foster’s Design Methodology – Communication 
 

• Determine the communication patterns between tasks  
o Local communication refers to cases where a task needs to communicate with 

a small number of other tasks; this is often done by creating communication 
channels from the suppliers to the consumer 

o Global communication refers to cases where a significant number of primitive 
tasks must contribute data in order to perform some computation – MAX is a 
very good example; one paradigm for managing this is the use of middleware in 
the form of a blackboard or message queue 

 
• Communication is parallel overhead in that this is not needed for non-parallel (single 

task) computation 
 
• Desirable attributes 

o Locality – Tasks communicate with a small number of neighbors 
o Balanced – Communication is balanced among tasks 
o Communication Concurrency – Communications can be overlapped 
o Computation Concurrency – Computations can be overlapped 
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Foster’s Design Methodology – Agglomeration (1) 
 

• Determine how to group tasks to improve performance or simplify design / 
programming  

o Sometimes we want more consolidated tasks than processors, putting several 
per node – mapping is a major issue here 

o Sometimes we want one consolidated tasks per processor; this is especially true 
in SPMD environments such as clusters with message passing – mapping is 
trivial with one processor per task 

 
• Reduction in communication overhead is a major goal of agglomeration 

o Agglomerating tasks that communicate removes communication overhead – 
this is called “increasing locality” 

o Combining tasks that are by their nature sequential (one await output from the 
other) is usually a good start 

o Of course, combining groups of sending and receiving tasks can also be 
effective if the senders can group their messages together in order to reduce the 
accumulated latency associated with many small messages 
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Foster’s Design Methodology – Agglomeration (2) 
 

• Desirable attributes 
o Locality – Does agglomeration increase locality? 
o Tradeoff – Is redundant computation less costly than replaced communication?  
o Scalability – Is replication of computation or data not a hindrance when 

problem size grows?  
Is the number of tasks an increasing function of problem size? 

o Balance – Are combined tasks of similar size (computation and 
communication)? 

o Matching – Are the number of tasks as small as possible, but at least as large 
as the number of processors likely to be available? 

o Economical – Is the cost of modifying existing sequential code must be 
reasonable 
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Foster’s Design Methodology – Mapping (1) 
 

• Assign tasks to processors  
o On a centralized multiprocessor, this is done automatically 
o Thus, we assume a distributed memory parallel computer 

• Our goal is to maximize processor utilization and minimize communication 
overhead. 

o Processor utilization is the percentage of time the processor is actively 
executing tasks necessary to complete the computation – a busy wait is not an 
example of a necessary activity; its inclusion is to remedy a mismatch or 
contention induced by the chosen design 

o Mapping communicating tasks to the same processor reduces communication 
o Increasing processor utilization can conflict with minimizing communication 

• Example, if we reduce communication to 0 by mapping all tasks to 1 out 
of p available processors, then processor utilization is 1/p 

o Optimal mapping is NP complete (we’ll study this later) 
• Approaches to management can include 

o Centralized – Pool processors with one manager who assigns tasks 
o Distributed – Each peer keeps its own tasks and, when overloaded, pushes 

some out to be picked up by others; again a blackboard or shared queue might 
be used 

o Static – Assign once and be happy 
o Dynamic – Assign based on dynamically generated tasks 
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Foster’s Design Methodology – Mapping (2) 
 

• Checklist 
o Did you investigate one task versus multiple tasks per processor? 
o Did you investigate both static and dynamic mapping strategies?  
o If you chose dynamic allocation, are you sure that the manager is not a 

bottleneck?  
o If you chose static allocation, is the ratio of tasks to processors at least one 

order of magnitude? 
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Traces 
 
State, history, properties 
 
 
s1 → s2 → s3  ... → sk  

trace or history states; can have many traces in concurrent system 
 
states are altered by atomic action 
 
safety property : never enter a bad state 
 
liveness property : eventually enter a good state 
 
mutual exclusion is a safety property 
 
partial correctness is a safety property 
 
termination is a liveness property (finite histories) 
 
total correctness is both a safety and liveness property 
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Notation 
 
co s1; // s2; // ... // sn; oc : concurrency 
 
co [i=low to high] s; 
 
process name { ... } : background process 
 
< S; > : atomic action; critical section; mutual exclusion; granularity considerations 
 
< await(B); > : conditional synchronization; barrier synchronization 
 
< await(B) S; > : conditional atomic action 
 
{ precondition } actions { postcondition } : basis for axiomatic proofs of correctness 
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Max (some trial runs) 
 
function max1 
 int m = 0; 
 for i = 0 to n-1  
  if (a[i] > m) m = a[i]; 
end { max1 } 
 
function max2 
 int m = 0; 
 co [i = 0 to n-1] 
  if (a[i] > m) m = a[i]; 
end { max2 } 
 
function max3 
 int m = 0; 
 co [i = 0 to n-1] 
  < if (a[i] > m) m = a[i]; > 
end { max3 } 
 
function max4 
 int m = 0; 
 co [i = 0 to n-1] 
  if (a[i] > m) < m = a[i]; > 
end { max4 } 
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Max in Concurrent Notation 

The key here is that many conditions will probably be false, and so the guarded action 
will never even be executed. Doing just the atomic test will destroy all concurrency. 
Employing no guards will lead to a random selection among the candidates for max. 
Guarding just the assign will have the same undesirable result. 

 

function max 

 int m = 0; 

 co [ i = 0 to n-1 ] 

  if (a[i] > m) 

   < if (a[i] > m)  

    m = a[i]; > 

end { max } 
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Critical References 
 
Critical reference is one changed by another process 
 
At Most Once Property (x = e); appearance of atomicity 
 

e contains at most one critical reference 
and x is not read by any other process; OR 

 
e contains no critical references 
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Critical References (examples) 
1. int y = 0, z = 0; 

co x = y + z; // y = 1; z = 2; oc; 
Two critical references – result is {x=[0,1,2,3], y=1, z=2} even though there is no 
time when the state of system could have y+z equal to 2. 
 

2. int x = 0, y = 0; 
co x = x + 1; // y = y + 1; oc; 
No critical references – result is {x=1, y=1} 
 

3. int x = 0, y = 0; 
co x = y + 1; // y = y + 1; oc; 
One critical reference, but x not read by other – results {x=1, y=1},{x=2, y=1} 
 

4. int x = 0, y = 0; 
co x = y + 1; // y = x + 1; oc; 
One critical reference per statement, and each assigned in other 
 – results {x=1, y=2},{x=2, y=1},{x=1, y=1}  
okay since there is a state in which the expressions x+1 and y+1 could 
simultaneously be 1, even though does not satisfy at most once property 
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Await 
 
< S; > : atomic action; critical section; mutual exclusion; granularity considerations 
 
< await(B); > : conditional synchronization; barrier synchronization 
 
< await(B) S; > : conditional atomic action 
 
Example: 

Producer/Consumer – one item buffer (p is producer index, c is consumer index) 
Initially p = 0, c = 0; 
P:  forever {<await (p = = c);>  buf = next_produced; p++;} 
C: forever {<await (p > c);>  next_consumed = buf; c++;} 

 
If implement await as spin loop, might do above as 

forever {while (p > c); buf = next_produced; p++;} 
forever {while (p <= c); next_consumed = buf; c++;} 

This is a busy wait; common on parallel machines and at lower levels of architecture 
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Avoiding Interference among Concurrent Processes 
 
Disjoint Variables 

Make sure reference set of each process differs from write set of others 
 

Weakened assertions 
Often just do your best at the time you make a decision 
Analogy to greedy algorithms 
 

Global invariants 
Property of shared variables that is preserved across all assignments 
Analogy to Domain analysis in OO 
 

Synchronization 
Making statements atomic avoids exposing inner states 
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Fairness 
 
 
Unconditional Fairness: 

Every unconditional eligible atomic action is eventually executed 
 
Weak Fairness 

Unconditionally fair; OR 
Every conditional eligible atomic action is eventually executed, provided the 
condition becomes true and stays true until the atomic action is executed 

 
Strong Fairness (an impractical consideration) 

Unconditionally fair; OR 
Every conditional eligible atomic action is eventually executed, assuming the 
condition is infinitely often true – this means if the condition is always 
guaranteed to return to true if ever it cycles from true to false then the atomic 
action will eventually be executed 
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Critical Section Problem 
 
 
Mutual Exclusion 

At most one process in a critical section 
 
Absence of Deadlock (Livelock) 

If two or more processes want a critical section, at least one will succeed 
 
Absence of Unnecessary Delays 

A process ready to use an uncontested critical section will not be delayed 
 
Eventual Entry 

Every process that wants a critical section will eventually get it 
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Spin Locks 
 
We now want to consider how to implement the < ... > primitive of text 

How do we handle code like <await (!lock) lock = true;> critical; lock = false;? 
 
Test and Set from IBM 360/67 2 processor machine 

while (TS(lock)) skip; // returns entry value of lock (before this set) 
< boolean initial=lock; lock=true; return initial; > 

 
Problems 

one memory cycle -- basically an atomic spin lock 
no guarantee of fairness 
results in serious memory contention for shared lock 

 
while (lock) skip; while (TS(lock)) { while (lock); skip} // Test and Test and Set 
 
reduces memory contention 
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Implementing Critical Sections 
 
To implement unconditional atomic action < S; > 

CSEnter; // CSEnter is entry protocol 
S;  
CSExit; //CSExit is exit protocol 

 
To implement conditional atomic action <await (B) S; > 

CSEnter;  
while (!B) { CSExit; [delay]; CSEnter; } // delay may be omitted 
S;  
CSExit; 
If B satisfies at most once property can do < await(B);> as while(!B); 

 
Relation to Java synchronized 

synchronized (lock) { S; }  
is like <S;> // every process uses same lock object 

synchronized (lock) { while (!B) try{wait();}catch(...){} S; notify(); } 
is like <await(B) S;> 
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Assignment # 3.1 
1. Consider the following “solution” to the critical section problem for n processes:  

shared boolean lock=false;  
shared boolean waiting[1:n] = ([n] false); // all slots are false 
process p [i=1 to n] { 

while (some continuation condition is true for process i) { 
while (lock) { waiting[i] = true; while (waiting[i]) delay(); } 
lock = true; 
// critical section 
lock = false; 
// wake up at most one process  
for (j=1; j<=n; j++) if (waiting[j]) { waiting[j] = false; break; }  
// non-critical stuff 

} 
} 

 Which of the following does this achieve? Answer Yes or No for each and give a one sentence 
justification. 
Mutual exclusion     
Avoidance of deadlock     
Avoidance of livelock     
Absence of unnecessary delays     
Eventual entry     
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Assignment # 3.2 
2. In each of the following, specify which Fairness criteria (unconditional, weak and/or strong) 

guarantee that the statement S is eventually executed? Check all applicable columns.  
Statements unconditional weak strong 
int x=0; co <await(x == 5) S; > //  
while (true) x = x+1; oc 

   

int x=0; co <S; > //  
while (true) x = x+1; oc 

   

int x=0; co <await(x == 5) S; > //  
while (true) x = (x<6 ? x+1 : x); 
oc 

   

int x=0; co <await(x == 5) S; > //  
while (true) x = (x<10 ? x+1 : 
0);oc 
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Assignment # 3.3 
3. Consider the following program 

int x=0; 
co  

<await (x != 0) x = x – 1; >   # S1 
// <await (x == 0) x = x – 4; >   # S2 
// <await (x != 0) x = x + 3; >  # S3 

oc 
Does the program meet the "At-Most-Once Property"? Explain your answer. 
 
What are the possible final values of x? Show all traces. 
 
Suppose the await statements are replaced by non-atomic if statements, but the assigns become 
atomic.  

int x=0; 
co  

if (x != 0)  <x = x – 1; >   # S1 
// if  (x != 0) <x = x + 3; >  # S2 
// if  (x == 0) <x = x – 4; >   # S3 

oc 
What are the possible final values of x? Show all traces. 
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Threads 
 

• Thread 
– A thread is a sequentially executed stream of commands 
– Usually lightweight 

 
• A thread is not a process 

– Runs within the resources allocated to a process 
• It does have its own execution context (stack, program counter, 

register) 
– Multiple threads of a process share resources and can refer to common 

objects 
 

• Every process has at least one thread 
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Thread Life Cycle 
 

 
 

• Create – new thread is allocated 
• Running – thread is executing 
• Ready – thread is waiting for the processor 
• Blocked – thread is waiting on a requested service 
• Finished – thread has been stopped and deallocated 

 

 

Running  Creat

Finished

Ready

Yield 

Start Servic

Terminate
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Java Threads 
 

• Like everything else, a thread is an instance of a class. 
– Thread 

• Part of the java.lang package 
• Provides basic behaviors 

– Starting 
– Stopping 
– Sleeping 
– Yielding 
– Priority management 
– A simple form of monitors 

• The run method, by default is empty 
• There are two ways 

– Subclass Thread and override run 
– Implement the Runnable interface 
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Sample Java Threads 
 

class SimpleThread extends Thread { 
 public SimpleThread(String str) { 
  super(str); //sets thread’s name 
 } 
 public void run() { 
  for (int i = 0; i < 10; i++) { 
   System.out.println(i + " " +getName()); 
   try {  
    sleep((int)(Math.random() * 1000)); // one second delay 
   } catch (InterruptedException e) { } 
  } 
  System.out.println("DONE! " + getName()); 
 } 
} 
 
public class TwoThreadsTest { 
 public static void main (String[] args) { 
  new SimpleThread("UCF").start(); 
  new SimpleThread("Knights").start(); 
 } 
} 
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Creating and Starting Threads 
 

• Creating a thread instances the class 
– No resources have been allocated to it yet 
– From here, the only thing you can do is call the start method 

myThread = new Thread(this,”My Thread”); 
• Used as part of the Runnable interface 
• “this” sets the context for the thread 
• “My Thread” sets the name 

myThread = new MyThreadClass(”My Thread”); 
• Used when inheriting 
• Context is set to the current object 

 
• Starting a thread 

myThread.start(); 
– Allocates the resource 
– Starts the thread running 
– Returns control to existing thread 



COP 4520 — Concepts of Parallel and Distributed Processing – 67 – © Charles E. Hughes — UCF Computer Science Dept. 

Ways to Delay 
 

• Yielding the processor 
myThread.sleep(1000); 

– Sleeps the number of milliseconds 
– Will not run even if processor becomes available 
– sleep(0) sees if anything else is ready to run 
– can also use yield( ) 

 
• Blocked 

– Waiting on I/O 
• System will schedule thread when the data is available 

– User defined 
• Most often waiting on a shared piece of code or data structure 

 
• Busy Wait 

while (okToProceed == false) { }; 
– Technically stays in runnable state 
– Program is constantly checking to see if a resource has become available 
– Not a good thing to do with one processor 
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Thread or Runnable? 
 

– Thread is a class 
– Java supports only single inheritance 
 

–  Runnable is interface 
– So it can be multiply inherited 
 

– So, use Runnable when you have to inherit from some other class 
– This is required for multithreading in applets 
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Synchronization 
 
• Mutual exclusion of threads. 
 

• Each synchronized method or statement is guarded by an object.  
 
• When entering a synchronized method or statement, the object will be locked until 

the block is finished.  
 

• When the object is locked by another thread, the current thread must wait. 
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Granularity 
 

 
• Synchronized method:   

 
class MyClass{  
    synchronized void aMethod(){  
        statements 
    }  
} 
 

• Synchronized block: 
 
synchronized(exp){  
    statements 
}  
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Threads and Applets 
 

• Applets commonly use threads 
 
• Rule of thumb, if you are going to do something that is going to take a while, 

spawn off a thread to do it. 
– Loading images or sound files 
– Playing sounds 
 

• Implement the Runnable interface to use threads in an applet 
 
• There is  a main thread, the Event Thread 

– This is the one that the browser talks to 
– It is the only one that will stop by default when you leave the page 
– You must stop all the others 
 

• If you do complex actions in the Event Thread, your applet becomes totally 
non-responsive. – DON’T DO IT!!!! 
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A “Racy” Sort 
 
import java.awt.*; 
import java.awt.event.*; 
import java.applet.*; 
import javax.swing.*; 
import java.util.*; 
 
public class EOSort extends JApplet implements Runnable { 
 

private static int N = 8; 
private static int MAX_DELAY = 500; // half second 
private static int MAX_VALUE = 50; // 
private Thread[ ] threads; 
private int[ ] values; 



COP 4520 — Concepts of Parallel and Distributed Processing – 73 – © Charles E. Hughes — UCF Computer Science Dept. 

Prepare Sort Values and Threads (Start/Stop) 
 

public void init() { 
 Random r = new Random(); 
 String parm = getParameter("N"); 
 if (parm != null) N = Integer.parseInt(parm); 
 values = new int[N]; 
 for (int i=0; i<N; i++)  
  values[i] = r.nextInt(MAX_VALUE) + 1; 
} 
 
public void start() { 
 threads = new Thread[N]; 
 for (int i=0; i<N; i++) { 
    threads[i] = new Thread(this, Integer.toString(i)); 
    threads[i].start(); 
 } 
} 
  
public void stop() { 
 for (int i=0; i<N; i++) threads[i] = null; 
} 
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Display State 
 

public void paint(Graphics g) { 
 Vector v = new Vector(N); 
 for (int i=0; i<N; i++) v.add(new Integer(values[i])); 
  g.clearRect(0, 0, getContentPane().getWidth(), 
 getContentPane().getHeight()); 
 g.drawString(v.toString(), 0, 30); 
} 
  
private void swap(int i, int j) { 
 int temp = values[i];  
 values[i] = values[j];  
 values[j] = temp; 
} 
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Run Each Thread 
 

public void run() { 
   while (threads[0] != null) { 
 try { 
    Thread.sleep( 
  (int)(MAX_DELAY*Math.random())); 
 } catch (InterruptedException e) {} 
 int me = Integer.parseInt(Thread.currentThread().getName()); 
 int left = Math.max(0,me-1); 
 int right = Math.min(N-1,me+1); 
 boolean change = false; 
 if (values[me] > values[right]) {swap(me, right);change=true;} 
 if (values[me] < values[left]) {swap(me, left);change = true;} 
 if (change) repaint(); 
   } 
} 

} 
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Thoughts About “Racy” Sort 
 

• Thought Exercise 
 

– Starting from the Java even/odd implementation, add delays (sleep) at 
various points to break the atomicity of my solution.  

 
– Discuss which placements of sleep cause semantic problems and which do 

not. Explain both as best you can.  
 

– Go back to EOSort. Design and re-implement it using critical section(s) – 
synchronized blocks. It's inherently unsafe right now!!  
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Reflexive Transitive Closure 
 
The Problem: 

Given a graph, G, determine for which pairs of nodes, (A,B), there is a path 
between A and B. 

 

A

B

F

E

G

C

D

 
Array representation – 1 is True; 0 is False 
 A B C D E F G 
A 1 0 1 1 0 0 1 
B 0 1 0 0 0 0 0 
C 0 0 1 0 1 1 0 
D 0 0 0 1 1 0 1 
E 0 1 0 0 1 0 0 
F 0 1 0 0 0 1 0 
G 0 1 0 0 1 0 1 
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Warshall’s Algorithm 
 
public void warshallsAlgorithm() { 
 //for each pivot try all pairs of nodes 
 for (int pivot = 0; pivot < N; pivot++) 
  for (int v = 0; v < N; v++) 
   for (int w = 0; w < N; w++)  
    // if (v != w) 
    connectedMatrix[v][w] = connectedMatrix[v][w] ||  
     (connectedMatrix[v][pivot] && connectedMatrix[pivot][w]); 
} 
 
Analysis easily shows that this is O(N3). 
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Parallelizing Warshall’s Algorithm 
 
Can partition so we change two inner loops to  
 
  co (int v = 0; v < N; v++) (int w = 0; w < N; w++)  
   connectedMatrix[v][w] = connectedMatrix[v][w] ||  
    (connectedMatrix[v][pivot] && connectedMatrix[pivot][w]); 
 
This then can be carried out in O(N) time with N2 processors. To do so, you would 
need a CREW PRAM style machine. The concurrent reads are needed to avoid 
contention. An alternative method, if we have just N processors is to run only the 
inner loop instances in parallel. This is a form of agglomeration. Here is the new 
algorithm. 
public void parallelWarshallsAlgorithm() { 
 //for each pivot try all pairs of nodes 
 for (int pivot = 0; pivot < N; pivot++) 
  for (int v = 0; v < N; v++) 
   co (int w = 0; w < N; w++)  
    connectedMatrix[v][w] = connectedMatrix[v][w] ||  
     (connectedMatrix[v][pivot] && connectedMatrix[pivot][w]); 
} 
 
This is O(N2). Again, we need a CREW PRAM.  
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Weary Traveler – Shortest Path 
The Problem: 

Given a graph (a dag), G, with weighted arcs, and two nodes, A and B, determine the minimum weight 
path from A to B. 
Greedy fails here: Get 3 + 6 + 6 = 15; but can get   5 + 3 + 5 = 13 

A

B

F

E

G

C

D

Source

Sink

6
7

5

7

7

3

7

11

614

5

3

 
Array representation 
 A B C D E F G 
A 0 ∞ 5 3 ∞ ∞ 14 
B ∞ 0 ∞ ∞ ∞ ∞ ∞ 
C ∞ ∞ 0 ∞ 3 7 ∞ 
D ∞ ∞ 11 0 7 ∞ 6 
E ∞ 5 ∞ ∞ 0 ∞ ∞ 
F ∞ 7 ∞ ∞ ∞ 0 ∞ 
G ∞ 6 ∞ ∞ 7 ∞ 0 
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Floyd’s All Shortest Paths Algorithm 
 
final int INFINITY = Integer.MAX_VALUE; // choose value not used in weights 
 
private boolean connected(int v, int w) { 
 return adjacencyMatrix[v][w] != INFINITY) 
} 
 
public void floydsAlgorithm() { 
 for (int pivot = 0; pivot < N; pivot++) 
  for (int v = 0; v < N; v++) 
   for (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
} 
Analysis again shows that this is O(N3). 
Parallelization follows as with Warshall’s. 
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Multi-Threaded Implementation 
 
 
Let’s consider the case where we have N threads, each holding a row of the 
adjacency matrix.  
 
Can the threads progress independently?  
 
If not, when must they synchronize? 
 
Will threads interfere with each other?  
 
If so, will the interference lead to incorrect results? 
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Barrier Synchronization in Java 
public class Barrier { 
  private int count; 
  // Barrier Constructors 
  // Default just coordinates one thread (rather meaningless) 
  public Barrier() { 
    this(1); 
  } 
  public Barrier (int count) { 
    setCount(count); 
  } 
  // Set count of number of threads to coordinate 
  public void setCount(int n) { 
    count = n; 
  } 
  // Block at the barrier until all workers have joined 
  // Critical Region -- Must be synchronized 
  synchronized public void join() { 
    count--; 
    while (count > 0) 
      try { 
        wait(); 
      } catch (InterruptedException e) {System.out.println(e);} 
    notifyAll(); 
  } 
} 
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More on Parallelizing Floyd’s All Shortest Paths Algorithm 
 
final int INFINITY = Integer.MAX_VALUE; // choose value not used in weights 
 
private boolean connected(int v, int w) { 
 return adjacencyMatrix[v][w] != INFINITY) 
} 
 
public void floydsAlgorithm() { 
 [co | for] (int pivot = 0; pivot < N; pivot++) 
  [co | for] (int v = 0; v < N; v++) 
   [co | for] (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
}
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Inspecting Case # 1 
 
 for (int pivot = 0; pivot < N; pivot++) 
  for (int v = 0; v < N; v++) 
   co (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w)) 
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
 
This is best run with N processors, each being assigned an element from row w on 
which it works. We will need to do N2 barrier synchronizations, one per pivot/row 
pair. There is no read contention for the [v][w] elements (except for the cases where 
v or w equals pivot and that can be avoided with a judicious if clause), but there is 
contention for the pivot elements. Fortunately, there is no write contention, which is 
helpful if we are depending on cache. There appears to be a problem of reading an 
area that is changing when either v or w is the pivot; however such an element 
would never get an improvement from using itself as the pivot. 
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Inspecting Case # 2 
 
 for (int pivot = 0; pivot < N; pivot++) 
  co (int v = 0; v < N; v++) 
   for (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
 
This is best run with N processors, each being assigned a row on which it works. We 
will need to do N barrier synchronizations, one per pivot value. The rest of the 
discussion matches that of case#1. 
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Inspecting Case # 3 
 
 for (int pivot = 0; pivot < N; pivot++) 
  co (int v = 0; v < N; v++) 
   co (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
 
This is best run with N2 processors, each being assigned a single element from the 
adjacency matrix. This will take N barrier synchronizations, one per pivot. There is 
lots of read contention. 
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Inspecting Case # 4 
 
 co (int pivot = 0; pivot < N; pivot++) 
  for (int v = 0; v < N; v++) 
   for (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
 
Well, we can use N processors, but this is not valid since we do multiple pivot points 
in parallel. It can be made so by encompassing the nested loop with a test to see if 
any changes were made on the most recent iteration. You keep iterating until 
convergence. 
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Inspecting Case # 5 
 
 co (int pivot = 0; pivot < N; pivot++) 
  for (int v = 0; v < N; v++) 
   co (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
 
Well, we can use N2 processors, but this again is not valid since we do multiple pivot 
points in parallel. 
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Inspecting Case # 6 
 
 co (int pivot = 0; pivot < N; pivot++) 
  co (int v = 0; v < N; v++) 
   for (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
 
Well, we can use N2 processors, but this again is not valid since we do multiple pivot 
points in parallel. 
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Inspecting Case # 7 
 
 co (int pivot = 0; pivot < N; pivot++) 
  co (int v = 0; v < N; v++) 
   co (int w = 0; w < N; w++)  
    if (connected(v,pivot) && connected (pivot,w))  
     adjacencyMatrix[v][w] =  
      Math.min( 
       adjacencyMatrix[v][w],  
       adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w] ); 
This can use N3 processors, but it fails to solve the problem. This is still interesting, 
since it may be that convergence is quick. Here is the changed program. 
boolean changed = true; 
while (changed) do { 
 changed = false; 
 co (int pivot,v,w in [<0,..,N-1>,<0,..,N-1>,<0,..,N-1>])  
  if (connected(v,pivot) && connected (pivot,w))  { 
   int trial = adjacencyMatrix[v][pivot] + adjacencyMatrix[pivot][w]; 
   if  (trial < adjacencyMatrix[v][w]) { 
    changed = true; adjacencyMatrix[v][w] = trial; 
   } 
  } 
 } 



COP 4520 — Concepts of Parallel and Distributed Processing – 92 – © Charles E. Hughes — UCF Computer Science Dept. 

Analyzing the Parallel Max 
 
 

 Parallel Algorithm. 
 
  For k = 1 to lg n do 
   For i = 1 to n/2k pardo 
    A [i]  :=  max(A[2*i], A[2*i+1]); 
  Largest :  = A[1]. 
 
 p = no. of processors 
 
 Time  
  T1 = n - 1 
  Tn/2 = log n 
  Cost = p × T 
  Cost1 = n - 1 ≈ n = Ø (n) 
  Costn/2 = n/2 lg n = Ø (n lg n) 
 
 Speed up. 
  Sp = T1/Tp = (n–1)/lg n = Ø (1 / lg n) 
 
 Not efficient. 
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Being Efficient 
 
 

Can we do better? 
 
No. of elements = n 
# of processors = p 
# of elements assigned to each processor = n/p 
  So, 2 ≤ n/p ≤ n 
Since # of elements in each processor is n/p  
  
 Tseq = (n/p–1) [(m - 1) comparisons for max. of m elements] 
 
Once all the p processors have found out their respective maximums, the parallel 
computation takes over.  With p processes in action, the time to find the maximum takes 
lg p time. 
 
Tpar = lg p 
Ttol = Tpar + Tseq 
   = lg p + n/p – 1 
with p = 1.    Ttol = lg 1 + n/1 - 1 = n - 1 
     p = n/2  Ttol = lg  n/2+n/(n/2) - 1 = lg n/2 + 1 = lg n – 1 + 1 = lg n 
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The Right Number of Processors 
 

What is a good value of p? It is one that brings down the cost to match that of the 
sequential algorithm and still gains on computational time complexity. 
 
   Let p = n/lg n 
 
# of elements in each processor = n/(n/lg n) = lg n 
 
 Tseq = lg n - 1 
 Tpar = lg p  = lg (n/lg n) = lg n - lg lg n (negligible) 
 

Ttol = lg n - 1 + lg n - lglg n 

   ≈ 2 lg n - 1 = Ø ( lg n) 

Cost = Ø (lg n) * n/lg n = Ø (n) 
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Example of Brent's Scheduling 
Example  n = 256  lg n = 8  p = n/lg n = 32 

Each processor gets 8 elements, so 

   Tseq = 8 - 1 = 7 

p = 32, so  

   Tpar = lg 32 = 5 

   Ttol = 7 + 5 = 12.   

Cost = 32 * 12 = 384 

Now if p = n/2 = 256/2  = 128, 

Each processor gets 2 elements, so 

  Tseq = 1 and  

  Tpar = log 128 = 7 

  Ttol = 7 + 1 = 8 

  Cost = 128 *  8 = 1024 

Using p = n/lg n processors for sequencing is called Brent's scheduling. 
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Parallel Binary Tree Reduction Algorithm 
 

TP(N) = O(N/P + lg P) 
CP(N) = O(N + P lg P) 
WP(N) = O(N + P) = O(N), provided P is O(N). 
ECP(N) = O(1/(1 + P lg P / N)) 
EWP(N) = O(1/(1 + P/N) = O(1), provided P is O(N). 
 
TN(N) = O(lg N) 
CN(N) = O(N lg N) 
WN(N) = O(N). 
ECN(N) = O(1/( lg N)) 
EWN(N) = O(1). 
 
TN/lgN(N) = O(lg N) 
CN/lgN(N) = O(N) 
WN/lgN(N) = O(N). 
ECN/lgN(N) = O(1) 
EWN/lgN(N) = O(1). 
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Parallel CRCW Max Algorithm 
 

Super Fast CRCW Algorithm:   

TN2(N) = O(1) 

CN2(N) = O(N2) 

WN2(N) = O(N2). 

ECN2(N) = O(1/N) 

EWN2(N) = O(1/N). 
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How Do We Make Access Fair -- Tie Breaker 
 
Tie Breaker 

boolean in1=false, in2=false; int last=1; //  
CS1: last=1; in1=true; <await(!in2 or last==2);> S; in1=false;  
CS2: last=2; in2=true; <await(!in1 or last==1);> S; in2=false;  
 
boolean in1=false, in2=false; int last=1; //  
CS1: last=1; in1=true; while (in2 and last==1) delay; S; in1=false;  
CS2: last=2; in2=true; while (in1 and last==2) delay; S; in2=false;  

 
This does not scale very well to n participants. 
 
Need to break tie with all n-1 of them before proceeding. 
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How Do We Make Access Fair -- Ticket 
 
Ticket Algorithm 

int number=1, next=1, turn[1:n] = ([n] 0); 
process CS[I=1 to n] 

… 
<turn[i] = number; number++;> 
<await (turn[i] == next);> 
S; 
<next++;> 
… 
 

The exit protocol can be non-atomic since only one process can execute it at a time. 
The entry protocol is more problematic. 
 
Many machines have an atomic add (Fetch and Add / FA) that returns the old 
value. 

<turn[i] = number; number++;> 
<await (turn[i] == next);> 

becomes 
turn[i] = FA(number, 1) 
while (turn[i] != next) delay(); 
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Barrier Synchronization 
Shared Counter 

<count++;> 
<await(count==n);> 
or 
FA(count, 1); 
while (count != n) delay(small); 

Flags and Coordinators 
int arrive[1:n]  ([n] 0), continue[1:n] = ([n] 0); 
process Worker[i=1 to n] { 

do task i; 
arrive[i] = 1; 
<await (continue[i] == 1);> 
continue[i] = 0; 

} 
process Coordinator { 

while (true) { 
for [int i=1 to n] { 

<await (arrive[i] == 1);> 
arrive[i] = 0; 

} 
for [int i=1 to n] continue[i] = 1; 

}  
} 
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Combining Tree Barrier Synchronization 
 
Flags and coordinators has two drawbacks 

Extra process to coordinate (a referee of sorts) 
Coordinator’s effort is proportional to number of workers 

 
Overcome by making each worker serve as a coordinator 

Organize workers into a tree 
some are leaves; some interior; one is a root 

Plus: propagation is lg N (up and down tree) 
Minus: this destroys symmetry of workers 
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Symmetric Butterfly Barrier Synchronization 
 
Can use Butterfly structure (a dynamic version of Hypercube) 
 

0 • ----------------------------------- • ----------------------------------- • ------------------------------------• 0 

1 • ----------------------------------- • ----------------------------------- • ------------------------------------•1 

2 • ----------------------------------- • ----------------------------------- • ------------------------------------•2 

3 • ----------------------------------- • ----------------------------------- • ------------------------------------•3 

4 • ----------------------------------- • ----------------------------------- • ------------------------------------•4 

5 • ----------------------------------- • ----------------------------------- • ------------------------------------•5 

6 • ----------------------------------- • ----------------------------------- • ------------------------------------•6 

7 • ----------------------------------- • ----------------------------------- • ------------------------------------•7 
 
In our problem we just think of the lines as communication between nodes, starting 
from right, moving left.  In general this provides a lg N scheme for any processor to 
communicate with any other, just like a hypercube. Implementation in hardware is 
through switches that can be pass through or cross over. 
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Symmetric Dissemination Barrier Synchronization 
 
The butterfly technique just described requires 2k processors, for some k. 
 
Can set up a pattern that communicates to node+1, node+2, node+4, …, treating the 
sequence as a ring. This does not depend on a power of two. 
 
Example n=5:  

{ {0,1}, {1,2}, {2,3}, {3,4}, {4,0} } 
{ {0,2}, {1,3}, {2,4}, {3,5}, {4,1} } 
{ {0,4}, {1,0}, {2,1}, {3,2}, {4,3} } 

 
Process sets the arrival flag of right neighbor and waits for and then clears its own 
arrival flag. Time is ⎡lg N⎤ (ceiling rounds up). 
 
Both butterfly and dissemination barrier can lead to a race.  
 
Consider butterfly. Assume process 0 arrives at its first stage and sets its flag 
arrive[0]. Suppose process 1 is slow. Suppose 2 and 3 arrive at barrier and set each 
other's flags, clear them and proceed to the next stage. In stage 2, process 2 wants to 
synchronize with process 0, whose arrive flag is set. So process 2 clears arrive[0] and 
proceeds to stage 3. Process 1 never knows that arrive[0] was set for it. Some 
processes will exit too soon; others will never exit. Solution is to use a non-boolean 
for arrive's value. This is count of number of stages at which task has arrived. 
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Data Parallel  
 
Data Parallel on SIMD machine 

MasPar Examples 
Don't need barrier synchronization if on SIMD machine 

 
Parallel Prefix in lg N time (N lg N cost, N work) 
 

plural int s, a; 
s ← a; 
for j ← 0 to ⎡log n⎤  1 do 

if ( myProcNumber >= 2^j  ) 
  s ← s + proc[myProcNumber – 2^j  ].s; 

 
Parallel operations on linked lists 

Computing length of list headed by each element in lg N time 
 
plural int length = 1;  
plural int partner = next; // linked list of processor numbers 
while (partner != null) { 

length = length+ proc[partner].length; 
partner = proc[partner].partner; 

} 
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Bag of Tasks  
 
 
Bag of Tasks parallel strategy 

Each thread involved just grabs a task from the bag and executes it 
Can also have separate bags for each thread 

Tasks in a single bag are run non-concurrently 
 

Use in Java Event thread 
 

SwingUtilities.invokeLater (new Runnable() { // asynchronous 
public void run() { … } } 

// Cannot do synchronous call from Event thread -- think about it 
SwingUtilities.invokeAndWait(new Runnable() { // synchronous 

public void run() { … } } 
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Communication and Coordination 
 
SIMD Machine  

Coordinates via a single master node 
Communicates over a high speed, low latency dedicated network 

 
SIMD Model 

Limits you to data parallelism 
Encourages/Forces you into regular communication patterns 

 
MIMD 

Requires some means of coordination (synchronization) 
Allows you flexibility in your communication paradigms 

 
Distributed Systems 

Involve the greatest challenges for coordination 
Provide the most flexibility for communication paradigms 
Place a burden due to variable speed, high latency shared network 
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Maspar X-Net Adds 
/*********************************************************************** 
This program illustrates the use of DPU timing functions. 
************************************************************************/ 
#include <mpl.h> 
#include <stdio.h> 
extern void dpuTimerStart(); 
extern double dpuTimerElapsed(); 
 
int SlowAvg(src) 
plural int src; 
{ 
    int i; 
    for (i=0; i<100; i++) { 
        src += xnetN[1].src + xnetS[1].src + xnetE[1].src + xnetW[1].src + 
               xnetNE[1].src +xnetNW[1].src +xnetSE[1].src +xnetSW[1].src; 
        src = src/9; 
    } 
} 
int FasterAvg(src) 
plural int src; 
{   int i; 
    for (i=0; i<100; i++) { 
        src += xnetN[1].src + xnetS[1].src; 
        src += xnetE[1].src + xnetW[1].src; 
        src = src/9; 
    } 
} 
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int EvenFasterAvg(src) 
plural int src; 
{ 
    register int i; 
    register plural int tmp; 
    for (i=0; i<100; i++) { 
        tmp = src; 
        tmp += xnetN[1].tmp + xnetS[1].tmp;  
        tmp += xnetE[1].tmp + xnetW[1].tmp; 
        src = tmp/9; 
    } 
} 
main() 
{ 
    plural int A; 
    int sum,i; 
    double time; 
    /* initialize the array A */ 
    A = iproc; 
    dpuTimerStart(); 
    SlowAvg(A); 
    A = iproc; 
    dpuTimerStart(); 
    FasterAvg(A); 
    A = iproc; 
    dpuTimerStart(); 
    EvenFasterAvg(A); 
} 
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Semaphores 
 
Abstraction with two services P (wait) and V (signal) 

sem s; 
P(s): <await(s>0) s--;> 
V(s): <s++;> 

 
Internal state is a non-negative int value -- counting or general semaphore; or 

a binary value (0 or 1) -- binary semaphore 
fairness can be assured with proper implementation of await. 
 

Critical section problem and semaphores 
sem mutex = 1; 
process CS[i=1 to n] { 

... 
mutex.wait(); critical section; mutex.signal(); 
... 

} 
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Semaphores and Java synchronized 
 
Each object can have a field called mutex (mutual exclusion) 
sem mutex = 1; 
 
synchronized(Object obj): 

obj.mutex.p(); // used p since wait means something else in Java 
// body of synchronized code 
obj.mutex.v(); 

 
This won't quite work since Java's locks are reentrant.  
We should not do p() or v() if we own lock. 
 
Java's wait()/notify() might be implemented by adding another field 
sem waitingtask = 0; 
 
and implementing the services by code like 
 
wait(): 

obj.mutex.v();obj.waitingTask.p(); obj.mutex.p(); 
notify(): 

obj.waitingTask.v(); 
Note: wait() and notify() are actually done by native code in Java. 
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Semaphores and Barriers -- one of many solutions 
 
sem done=0, barrier=0; 
 
process workers[i=1 to n] { 

while (true) { 
// do task i 
done.signal(); 
barrier.wait(); 

} 
} 
 
process coordinator { 

while (true) { 
// wait for all n tasks 
for [i=1 to n] done.wait(); 
// let all n tasks through barrier 
for [i=1 to n] barrier.signal(); 

} 
} 
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Semaphores and Producer/Consumer Problem 
 
typeT buf[n]; 
int front=0, rear=0; 
sem empty=n, full=0, mutexD=1, mutexF=1; 
 
process producer[i=1 to nProducers] { 

while (true) { 
// produce data to deposit in buffer 
empty.wait(); mutexD.wait(); 
buf[rear] = data; rear = (rear+1) % n; 
mutexD.signal(); full.signal(); 

} 
} 
 
process consumer[i=1 to nConsumers] { 

while (true) { 
full.wait(); mutexF.wait(); 
result = buf[front]; front = (front+1) % n; 
mutexF.signal(); empty.signal(); 
// consume the result just fetched 

} 
} 
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Dining Philosophers 
 

In our variant, there will be 5 philosophers sitting at a table with dishes and 5 forks.  
Each philosopher performs the sequence 

  loop 
   think; 
   /* somehow get forks */ 
   eat; 
  end loop; 

To eat, a philosopher must have two forks, one from each side of the plate.  A 
solution must try to avoid deadlock and starvation, yet retain fairness  

Phil

Phyllis
Filly

Frege

Goofy  
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Semaphores and Dining Philosopher Problem 
 
sem fork[n] = ([n] 1); 
 
// a solution that can lead to starvation 
process philosopher[i=0 to n-1] { 

while (true) { 
// think and get hungry 
fork[i].wait(); fork[(i+1)%n].wait(); 
eat(); 
fork[i].signal(); fork[(i+1)%n].signal(); 

} 
} 
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Semaphores and Dining Philosopher Problem (2) 
 
sem fork[n] = ([n] 1); 
 
process philosopher[i=0 to n-1 by 2] { // even numbered 

while (true) { 
// think and get hungry 
fork[i].wait(); fork[(i+1)%n].wait(); 
eat(); 
fork[(i+1)%n].signal(); fork[i].signal(); 

} 
} 
 
 
process philosopher[i=1 to n-1 by 2] { // odd numbered 

while (true) { 
// think and get hungry 
fork[(i+1)%n].wait(); fork[i].wait(); 
eat(); 
fork[i].signal(); fork[(i+1)%n].signal(); 

} 
} 
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Diners Club – Probabilistic Attack 
 

sem fork[n] = ([n] 1); 
 
process philosopher[i=0 to n-1] {  

while (true) { 
// think and get hungry 
boolean success = false; 
while (!success) { 

int first = (i + randomChoice(0, 1))%n; 
fork[first].wait();  
int second = (first==i) ? (i+1)%n : i; 
success = fork[second].tryToGet(); // check and decrement if can 
if (!success) fork[first].signal(); 

} 
eat(); 
fork[second].signal();fork[first].signal(); 

} 
} 

 
It can then be proved that the probability of livelock is 0 in above. 
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Semaphores and Readers/Writers Problem – too constrained 
 
sem rw = 1; 
 
process reader[i=1 to nReaders] { 

while (true) { 
// want to read 
P(rw); 

// read database 
V(rw); 

} 
} 
 
process writer[i=1 to nWriters] { 

while (true) { 
// want to write 
P(rw); 

// write database 
V(rw); 

} 
} 
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Semaphores and Readers/Writers Problem – readers rule 
int nr = 0; // number of active readers 
sem rw = 1; // semaphore for DB 
sem mutexR = 1; // semaphore for nr 
process reader[i=1 to nReaders] { 

while (true) { 
// want to read 
P(mutexR); 

if (++nr==1) P(rw) // first reader through grabs DB lock 
V(mutexR); 

// read database 
P(mutexR); 

if (--nr == 0) V(rw); // last one out locks the door 
V(mutexR); 

} 
} 
process writer[i=1 to nWriters] { 

while (true) { 
// want to write 
P(rw); 

// write database 
V(rw); 

} 
} 
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Semaphores and Readers/Writers – pass baton (coarse grain) 
// Invariant: (nr == 0 || nw == 0) && nw <= 1 
int nr = 0, nw = 0; // number of active readers/writers 
process reader[i=1 to nReaders] { 

while (true) { 
// want to read 
<await(nw == 0) nr++;> 

// read database 
<nr--;> 

} 
} 
process writer[i=1 to nWriters] { 

while (true) { 
// want to write 
<await(nr == 0 && nw == 0) nw++;> 

// write database 
nw--; 

} 
} 
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Semaphores and Readers/Writers– pass baton (fine grain)#1 
// Invariant: (nr == 0 || nw == 0) && nw <= 1 
int nr = 0, nw = 0; // number of active readers/writers 
sem  e = 1, // entry to critical region 

r = 0, w = 0; // used to delay readers/writers 
int dr = 0, dw = 0; // number of delayed readers/writers 
process reader[i=1 to nReaders] { 

while (true) { 
// want to read 
// <await(nw == 0) nr++;> 
P(e);  
if ( nw > 0 ) { dr++; V(e); P(r); }  
 // or if ( nw > 0 || dw > 0 ) { dr++; V(e); P(r); } // update quicker 
nr++; 
if ( dr > 0 ) {dr--; V(r);} 
else V(e) 

// read database 
// <nr--;> 
P(e); 
nr--; 
if ( nr==0 && dw > 0 ) { dw--; V(w); } 
else V(e); 

} 
} 
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Semaphores and Readers/Writers– pass baton (fine grain)#2 
process writer[i=1 to nWriters] { 

while (true) { 
// want to write 
// <await(nr == 0 && nw == 0) nw++;> 
P(e);  
if ( nr > 0 || nw > 0 ) { dw++; v(e); P(w); } 
nw++; 
V(e); 

// write database 
P(e); 
// <nw--;> 
if ( dr > 0 ) { dr--; V(r); } 
else if ( dw > 0 ) { dw--; V(w); } 
else V(e); 
// or if ( dw > 0 ) { dw--; V(w); } 
// else if ( dr > 0 ) { dr--; V(r); } 
// else V(e); 

} 
} 
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Simple Monitor Overview 

 
Monitor is by its very nature exclusive – it is synchronized for all 
 
Threads entering a monitor must check their conditions to be sure they can 
productively move forward in the monitor. 
 
cond is a queue at which threads wait. 
 

empty(cv) – true if cv is empty 
wait(cv) – thread waits at rear of cv 
signal(cv) – awakens thread at head of cv (if non-empty) 

can do as SW signal and wait (signaled process gets preference) 
or as SC signal and continue (more common, where signaler goes on) 

monitor Semaphore { 
int s = 0; cond sQueue; 
procedure P() { while (s == 0) wait(sQueue); s--; } // use if for SW 
procedure V() { s++; signal(sQueue); } 

} 



COP 4520 — Concepts of Parallel and Distributed Processing – 123 – © Charles E. Hughes — UCF Computer Science Dept. 

Monitors and Bounded Buffer 

monitor BoundedBuffer { 
typeT buf[n]; 
int front=0, rear=0, count=0; 
cond notFull, notEmpty; 
procedure deposit(typeT data) { 

while (count == n) wait(notFull); 
buf[rear] = data;  
rear = (rear+1) % n;  
count++; 
signal(notEmpty); 

} 
procedure fetch( typeT &result) { 

while (count == 0) wait(notEmpty); 
result = buf[front];  
front = (front+1) % n;  
count--; 
signal(notFull); 

} 
} 
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Monitors and Readers/Writers 

monitor ReaderWriter { 
int nr=0, nw=0;  
cond okRead, okWrite; 
procedure requestRead() { 

while (nw > 0) wait(okRead); 
nr++; 

} 
procedure releaseRead() { 

if (--nr == 0) signal(okWrite); 
} 
procedure requestWrite() { 

while (nr >0 || nw > 0) wait(okWrite); 
nw++; 

} 
procedure releaseWrite() { 
 nw--;  

signal(okWrite); signal_all(okRead); 
} 

} 
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Monitors – Queue Management 
 
All our prior monitors assume FIFO queue management. 
 
We now consider cases where priority queues are desirable. 
 
Extend services on monitor to include 

wait(cv, priority) – thread waits in cv based on priority 
minrank(cv) – return  priority of top thread in cv 
 

Note: signal acts appropriately on a min queue, releasing highest priority (lowest 
ranked) thread. 
 
Can use min heap to avoid O(N) inserts or perhaps deletes. Compare: 
 
Unsorted – wait O(1); signal O(N); signal_all O(N); minrank O(N) 
Sorted – wait O(N); signal O(1); signal_all O(N); minrank O(1) 
Heap – wait O(lg N); signal O(lg N); signal_all O(N); minrank O(1) 
Since #wait >= #signal, heap is best 
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Monitors and Shortest Job First Scheduling 

monitor ShortestJobFirst { 
bool free = true;  
cond turn; 
procedure request (int time) { 

if (free)  
free = false; 

else  
wait(turn, time); 

} 
procedure release () { 

if  (empty(turn)) 
free = true; 

else 
signal(turn); 

} 
} 
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Monitors and Sleep Timer (Covering Condition) 

monitor Timer { 
int tod = 0;  
cond check; 
procedure sleep (int interval) { 

int wakeup = tod + interval; 
while (wakeup > tod) wait(check); 

} 
procedure tick () { 

tod++; 
signal_all(check); // everyone must check covering condition 

} 
} 
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Monitors and Sleep Timer (Priority Wait) 

monitor Timer { 
int tod = 0;  
cond check; 
procedure sleep (int interval) { 

int wakeup = tod + interval; 
if (wakeup > tod) wait(check, wakeup); 

} 
procedure tick () { 

tod++; 
while (!empty(check) && minrank(check) <= tod) 

signal (check); // if awakened, condition is met 
} 

} 
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Monitors and Sleeping Barber (Rendezvous Approach) 

monitor BarberShop { 
bool barberReady = false, customerWaiting = false, doorOpened = false;  
cond barberAvail, chairOccupied, doorOpen, customerLeft; 
procedure getHaircut() { 

while (!barberReady) wait(barberAvail); barberReady = false; 
customerWaiting = true; signal(chairOccupied); 
while (!doorOpened) wait(doorOpen); doorOpened = false; 
signal(customerLeft); 

} 
procedure getNextCustomer() { 

barberReady = true; signal(barberAvail); 
while (!customerWaiting) wait(chairOccupied); customerWaiting = false; 

} 
procedure finishedHaircut { 

doorOpened = true; signal(doorOpen); 
while (doorOpened) wait(customerLeft); 

} 
} 
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Disk Scheduling Algorithms 
 
SST – Shortest Seek Time First 
 Very unfair 
 What is queue management strategy? 
 
SCAN – Elevator Algorithm (also called LOOK) 
 Fair but can be have large variances 
 What does queue data structure look like for this? 
 
CSCAN – Like elevator but takes no one down (also called CLOOK) 
 Fair and does not have large variances 
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Scan Disk Scheduling – Separate Scheduler Monitor 

monitor DiskScheduler { // CSCAN 
int position = -1, c = 0, n = 1;  
cond scan[2]; // queues for each direction 
procedure request(int cyl) { 

if (position == -1) position =cyl; 
else if (cyl > position) wait(scan[c], cyl); 
else wait(scan[n], cyl); 

} 
procedure release() { 

int temp; 
if (!empty(scan[c])  position – minrank(scan[c]); 
else if (!empty(scan[n]) {  
 temp = c; c = n; n = temp; position = minrank(scan[c]); 
}  
else position = -1; 
signal(scan[c]); 

} 
} 
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Monitors and One-Way Bridges -- !!non-exclusion!! 

monitor Bridge { 

cond northbound, southbound; // conds are waiting stations 

int northOnBridge, southOnBridge; 

procedure enterSouthbound( ) { 

if (northOnBridge>0) wait(southbound);  

southOnBridge++; 

} 

procedure leaveSouthbound( ) { 

southOnBridge--; 

if (southOnBridge==0) signal_all(northbound); 

} 

// + northbound versions 

// note: the bridge crossing is not in monitor 
} 
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Monitors and One-Way Bridges -- !!impolite!! 

monitor Bridge { 

cond northbound, southbound; 

int northOnBridge, southOnBridge; 

procedure enterSouthbound( ) { 

while (northOnBridge>0) wait(southbound);  

southOnBridge++; 

} 

procedure leaveSouthbound( ) { 

southOnBridge--; 

if (southOnBridge==0) signal_all(northbound); 

} 

// + northbound versions 

// note: the bridge crossing is not in monitor 
} 
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Monitors and One-Way Bridges – Oops accident again!! 

monitor Bridge { 

cond northbound, southbound; 

int northOnBridge, southOnBridge; 

procedure enterSouthbound( ) { 

if ((northOnBridge>0) || !empty(northbound)) wait(southbound);  

southOnBridge++; 

} 

procedure leaveSouthbound( ) { 

southOnBridge--; 

if (southOnBridge==0) signal_all(northbound); 

} 

// + northbound versions 

// note: the bridge crossing is not in monitor 
} 
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Monitors and One-Way Bridges -- !!too polite -- deadlock!! 

monitor Bridge { 

cond northbound, southbound; 

int northOnBridge, southOnBridge; 

procedure enterSouthbound( ) { 

while ((northOnBridge>0) || !empty(northbound)) wait(southbound);  

southOnBridge++; 

} 

procedure leaveSouthbound( ) { 

southOnBridge--; 

if (southOnBridge==0) signal_all(northbound); 

} 

// + northbound versions 

// note: the bridge crossing is not in monitor 
} 
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Monitors and One-Way Bridges -- ??just right?? 

monitor Bridge { 
cond northbound, southbound; 
int northOnBridge, southOnBridge; 
procedure enterSouthbound( ) { 

while ((northOnBridge>0) ||  
  ((southOnBridge>0) && !empty(northbound))) wait(southbound);  
southOnBridge++; 

} 
procedure leaveSouthbound( ) { 

southOnBridge--; 
if (southOnBridge==0) signal_all(northbound); 

} 
// + northbound versions 
// note: the bridge crossing is not in monitor 

}
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Monitors and One-Way Bridges -- ??better?? 

monitor Bridge { 
cond northbound, southbound; 
int northOnBridge, southOnBridge; 
procedure enterSouthbound( ) { 

if ((northOnBridge>0) || !empty(northbound)) wait(southbound);  
while (northOnBridge>0) wait(southbound);  
southOnBridge++; 

} 
procedure leaveSouthbound( ) { 

southOnBridge--; 
if (southOnBridge==0) signal_all(northbound); 

} 
// + northbound versions 
// note: the bridge crossing is not in monitor 

} 



COP 4520 — Concepts of Parallel and Distributed Processing – 138 – © Charles E. Hughes — UCF Computer Science Dept. 

Java Support for Monitors 

o Synchronize : specifies critical section using an object as lock  
� can do at granularity of method  
� can do at granularity of a block  

o Java synchronized, wait/notify/notify_all  
o Locks are reentrant  
o Locks can be temporarily given up : wait and notify  
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Paths as a Declaration of Concurrency 

The granularity is at a method level.  We say which methods can execute in parallel, 
and which are mutually exclusive. 

Path expressions:  

m – where m is a method is a path expression. 

Let e1 and e2 be path expressions, then 
e1, e2 e1 and e2 can run in parallel 
{ e1 } 0 or more of e1 can run in parallel 
e1 ; e2 an instance of e1 must precede each e2  
e1 + e2 e1 and e2 may not run in parallel 
n: (e1) up to n versions of e1 can run in parallel 

Consider 
path (start_read; do_read) end 
path 1:( { do_read } + do_write ) end 
path 1:( start_read + { start_write ; do_write } ) end 

This gives exclusive write and non-exclusive read.  Moreover, every do_read must 
be preceded by a start_read, and every do_write must be preceded by a start_write. 
Also, once write gets going, reads can't even start. 
Note: plus above can be replaced by comma, since 1:( … ) controls concurrency. 
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Greedy – Basics 
 

Want to Max or Min some objective function.  Solution must satisfy some feasibility 
constraint. 

Any solution satisfying constraints is feasible. 

A feasible solution that maxes or mins the objective is optimal. 

Greedy solutions are often suboptimal, but always feasible. 

For example, our First Fit never overfills a trunk, so it always return a feasible 
solution.  Its solutions are, however, not guaranteed to be optimal. 

General Form of Greedy Algorithm: 

solution := {}; 

FOR i:=1 to NumberOfChoices DO 
 X := Select (A);  (* where Select is simple *) 
 IF Feasible (Solution ∪ X) THEN 
  Solution := Solution ∪ X 
RETURN Solution 
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Spanning Tree Problem 
 

Assume that G = (V, E), where G is an undirected graph, V is the set of vertices 
(nodes), and E is the set of edges. 

A spanning tree of G is a subgraph which is a tree that  encompasses all nodes in the 
original graph.  Such a tree will commonly include just a subset of the original 
edges.  Here, by tree, we mean a graph with no simple cycles.  We ignore the normal 
designation of a root and we do not order nodes. 

If G is a single connected component, then there is always a spanning tree. 

Adding weights to edges gives us the minimum spanning tree problem, where we 
wish to span with edges whose sum is minimum among all spanning trees. 
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Spanning Trees are Everywhere 
Consider four nodes, fully connected as below,  

 
 The spanning trees are: 
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Min Spanning Tree–Prim's Algorithm 
 

Weights could be distances, costs, signal degradation, … 

Feasible – There are no simple cycles at every stage. 

Greedy – We grab the closest node to one of the ones that has already been included. 

There are lots of ways to implement Prim’s algorithm. 

We will study an O(N2) way.   

Other implementations are O(MlgN), where M = max (|E|, N) 
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Min Spanning Tree–Prim's Algorithm 
 

program PrimMinSpan; 
var N, j, k : Integer; 
  Adjacency : AdjacencyMatrix; 
  V : set of 1..MaxNodes; 
  Dist, Source: Array [1..MaxNodes]; 
begin 

(* Assume N nodes, labeled 1 to N *) 
GetGraph(N, Adjacency); 
Dist := Adjacency[1]; 
V := [2..N];  
Source[1] := 0;  { Root has no source } 
for j in V do 
 Source[j] := 1; { Distances are from root } 
while V <> [ ] do begin 
 k := index in V with smallest value in Dist; 
 V := V – [k]; 
 for j in V do 
  if Dist[j] > Adjacency[k,j] then begin 
   Dist[j] := Adjacency[k,j]; Source[j] := k 
  end; 
end; 

end. 
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Applying Prim’s Algorithm 
1 2

3

4

5

6

10

50

15

35

40
45

25
55

20

30

 

Node Dist/Source Cost Tree 
1 [0/0,10/1,∞/1,30/1,45/1,∞/1]  
2 [0/0,10/1,50/2,30/1,40/2,25/2] 10 1 2  

6 [0/0,10/1,15/6,20/6,40/2,25/2] 25 

1 2

6  

3 [0/0,10/1,15/6,20/6,35/3,25/2] 15 

1 2

6 3  

4 [0/0,10/1,15/6,20/6,35/3,25/2] 20 

1 2

6 34  

5 [0/0,10/1,15/6,20/6,35/3,25/2] 35 

1 2

6 34 5
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Block-Striped Partitioning 
 

Using p processors and N nodes. 
Partition N2 Adjacency matrix into p groups of N/p columns. 
Partition Dist and Source into p groups of N/p elements. 
Processor i, 1≤i≤p, must manage a block of Adjacency columns, and a block of Dist and 
Source elements, ranging from the (i-1)*(N/p)+1-th to the iN/p-th. 
Need to initialize just N/p elements on each processor. 
Min on each processor needs to be computed, and then a global min must be found 
(accumulation) and the index of this node reported (one to all broadcast). 
After receiving index of min, each processor must update its share of Dist and Source 
lists. 
This process continues until no more nodes are left to be selected. 
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Analyzing Parallel Prim's Algorithm 
 

Initialization time is just N/p. 
The time to find a Min starts with N/p time for local mins, is followed by a single node 
accumulation, and then by a one-all broadcast of the selected node. 
The time to update the Dist and Source lists is N/p. 
The loop runs N times, and there is a TRUE DEPENDENCY between successive 
iterations of the loop. 
The computation time is O(N2/p). 
The communication time is dependent on the architecture.  On a Hypercube, 
accumulation and one-all broadcast are both O(lg p).  On a mesh, these times are O(√p). 
Tp (Hypercube) = O(N2/p) + O(N lg p). 

Tp (Mesh) = O(N2/p) + O(N √p). 
E (Hypercube) = 1/(1 + p lg p / N) 
E (Mesh) = 1/(1 + p1.5 / N) 
E (Hypercube) = O(1) if p = O(N/ lg N) 
E (Mesh) = O(1) if p = O(N2/3) 
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Assignment # 1 Key 
1. Consider the Max Tree we described earlier, but now use p processors to sort N values, where N may be 

greater than p. In this case, each processor uses a sequential algorithm to find its local max and then 
proceeds with the standard tree approach. Analyze the Time, Cost and Work for 

a. p = lg N 
b. p = lg lg N 
c. p = N / lg N 
d. p = N / lg lg N 

 Time  
TP(N) 

Cost  
CP(N) 

Work  
WP(N) 

Cost Efficiency 
ECP(N) 

Work Efficiency
EWP(N) 

P = lg N O(N/lg N) O(N) O(N) O(1) O(1) 

P = lg lg N O(N/lg lg N) O(N) O(N) O(1) O(1) 

P = N / lg N O(lg N) O(N) O(N) O(1) O(1) 

P = N / lg lg N O(lg N) O(N lg N/ lg lg N) O(N) O(lg lg N/ lg N) O(1) 

2. Consider the problem of sorting a deck of cards into Spades, Hearts, Diamonds, Clubs, and in order Ace 
down to 2 within each suit.  

a. What is the best way for an individual to do this? There many metric and many answers. 
Pick each card and put it in a predetermined slot. Gather up. This requires 52 inspections and 52 
fetches from table. 

b. Redo this but this time with five people. One of the five starts with all 52 cards.  
Original holder hands them out based on assigning one suit to each of the other 4. Each has thirteen 
pre-allocated slots. Original collects in batch suit. This requires 52 inspections, a parallel fetch of 
13 cards and 4 fetches from partners. 
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Assignment # 2 Key 
a. Prove that each of the Butterfly and Omega networks connects node x to node y when the circuits are switched 

by choosing crossover at the i-th switch whenever the i-th most significant bit of x⊕y is 1. 
 
Butterfly: This starts with node x and successively, from left to right, complements (by using a crossover) the 
selected bit if the corresponding one in x⊕y is 1. Mathematically, we have that the result 
x ⊕ ∨ (i = log n – 1 to 0) (2i ∧ x⊕y) = x ⊕ ( x⊕y ) = (x⊕x) ⊕ y = 0 ⊕ y = y   
 
Omega: This starts with node x and successively complements the leftmost bit of (x shift left i circularly) if the 
left one in (x⊕y shift left i circularly) is 1. Mathematically, this is equivalent to the Butterfly, except that the 
potential complementing of a bit (due to crossover) only occurs when that bit becomes the leftmost one as a 
result of the successive left shifts at the end of each layer in the circuitry. The final shift just brings us back to 
the original permutation of the bits.  
 

b. How many distinct potential communication pairs (a to b, c to d; a≠c, b≠d) exist for p=8? Of these, how many 
can occur in parallel without a conflict occurring at some switch? Answer this for both Butterfly and Omega 
switching networks. 
 
Butterfly or Omega: a can be any node that connect to any other node, so there are p2 choices for a, b; c can any 
node but a and can connect to any of the remaining (p-1) destinations, so there are (p-1)2 choices, but half of 
these were already seen (this occurs since there is not difference between the pair {(a,b}, (c,d)} and  
{(c,d), (a,b)}. Thus, the number of potential pairs is p2 × (p-1) 2/2, or 2 when p=2, 72 when p=4 and 1568, when 
p=8. 
 
Butterfly or Omega: The thing we cannot do is for the path from c to d to intersect the path from a to b. This is a 
restriction on the first part where we only limited intersection to the beginning and end nodes. One can see that 
a multistage network with lg p stages gives rise to lg p opportunities for intersection. Thus, the number of 
potential non-conflicting pairs is p2 × (p-l) × (p – lg p) /2, or 2 when p=2, 48 when p=4 and 1120 when p=8. 
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Assignment # 3.1 Key 
1. Consider the following “solution” to the critical section problem for n processes:  

shared boolean lock=false;  
shared boolean waiting[1:n] = ([n] false); // all slots are false 
process p [i=1 to n] { 

while (some continuation condition is true for process i) { 
while (lock) { waiting[i] = true; while (waiting[i]) delay(); } 
lock = true; 
// critical section 
lock = false; 
// wake up at most one process  
for (j=1; j<=n; j++) if (waiting[j]) { waiting[j] = false; break; }  
// non-critical stuff 

} 
} 

 Which of the following does this achieve? Answer Yes or No for each and give a one sentence justification. 
Mutual exclusion   NO  Multiple threads can see !lock before one sets it true 
Avoidance of deadlock   NO  Assume one thread sets lock and all others want to wait but are delayed at 

start of wait block; first resets lock but sees no one delayed, thus signaling no one; if the first 
thread’s condition is now false, it never reenters critical section and other threads are blocked 
forever. 

Avoidance of livelock   NO  Threads can get stuck at while (waiting[i]) delay(); 
Absence of unnecessary delays   NO  Change deadlock case to have the first thread come back in later and 

actually wake some other thread; that thread could have gone earlier. 
Eventual entry   NO  There is a biased wake up, always favoring lower numbered threads. This can 

lead to higher numbered ones being blocked forever, 
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Assignment # 3.2 Key 
2. In each of the following, specify which Fairness criteria (unconditional, weak and/or strong) 

guarantee that the statement S is eventually executed? Check all applicable columns.  
Statements unconditional weak strong 
int x=0; co <await(x == 5) S; > //  
while (true) x = x+1; oc 

   

int x=0; co <S; > //  
while (true) x = x+1; oc 

X X X 

int x=0; co <await(x == 5) S; > //  
while (true) x = (x<5 ? x+1 : x); oc 

 X X 

int x=0; co <await(x == 5) S; > //  
while (true) x = (x<10 ? x+1 : 0);oc 

  X 
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Assignment # 3.3 Key 
3. Consider the following program 

int x=0; 
co  

<await (x != 0) x = x – 1; >   # S1 
// <await (x == 0) x = x – 4; >  # S2 
// <await (x != 0) x = x + 3; >  # S3 

oc 
Does the program meet the "At-Most-Once Property"? Explain your answer. 
No – Just one critical reference per statement, but each assigns a value used by other  
What are the possible final values of x? Show all traces. 
{-2}     {S2, S1, S3} x = -2; {S2, S3, S1} x = -2; 
Suppose the await statements are replaced by non-atomic if statements, but the assigns become 
atomic.  

int x=0; 
co  

if (x != 0)  <x = x – 1; >   # S1 
// if (x != 0) <x = x + 3; >  # S2 
// if (x == 0) <x = x – 4; >   # S3 

oc 
What are the possible final values of x? Show all traces. 
{-1, -2, -4, -5} 
{S1, S2, S3} x = -4; {S1, S3, S2} x = -1; {S1, S3a, S2, S3b} x = -4; {S2, S1, S3} x = -4; {S2, S3, S1} x = -5; 
{S2, S3a, S1, S3b} x = -4; {S3, S1, S2} x = -2; {S3a, S1, S3b, S2} x = -1; {S3a, S1, S2, S3b } x = -4;  
{S3, S2, S1} x = -2; {S3a, S2, S3b, S1} x = -5; {S3a, S2, S1, S3b } x = -4 
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Assignment # 4.2 Key 
2. Suppose there are m producer processes and n consumer processes. The producer processes periodically call 

broadcast(message) to send a copy of message to all n consumers. Each consumer receives a copy of the 
message by calling fetch(message, myId), where message is a result argument and myId ranges from 0 to n-1.  
Write a monitor that implements broadcast and fetch. Use the Signal and Continue discipline. The monitor 
should store only one message at a time, which means that after one producer calls broadcast, any future call of 
broadcast has to delay until every consumer has received a copy of the previous message.  

monitor PC { 
string next;; 
int need = 0; 
boolean ready[n]; // assume all false at start 
cond wantToBroadcast, wantToFetch; 
procedure broadcast(string msg) { 

// Must use “while” to prevent amore than one broadcaster from getting through. 
while (need > 0) wait(wantToBroadcast); 
next = msg; need = n; 
for (int i=0; i<n; i++) ready[i] = true; 
signal_all(wantToFetch); 

} 
procedure fetch(string msg, int myId) { 

// Can use “if” provided id’s are unique to threads. 
if (!ready[myId]) wait(wantToFetch); 
msg = next; ready[myId] = false; need--; 

  if (need == 0) signal(wantToBroadcast); 
     } 

} 
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Midterm#1 Topics and Promises 
Topics  

1. Concurrent Programming Concepts 
2. Introduction, even-odd transposition algorithm, analysis 
3. Concepts of analysis of parallel algorithms 

o Architectural considerations -- synchronous versus asynchronous; barrier synchronization; centralized control 
o Issues of communication and coordination in parallel and distributed implementations 
o Time, Cost, Speedup, Work, Cost Efficiency and Work Efficiency. 
o Virtualizing an algorithm -- focus on even-odd transposition. 

4. Taxonomies (control, address space, interconnection network, granularity) 
o SIMD, MIMD, data versus task parallel 

5. Taxonomies (address space) 
o private memory (separate address spaces), also called distributed memory, vs shared address space (often called shared 

memory). UMA (uniform / symmetric multiprocessors (SMP)) versus NUMA (non-uniform) memory access. Cache 
and the cache coherence (consistency) problem. 

6. Taxonomies (interconnection network) 
o static vs dynamic interconnections. 
o Dynamic: butterfly, Omega, crossbar, bus-based networks. 
o Static: completely-connected, star connected, linear array, ring, 2-d mesh and torus, 3-d mesh and torus, tree, 

hypercube. 
7. Programming Styles 

o Iterative parallelism: co // and process notation 
o Recursive parallelism 
o Producer / Consumer 
o Client / Server 
o Peers: worker, send and receive notation 

8. State, history, properties 
o s1 -> s2 -> s3  ... ->sk  :  trace or history states; can have many traces in concurrent system 
o safety property : never enter a bad state 
o liveness property : eventually enter a good state 
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9. Notation for concurrency 
o co s1; // s2; // ... // sn; oc : concurrency 
o process name { ... } : background process 
o < S; > : atomic action; critical section; mutual exclusion; granularity considerations 
o < await(B) > : conditional synchronization; barrier synchronization 
o < await(B) S; > : conditional atomic action 
o { precondition } actions { postcondition } : basis for axiomatic proofs of correctness 

10. Java Support for Concurrency 
o Threads : either inherit from Thread class or implement Runnable interface 
o Synchronized : specifies critical section using an object as lock 
o Locks are reentrant 
o Locks can be temporarily given up : wait and notify 

11. Critical References 
o Critical reference is one changed by another process 
o At Most Once Property (x = e); appearance of atomicity 

12. Fairness 
o Unconditional, Weak and String Fairness 

13. SpinLocks 
o Critical section problem 

� mutual exclusion 
� absence of deadlock and livelock 
� absence of unnecessary delays 
� eventual entry (relates to fairness) 

o How do we handle code like <await (!lock) lock = true;> critical; lock = false;? 
� CSEnter: while (TS(lock)) delay; // returns entry value of lock (before this set) 

o To implement unconditional atomic action < S; > 
� CSEnter; S; CSExit; // CSEnter is entry protocol; CSExit is exit protocol 

o To implement conditional atomic action <await (B) S; > 
� CSEnter; while (!B) { CSExit; delay; CSEnter; } S; CSExit; 
� if B satisfies at most once property can do < await(B);> as while(!B); 

o Relation to Java synchronized 
� synchronized (lock) { S; } is like <S;> // in simple notation, every process uses same lock object 
� synchronized (lock) { while (!B) try{wait();}catch(...){} S; notify(); } is like <await(B) S;> 

14. Fair Solutions 
o Tie Breaker 
o Ticket Algorithm 
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15. Barrier Synchronization 

o Shared Counter 
o Flags and Coordinators 
o Symmetric Barriers 

16. Data Parallel 
o MasPar Example 
o Parallel Prefix and Parallel Linked List Length 

17. Semaphores  
o Abstraction with two services P (wait) and V (signal)  
o Critical section problem and semaphores  
o Java synchronized and semaphores  
o Barriers and semaphores  
o Producer / Consumer Problem; Dining Philosophers Problem; Reader/Writer Problems  

18. Monitors  
o monitors and conds  
o wait(cv), wait(cv, rank), signal(cv), signal_all(cv), empty(cv), minrank(cv)  

� signal and wait versus signal and continue  
� queues, priority queues, BPOTs, heaps and analysis  

o monitor examples  
� semaphores, bounded buffers, readers/writers, shortest-job-next, sleeping barber  
� CSCAN/SCAN disk scheduler (bitonic lists)  

o Java synchronized, wait/notify/notify_all  
19. Single lane bridge problem using semaphores and monitors  
 

Promises  
1. A question on Even-Odd Transposition sort 
2. A question on analysis of parallel algorithms 
3. A question on taxonomies (control, address, interconnection) 
4. A question on Java synchronized 
5. A trace question on co s1; // s2; // ... // sn; oc 
6. A question on locks 
7. A question on fairness 
8. A question on barriers 
9. A question on semaphores (analysis, not synthesis) 
10. A question on monitors 
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Quiz#1 Sample#1 

 1. Easy Start ☺ Apply the even-odd parallel algorithm presented in 
class for sorting the 6 elements in the following ring of 6 
processors.  Show the results of each of the up to 5 passes that it 
takes to complete this ascending (low to high) sort. 

7 8 4 1 6 5  Initial Contents 
7 8 1 4 5 6  After Pass 1 
6 1 8 4 5 7  After Pass 2 
1 6 4 8 5 7  After Pass 3 
1 4 6 5 8 7  After Pass 4 
1 4 5 6 7 8  After Pass 5 
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Quiz#1 Sample#2 

2. In each of the following, specify which Fairness criteria 
(unconditional, weak and/or strong) guarantee that the statement 
S is eventually executed? Check all applicable columns. For 
some, the applicable criteria could include all, some or none. 

 
Statements unconditional weak strong 
int x=0, y=0; co <await(x > y) S; > // 
while (true) x = x+1; //  
while (true) y = (y+1) % 10;  oc 

 X X 

int x=0, y=0; co <await(x == y) S; > // 
while (true) x = x+1; //  
while (true) y = (y+1) % 10;  oc 

   

int x=0; y=0; co <await(x == y) S; > // 
while (true) x = x+1; //  
while (true) y = y+1;  oc 

  ? 

int x=0, y=0; co <S; > //  
while (true) x = x+1; //  
while (true) y = y+1; oc 

X X X 
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Quiz#1 Sample#3 

3. Briefly explain the meanings of notify() and notifyAll() in Java 
synchronized blocks. Differentiate one from the other. 

 
Each is used by a thread when it leaves a critical 
(synchronized) region. The purpose is to wake up thread(s) 
that are waiting for changes that might satisfy their 
conditional entries to the critical region. Notify wakes up just 
one thread (assuming at least one has issued a wait on the 
synchronization object. NotifyAll wakes up all threads waiting 
on this object for changes.  
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Quiz#1 Sample#4 

4. Consider the following to solve the critical section problem:  
var lock = 0; 
process P[i=1 to n] { 
 while true do { 
  <await lock == 0>; lock = i;  
  while (lock != i) do { <await lock == 0>; lock = i; } 
  S1: // critical section 
  lock = 0;  
  S2; // non-critical section 
 } 
} 
Does this ensure mutual exclusion? If so, why? If not, why not?  
No. P1 and P2 see lock equal to 0. P1 sets lock to 1and enters 
S1. P2 sets lock to 2 and enters S1. 
Does this approach avoid livelock? If so, why? If not, why not? 
Yes. When lock is not equal to 0, it is equal to the index of one 
of the Pi that wants the critical section. This one will pass 
through when lock is reset to 0. Thus, we never have a case 
where all who want the critical section are needlessly spinning. 
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Quiz#1 Sample#5 

5. Fill in the following. All are about characteristics of parallel 
machines based on interconnection newtorks 

 
What is the diameter of 
A hypercube with 64 processors?   6 = (lg 64)  
A wraparound mesh with 64 processors?   8 = (2 * (√64)/2)  
A ring with 64 processors?   32 = (64/2)  
A star network with 64 processors?  2 = (center then partner)  
 
What is the bisection width of 
A hypercube with 64 processors?    32 = (everyone has partners)  
A wraparound mesh with 64 processors?   16 = (cut 8 + 8)  
A ring with 64 processors?   2 = (cut linear and wrap)  
A star network with 64 processors?   1 = (cut someone off)  
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Quiz#1 Sample#6 

6. The following is the Ticket Algorithm for a Fair Critical Section solution. 
Add <…> where necessary to make parts of this atomic.  Justify each 
addition.  You need to have as little as possible forced to be atomic. 
int number=1, next=1, turn[1:n] = ([n] 0); 
process CS[i=1 to n] { 

while (true) { 
turn[i] = number++; 
await (turn[i] == next); 
S1; // critical section 
next++; 
S2; non-critical section 

} 
} 

The italicized statement must be made atomic. 
The first of the other statements satisfies the at-most-once property (turn[i] 
== next) and the second is in a place where only one process can be (the 
next++ right at the end of the critical section).  However, <turn[i] = 
number++;> must be atomic, else the value of number could be seen as the 
same by two processes (so they may enter S1 concurrently). 



COP 4520 — Concepts of Parallel and Distributed Processing – 163 – © Charles E. Hughes — UCF Computer Science Dept. 

Quiz#1 Sample#7 

7. Consider the following program 
int u=0, v=1, w=2, x; 
co  

x = u + v + w; 
// <u = v + w;> 
// <v = 4;> 
// <w = 5;> 

oc 
Does the program meet the "At-Most-Once Property"? Explain your answer. 
No.  x =  u + v + w involves three variables modified by others 
processes. 
What are the possible final values of x? You need to be concerned about the 
fact that your compiler may take advantage of the commutivity of addition. 
Explain your answers. 
u = {0, 3, 6, 9}, v = {1, 4}, w = {2, 5}.  Here u can be 0 or any of the sums of 
v and w, since all relative orderings are possible. 
x = {3, 6, 9, 12, 15, 18}.  Here x can be the sum of any combination of the 
possible values of u, v, w, since commutivity allows us to grab these in any 
order. 
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Quiz#1 Sample#8 

8. We have looked at various ways to use P processors to quickly and 
efficiently find the largest element in a list A[0…N–1].  Regarding 
efficiency, we have sometimes focused on Cost Efficiency and other 
times on Work Efficiency.  One of the early algorithms we looked at 
was based on binary tree reduction.  Assuming this algorithm, fill in 
the following table for values of P = 1, N/2 and N/lg N.  I filled in the 
first row since I'm a nice guy, and it was real easy. 

 Time  
TP(N) 

Cost  
CP(N) 

Work  
WP(N) 

Cost Eff. 
ECP(N) 

Work Eff.
EWP(N) 

P = 1 O(N) O(N) O(N) O(1) O(1) 

P = N/2 O(lg N) O(N lg N) O(N) O(1/lg N) O(1) 

P = N / 
lg N 

O(lg N) O(N) O(N) O(1) O(1) 
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Quiz#1 Sample#9 

9. The Unix kernel provides two atomic operations similar to: 
sleep( ):  // block the executing thread 
wakeup( ):  // awaken all blocked threads 
A call of sleep always blocks the caller. A call of wakeup awakens every thread that has called sleep since the 
last time that wakeup was called. 

  A call to wakeup should awaken all tasks that entered sleep prior to the time wakeup is started, but not any 
that arrive later. The following “solution” has a serious problem in that it can wake up the wrong tasks. 
Explain how this undesirable result can happen.  
sem   e = 1, delay = 0; int count = 0; 
sleep( ): P(e) ;  count++;  V(e);  P(delay); 
wakeup( ): P(e);  while (count > 0) { count--; V(delay); } V(e); 
There is a race condition occurring in the sleep(), right after the V(e) (end of 
atomized) code and the P(delay) (sleep until awakened) 
Here’s the scenario: 
P1 executes sleep() and gets just past V(e) – count == 1 
P2 executes wakeup() performing one V(delay) – count == 0 
P3 executes sleep() and gets o P(delay) before P1 – count == 1 and P3 awakened 
P1 gets to P(delay) and sleeps 
 
Results is P1 asleep and P3 awake, even though P1 was the only one that preceded 
P2’s awake 
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Quiz#1 Sample#10 

10. Write a Barrier monitor with two services init(int n) and  
join(). Init must be called just once, prior to any process being 
started that must use the barrier. The monitor must be reusable.  
You must state if you are using signal and wait (SW) or signal 
and continue (SC) semantics, and explain why you made the 
choice you did. 

monitor Barrier { 
int expected, arrivals;  
cond queue; 
procedure int (int n) { 

expected = n; arrivals = 0; 
} 
procedure join () { 

if  (++arrivals == expected) { 
arrivals = 0; signal_all(queue); // SC or SW since done 

  } else wait (queue) 
} 

} 
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Message Passing 

Alternative to shared memory 

We can use messages for communication and coordination of processes, typically 
running on separate nodes in a network or cluster. 

A cluster uses a dedicated network, sometimes with very low latency. 

MPI is a standard C or C++ API. The specific messages have evolved, with lots of 
influence from researchers at Oak Ridge National Labs. 

• Two key primitives: 

– Send 

– Receive 
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Key Message Passing Issues 

• Distinguishing messages 

– different applications 

– messages intended for other processes 

• Reliability 

– reliability 

– sequencing 

• Deadlock 
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Distinguishing Among Messages 

• Criteria: 

– Communicator (application group -- a set of processes) 

– sender (process ID) 

– tag – user defined channel number 

 



COP 4520 — Concepts of Parallel and Distributed Processing – 170 – © Charles E. Hughes — UCF Computer Science Dept. 

Send and Receive 

int MPI_Send( 
 void *data, // obviously points to data 
 int count, // how many units of data 
 MPI_Datatype datatype, // e.g., MPI_INT  
 int  destination, // receiver pid 
 int  tag, // essentially a channel # 
 MPI_Comm communicator // group 
) 

 

int MPI_Recv( 
 void   *data, // obviously points to data 
 int  count, // how many units of data 
 MPI_Datatype   datatype, // e.g., MPI_INT 
 int  sender,  // sender pid 
 int  tag,  // essentially a channel # 
 MPI_Comm communicator, // group 
 MPI_Status  *status // receipt status 
) 
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Send and Receive Characteristics 
 
• MPI Preserves Message Order 
• MPI Guarantees (some) Message Integrity 
• Type Conversions 

– converting between types 
– big-endian/little-endian issues 
– sending structures/classes 

• MPI_BYTE 
 
 
• MPI_Send and MPI_Recv are blocking 

– block until data is available for read 
– block until it is safe to write to data 
– deadlock is possible  
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Utility Services 
 
• int MPI_Init ( int *argc, char **argv[]); 

– must be called before any other MPI function 
 

• int MPI_Finalize ( void ); 
– no MPI function can be called after MPI_Finalize 
–  

 
• Processes are assigned IDs (ranks) 

– consecutive integers starting with 0 
 

• int MPI_Comm_size ( MPI_Comm communicator, int *process_count); 
– number of processes in communicator (all if MPI_COMM_WORLD) 

 
• int MPI_Comm_rank ( MPI_Comm communicator, int *process_ID); 

– ID (rank) of the processor (in communicator) 
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First MPI Program 
 

#include “mpi.h” 
#include <fstream.h> 
void main(int argc, char *argv[]) { 
 int pid; // process ID 
 int np;  // number of processes 
 
 MPI_Init(&argc, &argv); 
 MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
 MPI_Comm_size(MPI_COMM_WORLD, &np); 
 if(pid = = 1) { 
  int data[3] = {1, 2, 3}; 
  MPI_Send(data, 3, MPI_INT, 0, 26,  MPI_COMM_WORLD); 
 } 
 if(pid = = 0) { 
  int receive_data[100]; 
  MPI_Status status; 
  MPI_Recv(receive_data,100,MPI_INT,1,26,MPI_COMM_WORLD,&status); 
  cout<<“received data from p1.  First element is “<<receive_data[0]<<endl; 
 } 
 MPI_Finalize(); 
}   
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MPI from Quinn’s Text 
 
See Chapter 4 and Chapter 6 Notes (linked off of course web page). 



COP 4520 — Concepts of Parallel and Distributed Processing – 175 – © Charles E. Hughes — UCF Computer Science Dept. 

Floyd’s Algorithm from Quinn (declarations) 
 

#include <stdio.h> 
#include <mpi.h> 
#include "../MyMPI.h" 
typedef int dtype; 
#define MPI_TYPE MPI_INT 
 
int main (int argc, char *argv[]) { 
   dtype** a;         /* Doubly-subscripted array */ 
   dtype*  storage;   /* Local portion of array elements */ 
   int     i, j, k; 
   int     id;        /* Process rank */ 
   int     m;         /* Rows in matrix */ 
   int     n;         /* Columns in matrix */ 
   int     p;         /* Number of processes */ 
   double  time, max_time; 
 
   void compute_shortest_paths (int, int, int**, int); // should be dtype 
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Floyd’s Algorithm from Quinn (main) 
 

   MPI_Init (&argc, &argv); 
   MPI_Comm_rank (MPI_COMM_WORLD, &id); 
   MPI_Comm_size (MPI_COMM_WORLD, &p); 
 
   read_row_striped_matrix (argv[1], (void *) &a, 
      (void *) &storage, MPI_TYPE, &m, &n, MPI_COMM_WORLD); 
 
   if (m != n) terminate (id, "Matrix must be square\n"); 
 
   print_row_striped_matrix ((void **) a, MPI_TYPE, m, n, 
      MPI_COMM_WORLD); 
   MPI_Barrier (MPI_COMM_WORLD); 
   time = -MPI_Wtime(); 
   compute_shortest_paths (id, p, (dtype **) a, n); 
   time += MPI_Wtime(); 
   MPI_Reduce (&time, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, 
      MPI_COMM_WORLD); 
   if (!id) printf ("Floyd, matrix size %d, %d processes: %6.2f seconds\n", 
      n, p, max_time); 
   print_row_striped_matrix ((void **) a, MPI_TYPE, m, n, 
      MPI_COMM_WORLD); 
   MPI_Finalize(); 
}
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Floyd’s Algorithm from Quinn 
 

void compute_shortest_paths (int id, int p, dtype **a, int n) { 
   int  i, j, k; 
   int  offset;   /* Local index of broadcast row */ 
   int  root;     /* Process controlling row to be bcast */ 
   int* tmp;      /* Holds the broadcast row */ 
 
   tmp = (dtype *) malloc (n * sizeof(dtype)); 
   for (k = 0; k < n; k++) { 
      root = BLOCK_OWNER(k,p,n); 
      if (root == id) { 
         offset = k - BLOCK_LOW(id,p,n); 
         for (j = 0; j < n; j++) 
            tmp[j] = a[offset][j]; 
      } 
      MPI_Bcast (tmp, n, MPI_TYPE, root, MPI_COMM_WORLD); 
      for (i = 0; i < BLOCK_SIZE(id,p,n); i++) 
         for (j = 0; j < n; j++) 
            a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]); 
   } 
   free (tmp); 
} 
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Adjacency Matrix Generator 
 
#include <stdio.h> 
int main(int argc, char *argv[]) { 
 int i,j,n, MAX, DEBUG=0; 
 FILE *outfile; 
 int  data; 
 if (argc<4) { 
  printf("Usage: generate nodes_in_graph max_value binary_output_file [DEBUG]\n");  
  exit(1); 
 } 
 sscanf(argv[1], "%d", &n); sscanf(argv[2], "%d", &MAX); 
 outfile = fopen(argv[3], "w"); 
 printf("… for graph with %d nodes into %s; MAX value is %d\n", n, argv[3], MAX); 
 if (argc>4) 
  if (strcmp(argv[4],"DEBUG") == 0) DEBUG = 1; 
 fwrite(&n, sizeof(int), 1, outfile); 
 fwrite(&n, sizeof(int), 1, outfile); 
 for (i=0; i<n; i++) { 
  if (DEBUG) printf("\n"); 
  for (j=0; j<n; j++) { 
   if (i == j) data = 0; 
   else data = rand() % (MAX+1); 
   fwrite(&data, sizeof(int), 1, outfile); 
   if (DEBUG) printf("%6d", data); // hopefully MAX is no greater than 99999 
  } 
 } 
 if (DEBUG) printf("\n"); 
 fclose(outfile); 
}
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Programming Assignment#2 
 
Let λ be latency and β be bandwidth, then the time needed to send an n-byte message is λ + n / 
β. Write an MPI program to determine λ and β on the Zephyr cluster using the “ping pong” 
test. Design the program to run on exactly two processes. Process 0 records the time and then 
sends a message to process 1. After process 1 receives the message, it immediately sends the 
message back to process 0. Process 0 receives the message and records the time. The elapsed 
time divided by 2 is the average message-passing time. Create your program so it has two 
command line parameters, both integers. The first is the value of n, the message length, and 
the second is the value of m, the number of times the experiment is run before an average time 
is computed. Run this on sufficient sizes of n and m so that you can get an estimate of λ and β. 
Now, run it a bunch more times to verify or refine your estimates.  
 
Now, redo this experiment, but this time cycle the message from node 0 to node 1 … to node k-
1 and back to 0. The time is the elapsed time divided by k. The value of k is the only parameter 
on your command line. Note: If k=2, then it’s the same as above. If k=1, then you have no 
external communication, but node 0 does talk to itself. Thus, the order of sending and 
receiving is quite important. Reject values of k<1. Compare these results with those above, 
treating k=1 as a special case since no external transmission actually occurs. 
 
You must turn in the program (both as c code and as an executable), a spreadsheet in Excel 
format that records all your experiments and a write-up that discusses your experiments, your 
hypotheses and your final conclusions. All assignments are turned in electronically to me. 
 
Due: October 20. 
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Programming Assignment#3 
 
Implement Prim's algorithm on the Zephyr cluster. You must analyze and 
benchmark your implementation as was done in Quinn's book for Floyd's 
algorithm, except that you need to run on 1 to 16 processors. We have provided you 
with a generator (see two slides previous for program generate) for a set of large 
arrays in the form of a binary file that starts with N then N again (to match Quinn's 
routines for reading striped matrices) followed by the N2 values of the adjacency 
matrix. These values will all be integers (MPI_INT) and the matrix will always be in 
row major order. This does not inhibit you, as Quinn provides routines to distribute 
these in either row or column striped fashion. Your output of the tree must be 
optional (see how I do this for the matrix in generate.c), so a single parameter can 
turn this on or off. Moreover, the output should be timed (see floyd.c to do this). The 
argument list to your program, whose executable must be named prim is as follows 
AdjacencyFileName [TREE]. If the keyword TREE is omitted, the tree is not 
printed. 
 
Due: 10/27 
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Distributed Computing Paradigms (in Java) 
 
This material is in Power Point Slides at DistributedParadigms.ppt 
 



COP 4520 — Concepts of Parallel and Distributed Processing – 182 – © Charles E. Hughes — UCF Computer Science Dept. 

Project Suggestions 
 
1) For Vision people  

a) Parallel or distributed edge detection 
i) Don’t do Canny, as that was already done 

b) Parallel or distributed depth calculation 
i) Might use disparity maps from stereo 

2) For Graphics people 
a) Parallel tone or color mapping 

i) Map tone from one image to another 
ii) Do for image sequences 
iii) Use background color shift to alter rendering of foreground objects 
iv) Map tones from neighboring parts of image (a smoothing technique) 
v) Compare various color theories 

b) Parallel or distributed compression/decompression of HDR images 
i) Do for single images 
ii) Do for film clips rather than single images 
iii) Compare various representations 

3) For Systems people 
a) RMI that supports both synchronous and asynchronous calls 

i) Might experiment with a new class called “Future” 
b) Spaces implementation in C# or C++ 

i) Could do pure tuple spaces or some variant 
4) For Algorithms people 

a) Parallel or distributed evaluation of constraints 
i) For instance, Gaussian elimination delayed due to non-linearity 

b) Parallel or distributed graph rewriting 
i) Perhaps synthesized attribute evaluation on a tree, e.g., constant propagation 

c) Parallel or distributed term rewriting 
d) Parallel or distributed Cocke-Kasami-Younger algorithm 
e) Parallel or distributed reconstruction of phylogenies 

In all cases, you must design experiments to determine the scalability of your solution. If you have a team of two, you might have a 
run-off of a parallel versus a distributed solution. 
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An Improved Parallel Sort 

The Shearsort 

• Assume N is a Perfect Square 

• Organize into a √N × √N Array of Cells 

• Alternately Sort Rows and Columns 
(In the Manner of Shearing Sheep) 

• Sort Odd Numbered Rows Left to Right 
Sort Even Numbered Rows Right to Left  

• Conceptually Algorithm Uses Two Clocks 

• Standard clock tells everyone to participate in one more step of a simple row or 
column sort 

• Added clock tells cells to alternate between rows and columns 

• IDs √N(i-1)+1 to i√N  Cooperate on Row i; 
i, i+√N, .., i+N–√N  Cooperate on Column i 
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Shearsort Algorithm 

Managing with One Clock 

 At Each Clock Tick and For Each Pi do 

 Step := Step+1; 

 MajorStep := (Step-1) div √N + 1; 

 if odd(MajorStep) then 

  if odd((i-1) div √N + 1) then 

   SortLeftToRight // Bubble √N  

  else SortRightToLeft // Bubble √N  

 else 

  SortTopToBottom // Bubble √N  
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An Example Shearsort 

 

7 61611Initially

12 31310

5 9215

14 184
 

• N = 16, √N = 4: Use 4 × 4 Matrix 
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Shearsort Pass#1 

 
 

6 16117Sort Rows

13 31012

2 1595

14 148
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Shearsort Pass#2 

 

2 145Sort Cols

6 397

13 15108

14 161112
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Shearsort Pass#3 

 

1 542Sort Rows

9 367

8 151310

16 111214
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Shearsort Pass#4 

 

1 342Sort Cols

8 567

9 111210

16 151314
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Shearsort Pass#5 

 

1 432Sort Rows

8 567

9 121110

16 131415
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Efficiency of Shearsort 
 

How’d We Do?  Not Bad! 

 

• T1(N) = N log N Optimal Sequential 

• TN(N) = √N × logN Parallel Shearsort 

• SN(N) = √N Speedup 

• CN(N) = W N(N) = N × √N × logN Cost 

• EN(N) = 1 / √N Efficiency 
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Properties of Odd-Even Transposition 

 

In Some Things Luck Shines Our Way 

 

• Algorithm Uses Compare / Exchange Operations 

 

• The Algorithm is Oblivious 

• Communication Independent of Prior Results 

 

• All Oblivious Comparison-Exchange (OCE) Algorithms are Easy to Analyze 
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How Can Algorithm Fail? 

 

Properties of a Faulty Permutation Sort 

 

• Assume X1, X2, … , Xn is to be Sorted 

• Assume Xπ(1), … , Xπ(N) is a Correct Sort 

• Assume  Xσ(1), … , Xσ(N) is an Incorrect Permutation Produced by Some Faulty 
"Sort" 

• Let k be Smallest Index Where Xσ(k) > Xπ(k) 

• Then, the Permutation is Correct up to k-1 

Xσ(1) = Xπ(1), Xσ(2) = Xπ(2), …, Xσ(k-1) = Xπ(k-1)  
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The 0-1 Sorting Lemma 

 

A Faulty OCE Sort also Fails on 0, 1 Data 

 

• Define  Yi = 0   if Xi ≤ Xπ(k) , 
   Yi = 1  if Xi > Xπ(k)  
 

• Xσ(i) ≤ Xσ(j)   implies  Yσ(i) ≤ Yσ(j), Since Oblivious 

 

• Thus, Output on 0,1 Data is  

• 0, 0, 0, …, 0, 1,  …, 1, 0, …,  

• There is a 0 after the 1 in the k-th cell 

 

• ∴ Any Faulty Sort Fails on Some 0, 1 Data 
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Correctness of Odd-Even Sort 

Proof Based on 0-1 Sorting Lemma 

• Consider Rightmost Cell Pk Containing a 1 

• If k is even then it won't move at step 1 

• But it will shuttle right at all subsequent steps until it reaches N-th cell 

• If k is odd, it starts moving at step 1 

• And it will shuttle right at all subsequent steps until it reaches N-th cell  

• Consider the i-th Rightmost 1 

• By step i+1, no 1's block right shuttle 

• So i-th 1 starts moving by step i+1 

• i-th rightmost 1 is home (cell N-i+1) in at most N-i moves 

• i-th rightmost is home no later than by i+(N-i) = N-th step 

• This Shows Correctness and Timing 
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Correctness of Shearsort 
 

Proof Based on 0-1 Sorting Lemma 

 

• Each Pair of Passes Sorts at Least Half of the Unsorted Rows 

• To See This, Consider Three Categories 
• All 0 rows 
• All 1 rows 
• Dirty rows - some 0's, some 1's 

• Can Divide Rows into Categories 
• Upper all 0-rows 
• Lower all 1-rows 
• Dirty rows in middle 
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Halving in Shearsort 
 

Each Pair of Passes Cuts Dirty Rows in Half 

 

• A Row Sorting Pass Will Leave Dirty Pairs 
0…0…01…1 0…01 …… 1 0 … 01 … 1 
1…10 …… 0 1…1…10…0 1 … 10 … 0 
(more 0's) (more 1's) (equal 0's 1's) 

 

• Dirty Pairs After Column Sorting Pass 
0……………0 0…01…10…0 0 … …0 
1…10…01…1 1……………1 1 … …1 
(more 0's) (more 1's) (equals)  
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Convergence of Shearsort 

 

How Much Work Before It’s Sorted? 

 

• Number of Halvings is Bounded by log √N 

• But We Do Two Passes per Halving 

• Number of Passes is 2 × log √N + 1 = 
log √N2 + 1 = log N + 1 
The + 1 is for One Dirty Row Left 

• Each Pass Requires a Sort of √N Cells 
We Can Parallel Bubble Sort in √N Steps 

• Total is √N × (log N + 1) = O(√N × log N)  
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Shearsort Proof – Prelims. 
 

The crux of this correctness and analysis proof for ShearSort is to show that each row/column pair of sorts 
reduces the number of dirty rows by ½. Moreover, after each row/column sort, all the clean 0 rows are at the top 
(lowered numbered rows), and all the clean 1 rows are at the bottom (higher numbered rows.) 
Notation: Assume R rows and C columns. 
 
Lemma 1. After any row sort, each even/odd pair of rows is sorted low to high, high to low, respectively.  
 
Proof: This is a direct consequence of the proof that the Even-Odd Transposition algorithm works. 
 
Lemma 2. After the first column comparison exchange (there are number of rows of these CE’s for a 
complete column sort), the number of dirty rows is reduced to no more than half of what there were after 
the preceding row sort. Moreover, each clean 0 row will be in the lower numbered row of such a pair, and 
each clean 1 row will be in the higher numbered row.  
 
Proof: This is done by showing the interaction of all possible combinations of dirty pairs (more 0’s than 1’s, 
more 1’s than 0’s, equal number of 0’s and 1’s.) There is an overhead that does this. 
 
Lemma 3: Each column comparison-exchange (there are number of rows of them for a complete column 
sort) in which there is pair of clean rows leaves each clean 0 row in the lower numbered row of such a 
pair (on the top), and each clean 1 row will be in the higher numbered row (on the bottom).  
 
Proof: This case is no different than the other case above in which we had an equal number of 0’s and 1’s in 
dirty rows. 
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Shearsort Proof 
 

Theorem 1: Each row/column pair of sorts reduces the number of dirty rows by at least one half. 
Moreover, after each row/column, all the clean 0 rows are at the top (lowered numbered rows), and all 
the clean 1 rows are at the bottom (higher numbered rows) of the mesh. 
 
Proof: By Lemma 1, we know that each column sort starts with even-odd pairs of rows sorted low to high and 
high to low, respectively. By Lemmas 2 and 3, the first comparison-exchange operation of the column sort will 
result in all row pairs being of one of the forms clean 0/dirty, dirty/clean 1 or clean 0/clean 1.  The remaining R-
1 comparison-exchange operations of the column sort will, in effect, move each clean 0 row up, so they are all 
together at the top (low numbered) rows of the mesh. Similarly, the clean 1’s will move down to be together at 
the bottom of the mesh. The reason that this is doable in the R-1 remaining passes is that the clean 0’s are 
already on the top of the pairs from which they formed and the clean 1’s are on the bottom of these pairs, 
leaving at most R-1 moves to find their respective destinations. 
 
Theorem 2: The parallel ShearSort algorithm correctly sorts an R×C mesh in O(R+C)lg R steps. 
 
Proof: By Theorem 1, the parallel ShearSort sorts all but, perhaps, one row of an R×C mesh containing 0-1 data 
in lg R row/column parallel even-odd transposition sorts. By previous analysis, we know that the row sorts take 
R steps and the column sorts take C steps. Thus, each row/column pair of sorts takes (R+C) steps. The final 
cleanup of the last unordered row takes R steps, so the total number of steps is (R+C)lg R + R. By the OCE 
(oblivious comparison exchange) lemma, an OCE sort that works on 0-1 data works on arbitrary data. Thus, the 
parallel ShearSort is correct and runs in O(R+C)lg R. When the mesh is square, this is 2√N lg √N = √N lg N. 
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Revsort: An Improvement of Shearsort 

The Revsort 

• Revsort is a Column / Row Alternating Sort 

• For Convenience We Number Cells from 0  

• Define rev(i) = Bit Reversal of i  

• Revsort Sorts the Columns Downwards 

• It Then Sorts Rows to the Right,  
Viewing Row i as Cyclically Starting at Column rev(i) 

• Clearly the Wraparound Property That We Didn't Need in Shearsort is Critical 
Here 
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Boundary Conditions and Complexity 

 

• Revsort does Not Actually Complete a Sort 

 • But It Leaves at Most 8 Dirty Rows 

 • These Rows Can be Handled by Shearsort 

• Let d be the Number of Dirty Rows 

 • On Each Column / Row Pass With d > 8 

  Reduces Dirty Rows by O(√d) 

• Running Time is 2 × √N × (lg lg √N + 2) 
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Revsort on an Old Example 

 

7 61611Initially

12 31310

5 9215

14 184
 

• We Underscored the Starting Column of Each Row. 
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Revsort Pass#1 

 
 

5 124Sort 
Cols

7 3810

12 61311

14 91615
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Revsort Pass#2 

 

1 542Sort 
Rows

8 7310

13 12116

14 91615
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Revsort Pass#3 

 

1 532Sort 
Cols

8 746

13 91110

14 121615
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Revsort Pass#4 

 

1 532Sort 
Rows

7 648

13 11109

14 121615

Revsort is Stuck  
At This Point Can Use Shearsort
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Bitonic Sort – Making a List Bitonic 
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Bitonic Merge – Finishing the Sort 
0000

0001
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Bitonic Sort 
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Time = 
    

ii=1
lg n∑  = (lg n + 1) lg n / 2 = O(lg2n). 
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Bitonic Sort on Hypercube 
 

• The Mapping is Natural – Use 3-Cube for 8 Values 

 
 

000 001

010 011

100 101

110 111

    

30

20 18

17 29

24 26

15
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Use Hypercube to Make List Bitonic 
 

 

 

30

2018

1729

24 26
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+

–

–

     

30

20
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26
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+

–
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Phase 1     Phase 2, Steps 1 & 2 – Bitonic Now 
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Use Hypercube to Sort Bitonic List 
 
 

30

20

1817

2924

26
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+ +

++
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20 18
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24 26
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Phase 3, Steps 1, 2 & 3 – Sorting the Bitonic List 
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A Fast, Inefficient Max 
 
 
 

• Quick, but Not Blindingly Fast 

 

• Use a Doubly Logarithmic-Depth Tree 

• If N=22k, then root has 22k–1 children 

• At ith level, 0≤i<k, each node has 22k–i–1 children 

• At level k, each node has 2 leaves as children  
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Example of Doubly Log Depth Tree 
 

 If N = 64K = 216 = 224, then 

  level 0 (root) has 256 = 28 = 223 children 

  level 1 nodes have 16 = 24 = 222 children 

  level 2 nodes have 4 = 22 = 221 children 

  level 3 nodes have 2 = 21 = 220 children 

  level 4 nodes have 2 children 

 Number of leaves = 2×2×4×16×256 = 21+1+2+4+8 = 216 

• Each Internal Node Gets Max of Subtree 

• Using super fast max, each level takes O(1),  
so T(N) = O(lg lg n) 

• Work is O(N lg lg N), E = 1 / lg lg N  – Non-Optimal 
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Doubly Logarithmic Max 
Doubly Logarithmic Tree Algorithms (N = 22k

):  
 we count levels from leaves up  
level #trees #kids time work/tree work 
  /tree fast lg fast lg fast lg 

0 N/2 2 1 1 1 1 N/2 N/2 
1 N/22 2 1 1 1 1 N/4 N/4 
2 N/24 22 1 2 24 22 N N/22 
3 N/28 24 1 4 28 24 N N/24 
4 N/216 28 1 8 216 28 N N/28 
• • • • • • • • • 
• • • • • • • • • 

k-1 22k-1
 22k-2

 1 2k-2 22k-1
 22k-2

 N N/22k-2

k 1 22k-1
 1 2k-1 22k

 22k-1
 N N/22k-1

Order of Totals lglgN lgN   Nlg 
lgN 

N 

Conclusions: 
• Doubly Logarithmic Max with fast algorithm is fast and reasonably efficient. 
• Doubly Logarithmic Max with tree algorithm is no faster than standard binary tree 

reduction algorithm but is still work efficient. 
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Fast, Efficient CRCW Max 
 

• Accelerated Cascading  

• Use Work Optimal Binary Tree Reduction Algorithm to Get Problem Size 
Reduced -- Don’t go too far; don’t quit too soon 

• Finish with Work Suboptimal, Fast Algorithm 

 

• In Case of max 

• Use lg N algorithm for lg lg lg N levels 

• Reduces size to N / 2 lg lg lg N = N/lg lg N elements in  
lg lg lg N steps = O(lg lg N), taking O(N) work. 

• Next, use CRCW doubly log-depth super fast algorithm.  

• This requires no more than O(lg lg N) steps,  
Work is O(N/lg lg N × lg lg (N / lg lg N)) = O(N) 

 

• The Total is O(lg lg N) Time and O(N) Work 
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Taking Max to the Max 
 

Summary of Accelerated Cascading 

Accelerated Cascading: 
• Use work optimal, not super fast algorithm to reduce problem size. 
• Use work suboptimal, super fast algorithm on remaining subproblem. 

Reduce problem using lg tree algorithm for lg lg lg N levels 
Work is O(N) since work for lg N levels is O(N) 
Time is number of levels = lg lg lg N = O(lg lg N) 
# of nodes left is N / 2 lg lg lg N = N / lg lg N 

Attack remaining problem using CRCW doubly log algorithm 
Time is clearly O(lg lg N) since it is this fast on N values 
Work is O(N/lg lg N × lg lg (N / lg lg N)) = O(N) 

Conclusions: 
• Accelerated Cascading Max is fast and optimally work efficient. 
• This is another case of using two types of specialists. 

One is work efficient and reasonably fast 
The other is very fast, but not real work efficient 

 The sum total is a fast, work efficient algorithm 
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PCN – Program Composition Notation 
 
Principle: 

First-Class Concurrency: not an add-on 
Controlled Non-Determinism: do it out of intent 
Compositionality: easy to understand compositions 
Mapping Independence: results independent of mapping 

Realization of Principles: 
Definitional Variables: an abstract machine-independent model of 

communication and synchronization 
Concurrent Composition: compose simple components into lightweight 

concurrent tasks that communicate and synchronize through definitional 
variables 

Non-Deterministic Choice: while predictable computation is usually 
desirable, reactive programs can benefit from non-determinism 

Encapsulation of State: disallow sharing of data structures that are subject to 
change in order to avoid unintended non-determinism 
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Definitional versus Mutable Variables 
 
Definitional: 

Initially have undefined value 
Can be defined just once – like in Strand 
The definition operator is = 
Can receive a tuple, int, double or char value 
An attempt to read an undefined definitional variable blocks the reader. 
Are recognized by being undeclared variables 
Can be shared across parallel compositions 

 
Mutable: 

Initially are arbitrary value 
Can be defined many times – like in C 
The assignment operator is := 
Can receive an int, double or char value 
An attempt to read a mutable variable always succeeds. 
Are recognized by being explicitly declared variables 
Cannot be shared across parallel compositions 
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Compositions (Sequential and Parallel) 
 
Sequential: uses no operator or the semicolon (;) 

{ ;  block0,  block1,  … ,  blockk } 
blocks are executed in the given order 

Parallel: uses the double bar (  ) 
{  block0,  block1,  … ,  blockk } 
blocks are executed concurrently with the guarantee of fairness in that each 

must eventually make progress 
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Compositions (Choice) 
 

Choice: uses the question mark ( ? ) 
{ ? guard0 → block0, guard1 → block1,… , guardk → blockk } 
guards may be evaluated in any order or in parallel; each guard’s Boolean 

expression is evaluated left to right; a guard blocks if it references an 
undefined definitional variable; if all guards fail, no action occurs; if one 
succeeds, its block is executed; if more than one succeeds, one of the 
selected blocks is non-deterministically chosen 

each guard is a sequence of one or more tests using 
arithmetic comparison (a < b, a > b, a <= b, a >= b) 
equality tests (a == b, a != b) 
type tests (int(a), char(a), double(a), tuple(a)) 
synchronization tests (data(a)) 
tuple matches (?=) 
default action (default) 

Note this is based on CSP notation 
(cooperating sequential processes) 
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Tuples 
 
Tuple Form:  

{ term0,  term1,  … ,  termk-1  }, k≥0 
where each term is a definitional data structures, including _ which is an 

anonymous definitional variable 
examples: {a, b}   {“abc”}   {}   {12, {13, {} }}  {5.2, _, _, c} 

Tuple Creation and Access:  
{  proc(1, {x, y, {z} } ), x = “abc”, y = {123} } 

passes the tuple {“abc”, {123}, {z}} as proc’s 2nd argument 
the same effect can be achieved by 

{  make_tuple(3,tup), proc(1, tup ), 
tup[0] = “abc”, tup[1] = {123}, tup[2] = {z} } 

from above it is clear that indices can be used to access tuple parts 
A tuple guard test (?=) can be used for matching as in 

tup ?= {“abc”, a, {b}} which matches the above tuple with 
a = {123} and b = z. 

Note tuple guards are not unification.  Defns. are passed from left to right, only. 
List access can also be used where {1, {2, {3, {} } } } can be denoted as [1, 2, 

3] and this is of form [h | t] where h=1 and t=[2, 3].  This is like in Prolog and 
LISP. 
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PCN Examples 
 
Define r as TRUE if e is a member of the list l. 
#define TRUE 1 
#define FALSE 0 
member(e,  l, r) 
{? l ?= [v | l1], v == e → r = TRUE, 
 l ?= [v | l1], v != e → member(e, l1, r), 
 l ?= [ ] → r = FALSE 
} 
Compute the height z of binary tree t. 
Use {left, root, right} to represent a node. 
height(t, z) 
{? t ?= {left, _, right} → 
 {   height(left, l), height(right, r), 
  {? l >= r → z = l+1, 
   l < r -> z = r+1 } 
 } , 
 t ?= { }  → z = 0 
} 
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Another PCN Example 
 
Compute the preorder traversal in p of binary tree t. 
Use {left, root, right} 
 to represent a node. 
 
preorder(t, p) 
{ build_pre(t, p, [ ])  
} 
 
build_pre(t, b, e) 
{? t ?= {left, val, right} → 
 {   b = [val | m1], 
  build_pre(left, m1, m2), 
  build_pre(right, m2, e) 
 } , 
 t ?= { }  →  b = e 
} 
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 Pre-Order Traversal in PCN 
 
The expression tree 
 

+

B

C

*

A  
 
is represented as: 
 

*

+

C[ ] [ ]

B

[ ] [ ]A

[ ] [ ]
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Invoking the PCN Code 
 

t = 

*

+

C[ ] [ ]

B

[ ] [ ]A

[ ] [ ]

 b = Undefined e = [ ] 
 
This matches the first condition, so we bind 

left = 

+ B

[ ] [ ]A

[ ] [ ]

 value = * right = C[ ] [ ]
 

 

b = m1*  m1 = Undefined m2 = Undefined 
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Level 2 Invocation of build_pre 
 

t = 

+ B

[ ] [ ]A

[ ] [ ]

 
b = Undefined 
e = Undefined (bound to parallel calls b) 
 
This matches the first condition, so we bind 

left = [ ] [ ]A  
value = + 

right = B[ ] [ ]  
 

b = m1+  
m1 = Undefined 
m2 = Undefined 
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Parallel Level 2 Invocation of build_pre 
 

t = C[ ] [ ]  
b = Undefined (bound to parallel calls e) 
e = [ ] 
This matches the first condition, so we bind 
left = [ ] 
value = C 
right = [ ] 

b = C m1  
Due to easy case with [ ] call we have 
m1 = m2 (since b = e in the new call) 
Due to easy case with [ ] call we have 
m2 = e = [ ] 
and, in consequence, 
 

b = C [ ] , and this is also value of parallel e 
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Level 3 Invocation of build_pre 
 

t = A[ ] [ ]
 

b = Undefined 
e = Undefined (bound to parallel calls b) 
 
This matches the first condition, so we bind 
left = [ ] 
value = A 
right = [ ] 
 

b = A m1  
Due to easy case with [ ] call we have 
m1 = m2 (since b = e in the new call) 
Due to easy case with [ ] call we have 
m2 = e = parallel calls b 
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Parallel Level 3 Invocation of build_pre 
 

t = B[ ] [ ]
 

b = Undefined (bound to parallel calls e) 

e = C [ ]  (bound to parallel level 2 ) 
 
This matches the first condition, so we bind 
left = [ ]  value = B right = [ ] 

b = B m1  
Due to easy case with [ ] call we have 
m1 = m2 (since b = e in the new call) 
Due to easy case with [ ] call we have 

m2 = e = C [ ]  and, in consequence, 

b = C [ ]B , and this is also value of parallel e 
All the pieces are now defined, and original  

b = 
C [ ]BA+*
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Logic Programming – A Prolog Program 
 
First Program 

chase( X, Y)  :- dog( X ), cat ( Y ). 
cat( fuzzy ). 
cat( pumpkin ). 
dog( rover ). 

Query 
?-chase(X, fuzzy). 

Answer 
X = rover 

Query 
?-chase(fuzzy, Y). 

Answer 
No 

Query 
?-chase(X, Y). 

Answer 
X = rover, Y = fuzzy 
X = rover, Y = pumpkin 
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The Vocabulary of Logic Programming 
 
The basic element in a Prolog program is a term. 
 
Terms can be simple – variable or constant 
or complex – a functor and arguments or a list. 
 
A variable is an upper case name. 
 
A constant is a number or a lower case name. 
 
A functor is also lower case. 
 
A list is a predefined functor of two arguments which is written in the form 
[head | tail], where head is the first element of the list and tail is the 
remainder.  The corresponding functor is just concatenation. 
 
A variable can be bound only once to another term 
 
Binding normally occurs through unification, where a variable must match 
another term 
 
A clause has a head and an optional body. 
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Programs and Clauses 
 
Example general forms of clauses are 
H. 
or  
H  :–  B1 ,  B2 ,  …  ,  Bn. 
The first clause states a fact, e.g., 
factorial ( 5, 120 ). 
 
The second states that proposition H is supported by the truth of all of B1 ,  
…   Bn.  We read 
factorial ( N, Fact1) :– 
  N>0, factorial ( N-1, Fact2 ), Fact1 = N * Fact2. 
as “the proposition that N is related to Fact1 by the functor factorial is 
supported if N>0, and N-1 is related to Fact2 by the functor factorial, and 
Fact1 is equal to N times Fact2.” 
 
We also say that we can achieve the goal factorial(N, Fact1), if we can 
achieve the other subgoals. 
 
Running a Prolog program consists of posing a query,  e.g.,  
?– factorial ( 5, Fact) 
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Another Prolog Program 
 
Second Program 

append( [ ], Y, Y). 
append( [H | X], Y, [H | Z] ) :- append( X, Y, Z). 

Query 
?-append( [a, b], [c, d], Z). 

Answer 
Z = [a, b, c, d] 

Query 
?-append( [a, b], Y, [a, b, c, d] ). 

Answer 
Y = [c, d] 

Query 
?-append( X, [c, d], [a, b, c, d] ). 

Answer 
X = [a, b] 

Query 
?-append( X, [c], [a, b] ). 

Answer 
No 
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Abstract Prolog Sample 
 
Prolog Program 

p(X, Y) :- q(X), r(X, Y). 
q(4). 
q(X) :- s(X), t(X). 
r(X, Y) :- u(X), v(Y). 
r(X, 3) :- w(X). 
s(5). 
s(6). 
t(6). 
u(1). 
v(3). 
w(6). 

Query 
?-p(X, Y). 

Answer 
X = 6,  Y = 3 
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Solution Tree (Depth First) 
 
 
 

p(X,Y)

q(X), r(X,Y)

r(X,Y) s(X), t(X), r(X,Y)

u(X), v(Y) w(X)
t(X), r(X,Y) t(X), r(X,Y)

fail fail fail r(X,Y)

fail

w(X)u(X), v(Y)

solution

X=4

Y=3 X=5 X=6

Y=3
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Prolog Sort of Knows Numbers 
 
 
Triangular Numbers 
 

tri (0, 0). 
tri (N, R) :- 
 N1 = N - 1, 
 tri (N1, R1), 
 R = N + R1. 

Query 
?-tri (4, Ans). 

Answer 
Ans = 10 

Query 
?-tri (Row, 10). 

Answer 
Maybe 
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CLP-R Really Knows Real Numbers 
 
 
Triangular Numbers 
 

tri (0, 0). 
tri (N, N + R) :- 
 N ≥ 1, 
 tri (N-1, R). 

 

Query 
?-tri (4, Ans). 

 
Answer 

Ans = 10 
 

Query 
?-tri (Row, 10). 

 
Answer 

Row = 4 
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Logic Programming and Parallelism 
In logic programming there are 3 clear opportunities for parallelism.  Or-
parallel pursues multiple choices.  This requires separate traces with 
separate data spaces for each option so backtracking can be done and so 
the variable bindings of the choices are kept separate.  And-parallel makes 
a choice and then follows one or more of the terms in this clause in 
parallel.  Only one data space is required since each path shares the same 
bindings.  The problem here is variable locking or data flow (generator-
consumer) analysis to avoid variable locking.  Unification-parallel matches 
heads of clauses in parallel.  This is orthogonal to the other two types of 
parallelism.  It is, in fact, possible to combine all three in a given system. 
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And-Parallelism 
 
 

In the clause 
 
 H  :–  B1 ,  B2 ,  …  ,  Bn. 
 
The subgoals B1 ,  B2 ,  …  ,  Bn must be simultaneously satisfied.  An 
obvious form of parallelism is to do all n subgoals in parallel.  There are 
some associated problems 
 
1) What if two or more of the subgoals reference the same variable?  This 

can create a problem if both try to write it at the same time.  They might 
both assume success if the variable starts as unbound (free to receive a 
value.) 

 
2) What happens if a conflict is found?  Won’t backtracking be very 

complicated? 
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Sharing a Variable 
 
 

Example: 
 F(X,Y) :– G(X), H(X,Y). 
 G(0). 
 H(1,1). 
 H(0,0). 
Clearly 
 ?– F(X,Y) 
should be answered X=0,Y=0. 
 
But, how do we protect X if we are matching G(X) to G(0) at the same time 
as we are matching H(X,Y) to H(1,1)?  The conflict may go unnoticed! 
 
We could add a lock to X’s access.  But that would make access very time 
consuming. 
 
We could apply data flow analysis – either static or dynamic.   
 
We could use a generator / consumer approach. 
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Data Flow Analysis 
 
Consider the following abstract clause 

p0

p3

p4

p2

p1

p5

t,v u

t

v,w

v

u

w

p0(t, u, v, w) :– 
        p1(t,v), 
        p2(t,w), 
        p3(v,w), 
        p4(u), 
        p5(u,v). 

 
Once p0 is unified to some goal, we must satisfy the subgoals p1, p2, p3 , 
p4 and p5.  We could run p1 and p4 in parallel.  Once p1 is done we could 
start a process for p2.  p3 has to await completion of p2, and p5 must await 
completion of both p3 and p4.  This approach would retain the LR 
semantics whenever a choice is possible. 
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Generator / Consumer 
 
 

A problem with the data flow approach is that it doesn’t work very 
effectively if we can’t distinguish clauses that assign from clauses that use 
bindings.  The generator consumer approaches are similar to data flow, 
except that they release a subgoal for processing as soon as its turn 
comes or its variables have bindings assigned by others.  So for the 
previous example, we would release all subgoals if p0’s unification bound 
all variables.  Or less dramatically, we would release p2 with p1 and p4, if 
p0 provided a binding for t.   
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Backtracking 
 
 

Once an error is found in one of the subgoals of a goal B, we must 
backtrack in an intelligent manner.  This is a difficult topic that I will not 
really cover, but I’ll point out a few problems. 
 
Bindings must be undone. 
 
We cannot backtrack above some choice point that could have succeeded. 
 
It is foolish to try an option that is guaranteed to fail.  
 
Backtracking is considerably harder if we add in or-parallelism. 
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Guarded Clauses 
 
 

A guarded clause is one that starts with a set of right-hand conditions that 
must be satisfied for the clause to apply.  Guards are like selects in Ada 
and can be used effectively to control parallelism. 
 
A clause of the form 
 
H  :–  G1 ,  G2 ,  …  ,  Gm | B1 ,  B2 ,  …  ,  Bn. 
 
means that the m guards, G1 ,  G2 ,  …  ,  Gm, must be satisfied in order to 
satisfy H through the n subgoals, B1 ,  B2 ,  …  ,  Bn. 
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Strand 
Strand focuses on what is called committed choice.  That is, it commits to 
one of the or choices and parallelizes on the ands.  This avoids keeping 
multiple traces and having to backtrack, but does not avoid the problems of 
data flow.  Since Strand is a write-once (single assignment) language, a 
variable whose value is bound cannot be overwritten.  In fact, an attempt to 
change the value is an error that leads to backtrack in normal Prolog, but 
denotes an error in a committed choice language. 

General forms of clauses in Strand are 

H  :–  G1 ,  G2 ,  …  ,  Gm | B1 ,  B2 ,  …  ,  Bn. where m,n≥0 

Recall that lower case names are constants (or predicates or functions) and 
upper case names are variables. 

max(X,Y,Z) :- X>Y | Z := X. 

max(X,Y,Z) :- X=<Y | Z := Y. 

In standard Prolog, we would write as 

max(X,Y,X) :- X>Y. 

max(X,Y,Y) :- Y>=X. 
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Examples in Strand 
power(X,N,R) :- N==0 | R := 1. % := is simple assign 
power(X,N,R) :- N == 1 | R := X. 
power(X,N,R) :- N>1 | 
     N1 is N-1, % is means calculation 
     power(X,N1,R1), 
     R is X * R1. 
Consumer-Producer in Strand: 
main( ) :-     % initial process pool 
 producer(100, Buffer),  
 consumer (Buffer).  % buffer is shared by tasks 
producer(Count, Buffer) :- Count > 0 |  % guard 
 get_input(Input),   % keyboard 
 Buffer := [Input | Buffer1] % push 
 Count1 is Count-1,   % single assignment 
 producer(Count1,Buffer1). % new producer 
producer(Count, Buffer) :- Count == 0 | % guard 
 Buffer := [ ]    % no new data 
consumer([Head | Tail]) :- 
 Output := Head,   % display 
 consumer(Tail).   % new consumer 
consumer([ ]) :-    % empty buffer 
 Output := “Finished”.  % display 
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Summation in Strand 
main() :-      % initial process pool 
 generator(5,Stream),  % gen 1 … 5 
 sum (Stream,Sum).  % capture the sum 

generator(N,S) :- N > 0 |  % more to go 
 S := [N|S1],    % add N to list 
 N1 is N-1,    % one fewer to do 
 generator(N1,S1)  % new generator 

generator(0,S) :-    % implicit guard 
 S := [ ]     % no new data 

sum(L,Sum) :- 
 sum1(L,0,Sum).   % intial sum is 0 

sum1([X | Rest], A, Sum) :- 
 A1 is A + X,    % add X 
 sum1(Rest, A1, Sum). % complete the sum 

sum1([ ], A, Sum) :- 
 Sum := A.    % all done  
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Philosophical Programmers 
 
There are four programmers and only two keyboards and two monitors.  
Each programmer has a keyboard on one side and a monitor on the other.  
Programmers ponder until inspired.  Once inspired, a programmer tries to 
acquire a keyboard and a monitor.  Having completed a problem, the 
programmer returns to pondering. 
 
main :–  
 prog(ponder, P1), prog(ponder, P2), 
 prog(ponder, P3), prog(ponder, P4), 
 merger([merge(P1), merge(P2), merge(P3), merge(P4)],S), 
 monitor(S). 
 
monitor(In) :– initial(C),monitor(In,0,Q,Q,C). 
 
initial(S) :–  S := [set,set]. 
 
In Strand, a Merger is like a blackboard or message center.  It guarantees 
that the order in which messages are received is the order in which they 
are output. 
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More Philosophical Programmers 
 
monitor([req(R)|In],N,F,B,[]) :– 
 B := [R|B1], N1 is N+1, 
 monitor(In,N1,F,B1,[]). 
monitor([req(R1)|In],N,F,B,[R|C]) :– 
 R1 := R, 
 monitor(In,N,F,B,C). 
monitor([rel(R)|In],N,[R1|F],B,C) :– 
 R1 := R, N1 is N-1, 
 monitor(In,N1,F,B,C). 
monitor([rel(R)|In],0,F,B,C) :– 
 monitor(In,0,F,B,[R|C]). 
monitor([],0,_,_,_). 
 
prog(ponder,S) :– prog(inspired,S). 
prog(inspired,S) :– 
 S := [req(R)|S1], 
 prog1(inspired,S1,R). 
prog(program,S) :– 
 S := [rel(set)|S1], 
 prog(ponder,S1). 
prog1(inspired,S,set) :– prog(program,S). 
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Binary Tree Building in Strand 
 

main(BinTree) :– 
generator(5, Stream), 
streamInsert(Stream, [ ], Bintree). 

generator(Count, Buffer) :– Count > 0 | 
get_input(Data), % Bind kb input (a number) to Data 
Buffer := [Data | Buffer1], 
Count1 is Count – 1, 
generator(Count1, Buffer1). 

generator(Count, Buffer) :– Count == 0 | 
Buffer := [ ]. 

 
streamInsert([ ], A, A). 
streamInsert([X | Rest], A, B) :– 

insert(X, A, C), 
streamInsert(Rest, C, B). 

 
insert(X, [ ], [X]).  % [X] is same as [X | Rest] where Rest == [ ] 
insert(X, [X | Rest], [X | Rest]). 
insert(X, [Y | Rest], [Y | [X] ]) :– Rest == [ ], X < Y | 

true.    % just need to satisfy the guards 
insert(X, [Y | Rest], [Y | [ [ ] | [X]] ]) :– Rest == [ ], X>Y| 

true.    % just need to satisfy the guards 
insert(X, [Y | [L | R] ], [Y | [L1 | R] ]) :– X < Y | insert(X, L, L1). 
insert(X, [Y | [L | R] ], [Y | [L | R1] ]) :– X > Y | insert(X, R, R1). 
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Monitors via Semaphores 
 
Shared variables 

sem e= 1;  // one per monitor 
int nc = 0;   // one per cond 
queue q;  // one per cond 
sem private [N]; // one entry per process 
 
entry:  P(e); 
 
wait(cv): cv.nc++; cv.q.insert(myId); V(e); P(private[myId]); P(e); 
 
signal(cv): if (cv.nc > 0) { 
    cv.nc--; 
    V(private[cv.q.remove()]); 
   } 
 
exit:  V(e); 
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Channels 
 
chan ch ( signature ) 
 chan input ( char )  // used for character messages 
 chan disk_access ( int cylinder, int block, int count, char* buf ) 

chan result[n] (int)  
 
send ch (args) 
receive ch (args)  // blocking 
empty (ch);   // predicate 
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Line Assembly – not assembly line 
 
chan input(char), output(char[MaxLine]); 
 
process charToLine { 

char line[MaxLine]; int i = 0; 
while (true) { 

receive input (line[i]); 
while (line[i]!=CR && i<MaxLine) receive input (line[++i]); 

} 
line[i] = EOL; 
send output (line); 
i = 0; 

} 
 



COP 4520 — Concepts of Parallel and Distributed Processing – 256 – © Charles E. Hughes — UCF Computer Science Dept. 

Sorting Network 
 
chan in1(int), in2(int), out(int); 
 
process merge { 

int v1, v2; 
receive in1(v1); 
receive in2(v2); 
while (v1 != EOS && v2 != EOS) { 

if (v1 <= v2) { send out(v1); receive in1(v1); } 
else { send out(v2); receive in2(v2); } 

} 
if (v1==EOS) 

while (v2 != EOS) { send out(v2); receive in2(v2); } 
else 

while (v1 != EOS) { send out(v1); receive in1(v1); } 
send out(EOS); 

} 
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Client/Server – one service 
 
chan request(int clientID, types of input values); 
chan reply[n](result type); 
 
process server { 

int clientID; 
while (true) { 

receive request(clientID, inputs); 
// carry out operation 
send reply[clientID](results); 

} 
} 
process client [j=0 to n-1] { 

send request(j, args); 
receive reply[j](results); 

} 
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Client/Server – several services 
 
chan request(int clientID, op, types of input values); 
chan reply[n](result type); 
 
process server { 

int clientID; op_kind kind; 
while (true) { 

receive request(clientID, kind, inputs); 
// cases to carry out various kinds of ops 
send reply[clientID](results); 

} 
} 
process client [j=0 to n-1] { 

send request(j, op, args); 
receive reply[j](results); 

} 
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Self-Scheduling Disk Driver 
 
chan request(int clientID, int cyl, other arg types); 
chan reply[n](result type); 
process diskDriver { 

queue left, right; int clientID, cyl, headpos=1, nsaved=0; 
while (true) { 

while (!empty(request) || nsaved==0) { 
receive request(clientID, cyl, …); 
if (cyl<=headpos) left.insert(clientId, cyl, …); 
else right.insert(clientId, cyl, …); 
nsaved++; 

} 
if (left.size() == 0) get request from right 
if (right.size() == 0) get request from left 
else get better of two 
change head pos; nsaved--; 
send reply[clientId](result); 

} 
} 
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CSP – Communicating Sequential Processes 
 
Simple Communication 

B ! e  
send expression e to process B 

A ? x  
accept an expression copied into variable x from process A 

Each process blocks until a match occurs (rendezvous) 
 
More complex version of this is 
 Destination ! port (e1, e2, … , e4); 
 Source ? port (x1, x2, … , xn); 
 
do B1 → S1 [ ] B2 → S2 [ ] … [ ] Bk → Sk od 
if B1 → S1 [ ] B2 → S2 [ ] … [ ] Bk → Sk fi 
 
are guarded commands that lead to choice if more than one guard is true 
and failure if all are false. Think of [ ] as “or.” More complex guarded 
communications will be discussed later. 
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GCD in CSP 
 

process GCD { 
 int id, x, y; 

do true → 
Client[*] ? args(id, x, y); 
do  

x>y → x = x – y; 
[ ]    

x<y → y = y – x; 
od 
Client[id] ! result(x); 

od 
} 
 
Client[i] does GCD ! args(i,v1,v2); GCD ? result(r); 



COP 4520 — Concepts of Parallel and Distributed Processing – 262 – © Charles E. Hughes — UCF Computer Science Dept. 

Guarded Communication 
 

B; C → S1  
B is an optional Boolean expression; C is a communication primitive 
B and C together are the guard. 
A guard succeeds if B is true and C causes no delay. 
A guard blocks if B is true but C is not ready. 
A guard fails if B is false. 
A do or if will choose non-deterministically when multiple choices succeed. 
A do or if will block if none of its choice succeed and at least one blocks. 
A do terminates if all its guarded choices fail. 
An if fails if all its guarded choices fail. 
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Allocator in CSP 
 

process allocator { 
int avail = MaxUnits; set units = initial values; 
int index. unitId; 
do avail>0;  

Client[*] ? acquire(index) → 
avail --; 
remove(units, unitId); 
Client[index] ! reply(unitId); 

[ ]  
Client[*] ? release(index) → 

avail++; 
insert(units, unitId); 

od 
}  
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Program Flow Analysis 
 
Basic type is Scalar Analysis 

 Concentrates on simple variable names 

 Indexed array ref. A[I] is treated as a reference to all of object A 

 This basic coverage ignores aliasing (multiple names for same object) 

Basic Block 

 One in, one out sequence of code 

Local Analysis – done on single basic blocks 

Intraprocedural Analysis – done within procedures 

Interprocedural Analysis – done across procedures 

Control Flow 

 intra creates flow graph with procedure entry as initial node 

 inter creates a call graph with main body as initial node 

Data Flow 

 determines accessibility of definitions and uses to each other 

 UD chaining – given a variable use, what definitions reach this use 

 DU chaining – given a variable definition, what uses are made of it 
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Data Flow Notations 

Program P consists of procedures, one of which is denoted p. 

We assume one entry / one exit procedures.  
A flowgraph G = (N, E, s) refers to a directed graph (N, E) and an initial node s in N, where there is a path 
from s to every node of G. Nodes can be statements or basic blocks. Commonly, they are the latter. 

Program SquareRoot; 
var L, N, K, M : integer; C : boolean; 
begin 
 (* start of block B1 *)  read(L); N := 0; K := 0; M := 1; (* end of block B1 *) 
 loop 
  (* start of block B2 *) 
  K := K + M; C := K > L; 
  if C then break; (* end of block B2 *) 
  (* start of block B3 *)  N := N + 1; M := M + 2  (* end of block B3 *) 
 end loop; 
 (* start of block B4 *) write(N)  (* end of block B4 *) 
end.  (* SquareRoot *) 



COP 4520 — Concepts of Parallel and Distributed Processing – 266 – © Charles E. Hughes — UCF Computer Science Dept. 

Extracting Loops 
 
Let G = (N,E,s)  

(1) a node s’ ∈ N is the entry point for a loop in G iff there is an n’ ∈ N such that  
(n’,s’) ∈ E and s’ ≤ n’.  (n’ branches back) 

(2) Let s’ be an entry point of a loop. The max loop with entry s’ is G’ = (N’,E’,s’), where 
N’ = {n” | ∃ a path from n” to s’ which contains only nodes “dominated” by s’}. 
s’ dominates n” if s’ is on every path from s (start node) to n”. E’=E ∩ (N’×N’) 

To do data flow analysis we wish to obey dominances, doing loop entries before their bodies, if conditions 
before their choices, etc. 
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Depth First Numbering 
 
A depth first traversal can be used to number nodes so that 

n’ < n (n’ dominates n) implies #(n’) < #(n). 

This is a total ordering that obeys all the restrictions of the partial ordering ≤. 

DFT( G : flowgraph )   (* G = (N,E,s) *) 
 E’ = { }; 
 i := | N |; 
 for every n in N do mark[n] := false; 
 search( s ) 
 
Search( n : node ) 
 mark[n] := true; 
 while unmarked_successors[n] ≠ { } do begin 
  n’ := select( unmarked_successor[n] ); 
  E’ := E’ + { (n,n’) }; 
  Search( n’ ) 
 end; (* while *) 
 rPostOrder[n] := i; 
 i := i – 1 
 
This produces one of the natural orders.  Visiting nodes based on these numbers speeds up data flow 
analysis. 
Note n ≤ n’ implies rPostOrder[n] ≤ rPostOrder[n’]. 
Arcs are forward (unvisited node); back (visited but not numbered); cross (numbered). 
Back arcs denote loops. 
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Categorizing Arcs in DFS Tree 
 

1

2

4

5

6

9

3

10

78 cross

back

back

forward
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More Notation 
 
S_DEFS = { s | s is a statement that defines variables } 

S_USES = { s | s is a statement that uses variables } 

DEF[s] = { v | s is a definition of variable v } 

USE[s] = { v | s is a use of variable v } 

DEF[n] = { v | ∃ an outward exposed defn of v in n } 

USE[n] = { v | ∃ an outward exposed use of v in n } 

PRE[n] =  VAR – DEF[n]  /* preserved defs */ 

S_DEF[n] = { s | s is an outward exposed defn in n } 

S_USE[n] = { s | s is an outward exposed use in n } 

S_PRE[n] = { s’ | s’ ∈ S_DEFS and, for all 
s ∈ S_DEF[n], DEF[s'] ≠ DEF[s] } // PRE stands for preserves 

 

Reaching Definitions 

RD[n] = { s | s ∈ S_DEFS and s reaches n } 

UD[n, v] = { s’ | s’ ∈ RD[n] and v ∈ DEF[s'] } 

DU[n’, v] = {s | s ∈ S_USE[n] for some n ∈ N, 
v ∈ USE[s] and s’ ∈ UD[n, v] } 



COP 4520 — Concepts of Parallel and Distributed Processing – 270 – © Charles E. Hughes — UCF Computer Science Dept. 

Types of Data Flow 

Notation: For any node n, pred[n] is the set of all immediate predecessors of n and  
succ[n] is the set of all immediate successors. 

ReachIn[n] = { s | p ∈ pred[n] and s ∈ ReachOut[p] }  

ReachOut[n] = (ReachIn[n] ∩ S_PRE[n]) ∪ S_DEF[n] 

In some papers this is (In[n] - Kill[n]) + Gen[n] 

In any case, we have a recurrence relation and hence seek a fixed point.  We want the least fixed point. 
 
MAY – determine if a property may be possible. This is attacked by assuming no elements satisfy, then 

union in all those that might have the property. By starting with the empty set, we get the Least Upper 
Bound (LUB).  This is conservative. 

MUST – determine if a property must be true. This is attacked by assuming all elements satisfy, then 
intersecting all those that must have the property. By starting with the everything, we get Greatest 
Lower Bound (GLB).  This is conservative. 

FORWARD FLOW – information flows from the root towards leaves of the control flow graph. 

BACKWARD FLOW – information goes from the leaves towards the root of the control flow graph. 

Reaching Definitions is MAY / FORWARD FLOW 
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Reaching Definitions Algorithm 
 
For i := 1 to NBlocks do begin 

 ReachOut[i] := S_DEF[i]; 

 ReachIn[i] := { } 

end; 

change := true; 

while change do begin 

 change := false; 

 for i := 1 to NBlocks do begin 

  newIn := { s | p ∈ pred[n] & s ∈ ReachOut[p] }; 

  if ReachIn[i] ≠ newIn then begin 

   ReachIn[i] := newIn; 

   oldOut := ReachOut[i]; 

   ReachOut[i] := 

    (ReachIn[i] ∩ S_PRE[i]) ∪ S_DEF[i]; 

   if oldOut ≠ ReachOut[i] then change := true 

  end 

 end 

end 
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Scalar Data Dependence 
S1:  A := 1.0; 
S2:  B := A + 3.1415; 
S3:  A := .333 * (C – D); 
…  … 
S4:  A := (B * 3.8) / 2.718; 
 
S2 is true dependent on S1 
S3 is anti-dependent on S2 
S4 is output dependent on S3 
 

S1

S2

S3

S4

ou t

tru e

tru e

an ti

ou t

 
 
Can use scalar data flow analysis to determine these dependencies. 
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Vector Data Dependence 
 
 for i := 1 to 100 do begin 
S:  A[2*i] := B[i] + 1; 
S’:  D[i] := A[2*i + 1] 
 end 
 
If treat A, B and D as scalars then S’ is true dependent on S and S is anti-dependent on S’.  But it can’t be so 
since S references only even numbered elements of A and S’ references only off numbered elements of A.  
Thus, we can do the iterations independently.  But how do we recognize this?  The basis is Diophantine 
analysis – provided indices are linear in the for variable.  In above, we can ask if there is an integral solution 
to 
 
1 ≤ X, Y ≤ 100 such that 2X = 2Y + 1 
 
The answer is no, hence the indices cannot overlap.  Even if we had for i:=1 to N, we can determine this. 
 
 for i := 2 to 10 do begin 
S:  A[i] := B[i] + 1; 
S’:  D[i] := A[i – 1] 
 end 
 
The relation is X = Y – 1, for 2 ≤ X, Y ≤ 10.  Can solve for all 2 ≤ X ≤ 9, so there is true dependence. 
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Testing Data Dependence 

There are exact and inexact (but faster) tests for the existence of solutions to linear Diophantine equations.  
There is no test for polynomials of degree ≥ 4, and in fact exact solutions for lower degree polynomials are 
very hard. 
One simple test is the GCD (Greatest Common Divisor) test.  It is easiest seen by example. 
 for i := 1 to N do 
  for j := 2 to M do begin 
S:   A[2*i + 2*j] := …; 
…   … 
S’:   … := A[4*i – 6*j + 3] 
  end 

These are independent if there is no solution to 2 A + 2 B = 4 C – 6 D + 3 
Can rewrite as 2 A + 2 B – 4 C + 6 D = 3 
But evenness of left says no solution is possible.  This is recognized by gcd(left) = 2, gcd(right) = 3, but 2 is 
not a divisor of 3. 
The technique is conservative, especially since it ignores regions.  So, it says the following are possibly 
dependent 

 for i := 0 to 10 do 
  for j := 0 to 10 do begin 
S:   A[2*i + j] := …; 
…   … 
S’:   … := A[–i + 2*j – 21] 
  end 

which translates to 2 A + B + C – 2 D = -21.  gcd(left)=1; gcd(right) = 21.  But the restriction that  
0 ≤ A, B, C, D ≤ 10 can be used to deny a solution since the left side can be no smaller than -20. 
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Examples of Vectorizing 
 
 for i := 1 to N do  
S:  A[i + 1] := A[i] * B[i] (* True Dependence *) 
============================================== 
 for i := 1 to 100 do begin 
S:  D[i] := A[i – 1] * D[i]; (* S depends on S’ *) 
S’:  A[i] := B[i] + C[i] 
 end 
Reorder S and S’ 
 for i := 1 to 100 do begin 
S’:  A[i] := B[i] + C[i] 
S:  D[i] := A[i – 1] * D[i]; (* S depends on S’ *) 
 end 
Loop Distribution 
 for i := 1 to 100 do 
S’:  A[i] := B[i] + C[i] 
 for i := 1 to 100 do 
S:  D[i] := A[i – 1] * D[i]; (* S depends on S’ *) 
Change to Vector Operations 
S’:  A[1:100] := B[1:100] + C[1:100] 
S:  D[1:100] := A[0:99] * D[1:100]; 
============================================== 
 for i := 1 to N do 
  for j := 1 to N do 
   C[i, j] := C[i – 1, j] – D[i – 1, j + 1] 
Dependence is on outer loop only, so vectorize as 
 for i := 1 to N do 
  C[i, 1:N] := C[i – 1, 1:N] – D[i – 1, 2:N+1] 
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Program Transformations Used to Parallelize Code 
 
Privatization -- Give each process a copy of a variable 
 
Scalar Expansion -- Replace a scalar by an array 
 
Loop Distribution -- Split one loop into two separate ones 
 
Loop Fusion -- Combine two loops into one 
 
Loop Interchange -- Interchange inner and outer loops 
 
Loop Unrolling -- Replace loop body and do fewer iterations 
 
Strip Mining -- Divide iterations of one loop into two nested loops 
 
Unroll and jam -- Combine interchange, strip mining and unrolling 
 
Loop Skewing -- Alter loop bounds to expose wavefront parallelism 
 
Loop Blocking (Tiling) -- Divide iteration space into rectangular blocks 
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Processes Scheduling Problem  
 

A Process Scheduling Problem can be described by 

m processors P1, P2, …, Pm, 

processor timing functions S1, S2, …, Sm, each describing how the corresponding 
processor responds to an execution profile, 

additional resources R1, R2, …, Rk, e.g., memory and other serially reusable items, 

a transmission cost matrix Cij (1 ≤ i , j ≤ m), based on processor data sharing, 

tasks to be executed T1, T2, …, Tn, 

task execution profiles A1, A2, …, An, 

a partial order defined on the tasks 
such that Ti < Tj means that Ti must complete before Tj can start execution, 

a communication matrix Dij (1 ≤ i , j ≤ n) where Dij can be non-zero only if Ti < Tj, 

weights W1, W2, …, Wn interpreted as the cost of deferring execution of a task. 
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Scheduling of Processes and NP-Completeness 
 

The intent of a scheduling algorithm is to minimize the sum of the weighted completion 
times of all tasks, while obeying the constraints of the task system.  Weights can be made 
unusually large to impose actual deadlines. 

The general scheduling problem is quite complex, but even simpler instances, where the 
processors are uniform, there are no additional resources, there is no data transmission, 
the execution profile is just processor time and the weights are uniform, are very hard. 

In fact, if we just specify the time to complete each task and we have no partial ordering, 
then finding an optimal schedule on two processors is an NP-complete problem. (The 
notion of NP Complete is on other overheads.) 



COP 4520 — Concepts of Parallel and Distributed Processing – 279 – © Charles E. Hughes — UCF Computer Science Dept. 

2-Processor Scheduling 
 
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 processors with an 
empty partial order < is the same as that of dividing a set of positive whole numbers into 
two subsets, such that the numbers are as close to evenly divided.  So, for example, given 
the numbers 
 
3, 2, 4, 1 
 
we could try a “greedy” approach as follows: 
put 3 in set 1 
put 2 in set 2 
put 4 in set 2 (total is now 6) 
put 1 in set 1 (total is now 4) 
 
This is not the best solution.  A better option is to put 3 and 2 in one set and 4 and 1 in the 
other.  Such a solution would have been attained if we did a greedy solution on a sorted 
version of the original numbers.  In general, however, sorting doesn’t always work. 
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2-Processor Scheduling 
 
Try the unsorted list 
7, 7, 6, 6, 5, 4, 4, 5, 4 
 
Greedy (Always in one that is least used) 
7, 6, 5, 5 = 23 
7, 6, 4, 4, 4 = 25 
 
Optimal 
7, 6, 6, 5 = 24 
7, 4, 4, 4, 5 = 24 
 
Sort it 
7, 7, 6, 6, 5, 5, 4, 4, 4 
 
7, 6, 5, 4, 4 = 26 
7, 6, 5, 4 = 22 
 
Even worse than greedy unsorted 
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2-Processor with Partial Ordering 

T1
1

T6
3

T5
3

T4
3

T2
2

T3
4

T1

T4T2

T3 T5 T6

List Schedule with L = {T1,T2,T3,T4,T5,T6}

T1 T3

T5 T6

T1 T3

T5 T6

T4

T2

T4

T2

T3

Non-Preemptive, Delays Allowed

Preemptive

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8
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Anomalies Everywhere 
 

T1 

3

T6 

4

T7 

4

T5 

4

T4 

2

T9 
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List Schedule with L = {T1,T2,T3,T4,T5,T6,T7,T8,T9}
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List Schedule with L = {T9,T8,T7,T6,T5,T4,T3,T2,T1}

T1

T4
T3

T2

T5

T6

1

2

3

4

5

6

7

8

9

10

11

T9

12

13

14

15

16

17

18

19

20

T7
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Use Original List with 4 Processors

T1

T4

T2

T3

T5

T6

1 3 5 7 9 11

T9

13 15 17 19

T7

T8

4 10 12 14 16 18 202 86
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More Anomalies 
 

Original List Schedule but with All Times Reduced by 1
2 6 8
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NP Problems 

There is a large class of problems for which no fast algorithms have been devised, but for 
which no proof has ever been presented that confirms the inherent intractability of these 
problems. 

Of particular interest is a class of problems that can be solved in polynomial time, 
provided we can always make the correct decision whenever the algorithm has a choice 
between courses of action. 

For example, consider the simple 2-processor scheduling problem, restructured as a 
decision problem.  We could just guess which processor to assign to each task.  Then it 
would be a simple matter to check to see if our guesses were correct.  This algorithm 
would clearly be polynomial, but it would only work if our guesses were correct on the 
first try.  If, in contrast, we had to try another guess and then another guess, we would be 
no better off than running a try all combinations algorithm. 

Such problem are said to be in NP, the class of problems solvable in polynomial time by 
a non-deterministic algorithm. 
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NP Problems and Parallelism 
 

The class NP includes all easy problems, since, if we can solve a problem in polynomial 
time without guessing, we can clearly solve it in polynomial time with guesses.  

The class NP can also be categorized as consisting of problems that can be solved in 
polynomial time on a machine that has an unbounded number of processors (the ultimate 
parallelism).  This should be evident, since we could alter the non-determinism so that it 
starts a separate machine for each guess.  We might have an exponential number of 
processors running in parallel, but no one of them will take more than polynomial time to 
gets its task done.  We then say “yes” to the original question if any of the processors 
says “yes”. 
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NP-Complete Problems 

The class NP has some members that are the hardest ones in this class.  These problems 
are called NP-Complete, and are such that, if any of them submits to a fast algorithm, 
then all the NP problems will have been shown to be easy.  Similarly, if any can be 
shown to be intractable then all NP-complete problems will have been shown to be 
intractable.  The 2-processor scheduling and the bin packing problems are instances of 
NP-complete problems. 

One of the big problems of modern computer science is the question 
“Is P = NP?” 
Here P stands for the class of problems that can be solved in polynomial time by a 
conventional, deterministic algorithm running on a machine with a bounded number of 
processors.  The solution to this question lies in our being able to determine the 
complexity of any NP-complete problem.  If we can demonstrate a conventional 
polynomial algorithm for any NP complete problem, then all such problems are in P, and 
hence are tractable.  If any NP-complete problem can be shown inherently exponential, 
then P ≠ NP. 
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Heuristics and NP-Completeness 
 

While it is not known whether or not P = NP?, it is clear that we need to “solve” 
problems that are NP-complete since many practical scheduling and networking problems 
are in this class.  For this reason we often choose to find good “heuristics” which are fast 
and provide acceptable, though not perfect, answers.  The First Fit and Best Fit 
algorithms we previously discussed are examples of such acceptable, imperfect solutions 
to bin packing. 
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Critical Path or Level Strategy – UET 
 

A UET is a Unit Execution Tree.  Our Tree is funny.  It has a single leaf by standard 
graph definitions. 

1. Assign L(T) = 1, for the leaf task T 

2. Let labels 1, …, k-1 be assigned.  If T is a task with lowest numbered immediate 
successor then define L(T) = k (non-deterministic) 

This is an order n labeling algorithm that can easily be implemented using a breadth first 
search. 

Note: This can be used for a forest as well as a tree.  Just add a new leaf.  Connect all the 
old leafs to be immediate successors of the new one.  Use the above to get priorities, 
starting at 0, rather than 1.  Then delete the new node completely. 

Note: This whole thing can also be used for anti-trees.  Make a schedule, then read it 
backwards.  You cannot just reverse priorities.  
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Applying Level Strategy to UET 
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Theorem:  Level Strategy is optimal for unit execution, m arbitrary, forest precedence 
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Level Strategy – DAG with Unit Time 

1. Assign L(T) = 1, for an arb. leaf task T 

2. Let labels 1, …, k-1 be assigned.  For each task T such that 
 
{L(T’) is defined for all T’ in Successor(T)} 
 
Let N(T) be decreasing sequence of set members in 
 
{S(T’) | T’ is in S(T)} 
 
Choose T* with least N(T*). 
Define L(T*) = K. 

This is an order n2 labeling algorithm. Scheduling with it involves n union / find style 
operations.  Such operations have been shown to be implementable in nearly constant 
time using an “amortization” algorithm. 

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence. 
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Sample Scheduling Question#1 
 
Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of 
processors, and we wish to minimize the time at which the last task completes. 

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto 
four processors?  Answer by showing a Gantt chart for the resulting schedule (write the task ID into each 
time/processor slot used.) 
(T1,1) (T2,1) (T3,3) (T4,3) (T5,2) (T6,2) (T7,4) 

     
Now show what would happen if the times were sorted non-decreasing. 

     
Now show what would happen if the times were sorted non-increasing. 

     
This problem is, in general, NP-complete.  Given this fact, what is the complexity of the best known optimal 
scheduling algorithm?  Is this the theoretical lower bound on the problem’s inherent complexity?  If not, why not?  
If so, how do we know this? 
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Sample Scheduling Question#2 
 
Some scheduling problems can be efficiently solved using a level (critical path) algorithm.  The first step of such 
an algorithm is the assignment of priorities (lowest is 1) to each task and the creation of a list schedule based on 
these priorities.  Unit execution time tasks with a forest (or anti-forest) task graph are amenable to a level 
algorithm.  Given the following such system, assign priorities to the right of each task as represented by a dot (•), 
then show the resultant 3-processor schedule.  

   •

•
••

•

•

•
•

•

•

•

• •
•
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HLA Time Management 
 

Timing Problems 

Critical when there’s an observer/interactor 

Time (real-time)

A

B

C

fire event

destroyed
event

 

Message Ordering  

Receive Order 

Priority Order 

Time Stamp Order 

Causal Order 
CATOCS (causally and totally ordered communications support) 
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IBM TSpaces and our Bid.com Example -- BidItem 
 
package bid; 
 
import java.io.Serializable; 
 
/** 
 * Title:        TSpaces bid.com 
 * Description:  A prototypical bid system implemented using IBM TSpaces 
* @author Charles E. Hughes 
*/ 
 
public class BidItem implements Serializable { 
 
  String item; 
  String price; 
 
  public BidItem(String item, String price) { 
    this.item = item; 
    this.price = price; 
  } 
} 
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BidTuple # 1 
 
package bid; 
 
import com.ibm.tspaces.*; 
import java.io.Serializable; 
 
public class BidTuple extends SubclassableTuple implements Serializable { 
 
  /** 
  ** Default constructor will build a template that would match 
  ** all bid tuples in the space. 
  */ 
  public BidTuple() throws TupleSpaceException { 
    super(new Field(String.class),new Field(String.class)); 
  } 
 
  /** 
  ** Constructor with only key specified  will build a template 
  ** for retrieving the data 
  */ 
  public BidTuple(String key)  throws TupleSpaceException { 
    super(key,new Field(String.class)); 
  } 
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BidTuple # 2 
 
 /** 
  ** Constructor with both key and data specified will create 
  ** a Tuple that can be written to BidSpaces 
  */ 
  public BidTuple(String key, String data) throws TupleSpaceException { 
    super(key,data); 
  } 
 
  /** 
  ** This is an example of defining a method within the SublassableTuple 
  ** that will hide some of the ugly Tuple and Field code. 
  ** This method will return the data Field from the tuple. 
  */ 
  public String getData()  throws TupleSpaceException { 
    // extract the contents of the 2nd field. 
    return (String)this.getField(1).getValue(); 
  } 
 
  public boolean matches( SuperTuple t ) { 
    // This message will show up in the output from the TSServer. 
    Debug.out("SubclassMyTuple.matches() called by server!!!!"); 
    return super.matches(t); 
  }  // end matches() 
} 
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RegisterTuple # 1 
 
package bid; 
 
import com.ibm.tspaces.*; 
import java.io.Serializable; 
 
public class RegisterTuple extends SubclassableTuple implements Serializable { 
 
 // Default constructor will build a template that would match registration tuples in space. 
  public RegisterTuple() throws TupleSpaceException { 
    super(new Field(String.class), new Field(String.class)); 
  } 
// Constructor with only key specified will build a template for retrieving the data 
  public RegisterTuple(String key)  throws TupleSpaceException { 
    super(key,new Field(String.class)); 
  } 
 
 // Constructor with both key and data for a Tuple that can be written to BidSpaces 
  public RegisterTuple(String key, String data) throws TupleSpaceException { 
    super(key,data); 
  } 
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RegisterTuple # 2 
 
   /** 
  ** Access fields without the ugly Tuple and Field code. 
  */ 
  public String getData()  throws TupleSpaceException { 
    // extract the contents of the 2nd field. 
    return (String)this.getField(1).getValue(); 
  } 
 
  public String getName()  throws TupleSpaceException { 
    // extract the contents of the 2nd field. 
    return (String)this.getField(0).getValue(); 
  } 
 
  /** 
   * Tuple matching will now be traced 
   */ 
  public boolean matches( SuperTuple t ) { 
    // This message will show up in the output from the TSServer. 
    Debug.out("SubclassMyTuple.matches() called by server!!!!"); 
    return super.matches(t); 
  }  // end matches()
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TSpacesBidDotCom # 2 
 
package bid; 
import javax.swing.UIManager; 
import java.awt.*; 
import com.ibm.tspaces.*; 
 
public class TSpacesBidDotCom { 
  boolean packFrame = false; 
 
  /**Construct the application*/ 
  public TSpacesBidDotCom() { 
    BidFrame frame = new BidFrame(); 
    // Pretty up the window … 
    Debug.setDebugOn(true); 
    BidAgent agent = new BidAgent(); 
    frame.setAgent(agent);   agent.setFrame(frame);   agent.sayHello(); 
  } 
  /**Main method*/ 
  public static void main(String[] args) { 
    try {  UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());  } 
    catch(Exception e) {e.printStackTrace();} 
    new TSpacesBidDotCom(); 
  } 
} 
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BidAgent # 1 
 
package bid; 
import java.util.Vector; 
import com.ibm.tspaces.*; 
import java.io.Serializable; 
 
public class BidAgent implements Serializable, Callback { 
  TupleSpace space; 
  int myId; 
  BidFrame frame; 
 
  BidAgent() { 
    try { 
      space = new TupleSpace("TSpaceBidDotCom"); 
      Transaction trans = new Transaction();  trans.addTupleSpace(space); 
      trans.beginTrans(); 
        Tuple id = space.take("ID", new Field(Integer.class)); 
        if (id == null) {myId = 1;  space.write("Offer", new Vector()); } 
        else   myId = ((Integer)id.getField(1).getValue()).intValue(); 
        space.write("ID", new Integer(myId+1)); 
      trans.commitTrans(); 
      Tuple hello = new Tuple("Hello", new Integer(myId), new Field(Integer.class)); 
      space.eventRegister(TupleSpace.WRITE, hello, this, true); 
      Tuple offer = new Tuple("Offer", new Field(Vector.class)); 
      space.eventRegister(TupleSpace.WRITE, offer, this, true); 
    } catch (Exception e) {System.out.println(e); System.exit(1);} 
  } 
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BidAgent # 2 
  void sayHello() { 
    try {for (int i = 1; i < myId; i++) space.write("Hello", new Integer(i), new Integer(myId)); } catch … 
  } 
  void offer(String item, String price) { 
    try { 
      Tuple offer = space.take("Offer", new Field(Vector.class)); 
      Vector offerings = (Vector)(offer.getField(1).getValue());  offerings.add(item);  offerings.add(price); 
       space.write("Offer", offerings); 
    } catch (Exception e) {System.out.println("Offer " + e); System.exit(1);} 
  } 
  public boolean call(String eventname, String tsName, int seqNum,  SuperTuple tuple, boolean exception) { 
    try { if (!exception) { 
        if (((String)tuple.getField(0).getValue()).equals("Hello")) { 
          int friend = ((Integer)tuple.getField(2).getValue()).intValue(); 
          System.out.println("Hello to #"+myId+" from #"+friend); } 
        else if (((String)tuple.getField(0).getValue()).equals("Offer"))  
          frame.setOfferings((Vector)tuple.getField(1).getValue());      } 
    } catch (Exception e) {System.out.println("Call " + e); System.exit(1);} 
    return false; 
  } 
  void setFrame(BidFrame frame) { 
    this.frame = frame; 
    try { 
      Tuple tuple = space.read("Offer", new Field(Vector.class)); 
      frame.setOfferings((Vector)tuple.getField(1).getValue()); 
    } catch (Exception e) {System.out.println("Offer " + e); System.exit(1);} 
  } 
} 
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BidFrame # 1 
 
package bid; 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
import java.util.*; 
import com.ibm.tspaces.*; 
 
public class BidFrame extends JFrame { 
  BidAgent agent; 
 
  JPanel contentPane; 
  JLabel bidListLabel = new JLabel(); 
  JButton offerButton = new JButton(); 
  JButton acceptButton = new JButton(); 
  JToggleButton bidButton = new JToggleButton(); 
  JTextField itemField = new JTextField(); 
  JLabel itemLabel = new JLabel(); 
  JTextField priceField = new JTextField(); 
  JLabel priceLabel = new JLabel(); 
  JComboBox offeringsList = new JComboBox(); 
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BidFrame # 2 
 
  /**Construct the frame*/ 
  public BidFrame() { 
    enableEvents(AWTEvent.WINDOW_EVENT_MASK); 
    try { 
      jbInit(); 
    } 
    catch(Exception e) { 
      e.printStackTrace(); 
    } 
  } 
  /**Component initialization*/ 
  private void jbInit() throws Exception  { 

// Initialize GUI stuff … 
    offerButton.addActionListener(new java.awt.event.ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        offerButton_actionPerformed(e); 
      } 
    }); 
  } 
  /**Overridden so we can exit when window is closed*/ 
  protected void processWindowEvent(WindowEvent e) { 
    super.processWindowEvent(e); 
    if (e.getID() == WindowEvent.WINDOW_CLOSING) { 
      System.exit(0); 
    } 
  } 
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BidFrame # 3 
 
  void offerButton_actionPerformed(ActionEvent e) { 
    agent.offer(itemField.getText(), priceField.getText()); 
  } 
 
  void setAgent(BidAgent agent) { 
    this.agent = agent; 
  } 
 
  void setOfferings(Vector offerings) { 
    Iterator iter = offerings.iterator(); 
    offeringsList.removeAllItems(); 
    while (iter.hasNext()) { 
      String item = (String)iter.next(); 
      String price = (String)iter.next(); 
      offeringsList.addItem(item + " at " + price); 
      offeringsList.revalidate(); 
    } 
  } 
 
} 
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Simulating Pure Tuple Space in an Applet 
 
public class Tuple extends Object { 
    static private int tupleCount = 0; 
    private String key; 
    private String who; 
    private int id; 
    private Object value; 
 
    public Tuple(String key, String who, Object value) { 
        this.key = key; this.who = who;  this.value = value;  id = ++tupleCount; 
    }     
    public void setFields(Tuple tuple) { 
        key = tuple.key;  who = tuple.who;  id = tuple.id; value = tuple.value; 
    }         
    public void appendHelper(String helper) { 
        who = who + "+" + helper; 
    }     
    public String key() { return key; } 
 
    public String who() { return who; } 
 
    public String id() { return String.valueOf(id); }   
   
    public Object value() { return value; } 
  } 
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TupleSpace Applet # 1 
import java.applet.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 
 
public class TupleSpace extends Applet { 
    private MultiHashtable tuples = new MultiHashtable(); 
    private List display = new List(10);  
 
    // adds tuple to tuples. tuple.key() is used as key 
    public void out(Tuple tuple) { 
        tuples.put(tuple.key(),tuple); 
        displayKeys();  
    } 
 
    // uses tuple.key() to get and delete matching tuple; 
    // passed tuple is replaced by one extracted from tuple space; 
    // passed who and value are irrelevant 
    // blocks until successful 
    public void in(Tuple tuple) { 
        Tuple t; 
        while ((t = (Tuple) tuples.remove(tuple.key())) == null) { 
         try {Thread.sleep(100);} catch (InterruptedException e){} 
     } 
        tuple.setFields(t);      
        displayKeys();  
    } 
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TupleSpace Applet # 2 
    // uses tuple.key() to get and delete matching tuple; 
    // passed tuple is replaced by one extracted from tuple space; 
    // passed who and value are irrelevant 
    // true if success, false otherwise 
    public boolean inp(Tuple tuple) { 
        Tuple t = (Tuple) tuples.remove(tuple.key()); 
        if (t != null) { 
            tuple.setFields(t); 
        }     
        displayKeys();  
        return t != null; 
    } 
 
    // uses tuple.key() to get matching tuple; 
    // passed tuple is replaced by one read from tuple space; 
    // passed who and value are irrelevant 
    // blocks until successful 
    public void rd(Tuple tuple) { 
        Tuple t; 
        while ((t = (Tuple) tuples.get(tuple.key())) == null) { 
         try {Thread.sleep(100);}  
         catch (InterruptedException e){} 
     } 
        tuple.setFields(t); 
    } 
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TupleSpace Applet # 3 
    // uses tuple.key() to get matching tuple; 
    // passed tuple is replaced by one read from tuple space; 
    // passed who and value are irrelevant 
    // true if success, false otherwise 
    public boolean rdp(Tuple tuple) { 
        Tuple t = (Tuple) tuples.get(tuple.key()); 
        if (t != null) { 
            tuple.setFields(t); 
        }     
        return t != null; 
    } 
 
    // randomly selects one of the TupleSpaceClient applets; 
    // invokes its eval service with tuple as arg 
    public void eval(Tuple tuple) { 
        Vector collection = new Vector(); 
     Enumeration e = getAppletContext().getApplets(); 
     while (e.hasMoreElements()) { 
      Applet applet = (Applet)e.nextElement(); 
      if (applet instanceof TupleSpaceClient) { 
          collection.addElement(applet); 
      } 
     } 
     if (!(collection.isEmpty())) { 
         int select = (int) (collection.size()*Math.random()); 
         ((TupleSpaceClient) collection.elementAt(select)).eval(tuple); 
     }  
    } 
 



COP 4520 — Concepts of Parallel and Distributed Processing – 309 – © Charles E. Hughes — UCF Computer Science Dept. 

TupleSpace Applet # 4 
    public void displayKeys() { 
        display.removeAll(); 
        Enumeration e = tuples.keys(); 
     while (e.hasMoreElements()) { 
         String key = (String) e.nextElement(); 
      display.add(key + "(" + String.valueOf(tuples.size(key)) + ")"); 
     }  
    } 
 
    public void init() { 
     Label label = new Label("Tuple Space Server",Label.CENTER); 
        add(label); 
        add(display); 
    } 
 
    public void paint(Graphics g) { 
        g.drawRect(0, 0, getSize().width - 1, getSize().height - 1); 
    } 
 
    public String getAppletInfo() { 
        return "TupleSpace by Charles E. Hughes"; 
    } 
 
} 
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TupleSpaceClient # 1 
import java.applet.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.Enumeration; 
 
public class TupleSpaceClient extends Applet { 
    protected TextField key = new TextField("Enter Key", 24); 
    protected TextField sender = new TextField("Sender Name", 24); 
    protected TextField tupleId = new TextField("Tuple Number", 24); 
    protected String object = "OBJECT"; 
    protected String appletName; 
    protected TupleSpace tupleSpace = null; 
 
    protected void delay(int maxSeconds) { 
     try {Thread.sleep((int)(maxSeconds*1000 * Math.random()));} 
     catch (InterruptedException e){} 
 } 
  
    protected void getServer() { 
        if (tupleSpace == null) { 
         Enumeration e = getAppletContext().getApplets(); 
         while (e.hasMoreElements()) { 
             Applet applet = (Applet)e.nextElement(); 
             if (applet instanceof TupleSpace) tupleSpace = (TupleSpace) applet; 
         } 
        }  
    }  
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TupleSpaceClient # 2 
    protected void clearResultFields() { 
        sender.setText(""); 
        tupleId.setText(""); 
    }     
 
    class OUTButtonHandler implements ActionListener { 
        public void actionPerformed(ActionEvent event) { 
            getServer(); 
            delay(5); 
            tupleSpace.out(new Tuple(key.getText(),appletName,object)); 
            clearResultFields(); 
        } 
    } 
 
    class INButtonHandler implements ActionListener { 
        public void actionPerformed(ActionEvent event) { 
            getServer(); 
            Tuple tuple = new Tuple(key.getText(),appletName,object); 
            clearResultFields(); 
            delay(5); 
            tupleSpace.in(tuple); 
            sender.setText(tuple.who()); 
            tupleId.setText(tuple.id()); 
        } 
    } 
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TupleSpaceClient # 3 
    class INPButtonHandler implements ActionListener { 
        public void actionPerformed(ActionEvent event) { 
            getServer(); 
            Tuple tuple = new Tuple(key.getText(),appletName,object); 
            clearResultFields(); 
            delay(5); 
            if (tupleSpace.inp(tuple)) { 
                sender.setText(tuple.who()); 
                tupleId.setText(tuple.id()); 
            } else { 
                sender.setText("NO TUPLE"); 
            }     
        } 
    } 
 
    class RDButtonHandler implements ActionListener { 
        public void actionPerformed(ActionEvent event) { 
            getServer(); 
            Tuple tuple = new Tuple(key.getText(),appletName,object); 
            clearResultFields(); 
            delay(5); 
            tupleSpace.rd(tuple); 
            sender.setText(tuple.who()); 
            tupleId.setText(tuple.id()); 
        } 
    } 
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TupleSpaceClient # 4 
    class RDPButtonHandler implements ActionListener { 
        public void actionPerformed(ActionEvent event) { 
            getServer(); 
            Tuple tuple = new Tuple(key.getText(),appletName,object); 
            clearResultFields(); 
            delay(5); 
            if (tupleSpace.rdp(tuple)) { 
                sender.setText(tuple.who()); 
                tupleId.setText(tuple.id()); 
            } else { 
                sender.setText("NO TUPLE"); 
            }     
        } 
    } 
 
    class EVALButtonHandler implements ActionListener { 
        public void actionPerformed(ActionEvent event) { 
            getServer(); 
            clearResultFields(); 
            delay(5); 
            tupleSpace.eval(new Tuple(key.getText(),appletName,object)); 
        } 
    } 
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TupleSpaceClient # 5 
    class EVALTuple extends Thread { 
        private Tuple tuple; 
 
        public EVALTuple(Tuple tuple) { 
            this.tuple = tuple; 
        } 
 
        public void run() { 
            delay(10); 
            getServer(); 
            tuple.appendHelper(appletName); 
            tupleSpace.out(tuple); 
        } 
    } 
 
    public void eval(Tuple tuple) { 
        new EVALTuple(tuple).start(); 
    } 
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TupleSpaceClient # 6 
    public void init() { 
        appletName = getParameter("NAME"); 
        Label label = new Label(appletName, Label.CENTER); 
        add(label);  add(key);  add(sender);  add(tupleId); 
        Button outButton = new Button("OUT"); add(outButton); 
        outButton.addActionListener(new OUTButtonHandler()); 
        Button inButton = new Button("IN"); add(inButton); 
        inButton.addActionListener(new INButtonHandler()); 
        Button inpButton = new Button("INP"); add(inpButton); 
        inpButton.addActionListener(new INPButtonHandler()); 
        Button rdButton = new Button("RD"); add(rdButton); 
        rdButton.addActionListener(new RDButtonHandler()); 
        Button rdpButton = new Button("RDP"); add(rdpButton); 
        rdpButton.addActionListener(new RDPButtonHandler()); 
        Button evalButton = new Button("EVAL"); add(evalButton); 
        evalButton.addActionListener(new EVALButtonHandler()); 
    } 
 
    public void paint(Graphics g) { 
        g.drawRect(0, 0, getSize().width - 1, getSize().height - 1); 
    } 
 
    public String getAppletInfo() { 
        return "TupleSpaceClient by Charles E. Hughes"; 
    } 
 
} 
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MultiHashtable # 1 
import java.lang.*; 
import java.util.*; 
public class MultiHashtable extends Hashtable { 
 
    public synchronized Object get(Object key) { 
        Object obj = super.get(key); 
        if (obj == null) return null; 
        if (!(obj instanceof Vector)) return null; 
        return ((Vector) obj).elementAt((int)(((Vector) obj).size()*Math.random())); 
    } 
 
    public synchronized Object remove(Object key) { 
        Object obj = super.get(key); 
        if (obj == null) return null; 
        if (!(obj instanceof Vector)) return null; 
        int choice = (int)(((Vector) obj).size()*Math.random()); 
        Object result = ((Vector) obj).elementAt(choice); 
        ((Vector) obj).removeElementAt(choice); 
        if (((Vector) obj).size() == 0)  super.remove(key); 
        return result; 
    } 
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MultiHashtable # 2 
    public synchronized Object put(Object key,Object value) { 
        Object obj = super.get(key); 
        if (obj == null) { 
            obj = new Vector(); 
        } 
        if (!(obj instanceof Vector)) return null; 
        Object result = ((Vector) obj).clone(); 
        ((Vector) obj).addElement(value); 
        super.put(key,obj); 
        return result; 
    } 
     
    public synchronized int size(Object key) { 
        Object obj = super.get(key); 
        if (obj == null) return 0; 
        if (!(obj instanceof Vector)) return 0; 
        return ((Vector) obj).size(); 
    }     
} 
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Centralized versus symmetric versus ring reduction 
 
Reduction is so common that it deserves another visit. 
 
The issues that arise here are all related to how much parallel 
communication we can sustain. That is highly dependent on the 
architecture with which we are working. Specifically, it depends on the 
interconnection network, a topic we studied earlier in the term. 
 
The next two overheads summarize results concerning the effects of such 
interconnections on various communication tasks. Vipin Kumar’s  book is 
an excellent source of detailed discussions of this topic. 
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Store and Forward Broadcasting 
 
 

Operation Ring 2d Mesh Hypercube 

One-to-all (ts + tw m)  
* ⎡p/2⎤ 

2(ts + tw m)  
* ⎡√p/2⎤ 

(ts+tw m) lg p 

All-to-all (ts+twm)  
* (p–1) 

2ts(√p–1) 
+ twm (p–1) 

ts lg p 
+ twm (p–1) 

One-to-all 
personalized 

(ts+tw m)  
* (p–1) 

2ts(√p–1) 
+twm (p–1) 

ts lg p 
+ twm (p–1) 

All-to-all 
personalized 

(ts+tw m p/2)  
* (p–1) 

(2ts+tw m p)  
* (√p–1) 

(ts+tw m p/2)  
* lg p 

Circular  

q-shift 

(ts+tw m)  
* ⎣p/2⎦ 

(ts+tw m)  
* (2⎣√p/2⎦+1) 

(ts+tw m) 
* (2 lg p – 1) 
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Cut Through Broadcasting 
 
 

Operation Ring 2d Mesh Hypercube 

One-to-all (ts+tw m) lg p  
+ th(p–1) 

(ts+tw m) lg p  
+ 2th(√ p–1) 

 

All-to-all 
personalized 

  (ts+tw m) (p–1) 
+ (th/2) p lg p 

Circular  

q-shift 

  ts+tw m 
+ th ( lg p – γ(q)) 

 
 γ(q) is the number of times 2 divides q. lg p – γ(q) is longest path for a circular q-shift 
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THE END 
 

 
 


