
COP 4520 Fall 2005 Midterm#2 Name: ____KEY_________________

 1. The following is the first two or the three phases of an 8-node bitonic sorting network that we have virtualized to
handle 16 numbers. This really is just the part that makes the list bitonic. One more phase completes the sort, but that
would have added to your work without telling me any more about your knowledge.

3 a.) For each comparator, write a plus (+) or minus (–) to distinguish increasing from decreasing comparators.

8 b.) Next show the values that are produced after each comparator performs its comparison swap. I have written the word
Values under each column where you should be placing the eight pairs of values written on that communication line.

 6
16

12
17
19
14
2
15
3
9

7
13
1
10
4
18

Values Values Values
Answers to this are easy, but hard for me to edit into this document.

4 c.) Bitonic Sorting Networks can be mapped onto hypercubes in a very natural way. A 4 by 2 wraparound mesh can
provide the same connectivity. Show this by numbering the nodes of the following such mesh, in a manner that
achieves hypercube connectivity. Show the wires for your node numbered 010 that give it connectivity the nodes
numbered 011, 000 and 110. Do not show any other wires. Of course, you cannot invent wires that do not already
exist in such a wraparound 2d mesh.

000 001 011 010

100 101 111 110

COP 4520: Concepts of Parallel & Distr. Processing – 2 – Fall 2005 Midterm#2 – Hughes

 2. This question concerns ShearSort.
3 a.) Give an example of two consecutive sorted dirty rows, each with 8 binary (0-1) values, and then show what these rows

would look like after transpositions that occur with just one column step, assuming the rows are an even-odd pair.

There are lots of answers. Here’s just one.
After row sort, but before column sort
00111111
10000000

After one step of column sort
00000000
10111111

2 b.) What two properties of a ShearSort allow us to focus on binary data in studying dirty rows?

 Property 1: Oblivious

 Property 2: Comparison Exchange

3 c.) The Rev in RevSort refers to what property of the row sorts? Give an example of what this means as regards of row 2
in a 16 by 16 mesh.

The row starting position is at the column numbered by the reverse of the row number. For example, row 2 starts at
column 4.

PS: I apologize for saying row 0 in your question. Well, you get it for free!!

8 3. The following can be used to determine the length of a linked list in parallel, when one processor is associated with
each node in the linked list.

plural int length = 1;
plural int partner = next; // linked list of processor numbers
while (partner != null) {

length = length+ proc[partner].length;
partner = proc[partner].partner;

}

What is the order of the execution time of the algorithm, given N nodes in the linked list? O(lg N)

What is the order of the cost of the algorithm, again given N nodes in the linked list? O(N lg N)

Consider a virtualization of this algorithm. Here we would have p processors and N > p elements in the linked list.
Assuming that the we are really lucky and the elements are evenly distributed, every processor has no more that N/p
elements. The processors first calculate the lengths of their local list, then run the above algorithm using only the
length of the heads of their local lists as the initial values of length. Subsequently each processor propagates this
length to the children of the head, assigning a length to each – this is the length of the list headed by the local root + k-
1, where the node is the k-th element of the sublist.

What is the order of the execution time of the algorithm, given N and p? N/p + lg p + N/p = O(N/p + lg p)

What is the order of the cost of the algorithm, given N and p? O(N + p lg p)

What value of p gives you a cost that is comparable to the sequential algorithm, while gaining the speedup achieved
when using N processor? P = N/lgN since N/p + lg p = N/(N/lg N) + lg(N/lg N) = O(lg N) and

N + p lg p = N + N/lgN * lg (N/lg N) = O(N)

COP 4520: Concepts of Parallel & Distr. Processing – 3 – Fall 2005 Midterm#2 – Hughes

10 4. Write a monitor, CP, that is resource manager, serving producers and consumers of some resource. You do not have
to actually keep track of the resource, just the number of units available. The monitor has two services, produce and
consume, each with a single integer argument. produce(n) increases the number of units of the resource by n;
consume(m) requests m units and cannot complete until those many are available. Of course, as a side effect, the
completion of a consume reduces the available resources by the number of units requested.

 Hint: There are only a few lines of code for each service, but you must be careful.
monitor CP {
// Shared data

int N=0;
cond w;
procedure produce(int n) { // add n units of the resource

N += n; // add new resources
signal_all(w); // signal all waiting requestors

}
procedure consume(int m) { // acquire m units of the resource

while (m >= N) wait(w); // So long as request is not satisfiable, wait for more resources to be added
N -= m; // satisfy request

}
}

The following are required characteristics of the implementation:
a. If a request comes that can be immediately satisfied, it may not be delayed.
b. If a request comes that cannot be satisfied, the requestor is delayed.
c. When resources become available, delayed satisfiable requests must be honored in the order in which the requests

were received. To assist in this, assume that the delay queue is managed in FIFO order.
d. Resources must be given out if there are any delayed requests that can be satisfied by amount of available units.

You must state your assumption about the signal semantics. That is, are you using signal and wait (SW) or signal and
continue (SC) semantics, and is that critical to the correctness of your solution? If so, why?
Assume this uses SC semantics. Here is a precise statement of SC semantics:
signaller continues executing, signalled processs(es) get placed on entry queue in order removed from wait queue.
There is some possible ambiguity. While all this is going on, the monitor stays busy so no new requests can come in
from the outside, but can such an attempt lead to one of these new requesting processes getting intermingled on the
entry queue with the older request processes? Most implementations of SC semantics do not preclude this. They just
take the ready processes from the wait queue and place them in the entry queue. That will mean that they are all in
the same order relative to each other, but new arrivals that came in while this was going on might have jumped
ahead. Still it’s a pretty good solution (sort of in the 90% realm that most people are happy with).
Can this work better with SW semantics? The problem is that SW semantics for signal_all are not well-defined. A
useful and very reasonable definition is
signaller blocks, signalled procesess move to ready queue, bypassing entry queue, getting placed in ready queue in
the order in which they left wait queue. signaller process gets placed at end of entry queue. The first process in
ready queue is immediately selected for execution.
This would mean that we could meet all our requirements with the above solution and have no ambiguity about the
order of processes when returned to wait queue.

COP 4520: Concepts of Parallel & Distr. Processing – 4 – Fall 2005 Midterm#2 – Hughes

ALTERNATIVE ANSWER

10 4. Write a monitor, CP, that is resource manager, serving producers and consumers of some resource. You do not have
to actually keep track of the resource, just the number of units available. The monitor has two services, produce and
consume, each with a single integer argument. produce(n) increases the number of units of the resource by n;
consume(m) requests m units and cannot complete until those many are available. Of course, as a side effect, the
completion of a consume reduces the available resources by the number of units requested.
monitor CP {
// Shared data

int N=0;
cond w;
procedure produce(int n) { // add n units of the resource

N += n; // add new resources
signal(w); // signal the oldest waiting requestor; use SW semantics

}
procedure consume(int m) { // acquire m units of the resource

if (m >= N) N -= m; // satisfied request immediately
else { // need to patiently wait more resources

boolean satisfied = false;
while(!satisfied) { // keep trying until request honored

wait(w); // wait until more resources are produced
if (m >= N) { N -= m; satisfied = true; } // allocation needs are met
if (!empty(w)) signal(w); // wake up next requestor in queue; use SW semantics

}
}

}
}

This uses SW semantics. Here is a precise statement of SW semantics:
signaller blocks, signalled process gets to execute immediately, signaller process gets placed at end of entry queue.

With SW, each process in queue is tried in order. It is also the case that, if we do not use SW then the solution
above has the potential to get into an infinite loop. Think about it.

There is still an issue with how we handle property (c) if some requestor fails to get satisfied when awakened. When
the final (oldest) requestor is taken from the queue and no signal is issued, we must now consider the policy for
scheduling those who temporarily gave up their control of the monitor. Looking back at the definition of SW
semantics, we see that the unsatisfied processes reenter the queue (issue a wait) in the same order in which they
exited it.

There still is some possible ambiguity. While all this going on, the monitor stays busy so no new requests can come
in from the outside, but can such an attempt lead to one of these new requesting processes getting intermingled on
the entry queue with the older request processes? Most implementations preclude this by giving precedence to
delayed processes, but it does mean this solution is implementation dependent.

By the way there is a signal and urgent wait. Its semantics are:
signaller blocks, signalled process gets to execute immediately, signaller process gets placed at head of entry queue.

COP 4520: Concepts of Parallel & Distr. Processing – 5 – Fall 2005 Midterm#2 – Hughes

12 5. Redo the resource manager from question 4, but using semaphores rather than a monitor.
// Shared data

int N = 0, nw = 0; nd = 0;
sem lock = 1, w = 0;
procedure produce(int n) { // add n units of the resource

P(lock);
N += n; // add new resources
if (nw >0) {nd = nw; for (int i=0; i<nw; i++) V(w); } } // wake ‘em all up; don’t release lock
else V(lock); // there were no unsatisfied requests, so give up lock

}
procedure consume(int m) { // acquire m units of the resource

P(lock); // lock for critical section
if (m >= N) { N -= m; V(lock); } // satisfied request immediately
else {

nw++; // there is one more request needing to be satisfied
boolean satisfied = false;
V(lock);
while(!satisfied) { // keep trying until request honored

P(w); // wait until more resources are produced; assume FIFO queue
// lock is already owned
nd- -; // one more was awaken by latest production
 if (m >= N) { N -= m; nw- -; satisfied = true; } // allocation needs are met
if (nd == 0) V(lock); // all have awakened

}
}

}

This also works perfectly if we never force release of a processor unless the current thread blocks or issues a delay().
That’s really similar to SC (signal or signal_all) so far as the iterated V is concerned. It works since the lock is held,
somewhat in the fashion of SW. This holding of lock prevents outside intervention, an issue with the monitors.

This was a bit longer than I had realized. Sorry.

COP 4520: Concepts of Parallel & Distr. Processing – 6 – Fall 2005 Midterm#2 – Hughes

ALTERNATIVE ANSWER

12 5. Redo the resource manager from question 4, but using semaphores rather than a monitor.
// Shared data

int N = 0, nw = 0; nd = 0;
sem lock = 1, w = 0, d = 0, awake = 0;
procedure produce(int n) { // add n units of the resource

P(lock);
N += n; // add new resources
if (nw > 0) V(w); // pass baton to oldest requestor; don’t release lock
else V(lock); // there were no unsatisfied requests, so give up lock

}
procedure consume(int m) { // acquire m units of the resource

P(lock); // lock for critical section
if (m >= N) { N -= m; V(lock); } // satisfied request immediately
else {

nw++; // there is one more request needing to be satisfied
boolean satisfied = false;
V(lock);
while(!satisfied) { // keep trying until request honored

P(w); // wait until more resources are produced; assume FIFO queue
// baton is passed to this requestor; lock is already owned
 if (m >= N) { N -= m; satisfied = true; } // allocation needs are met
nw- -; // one fewer in w queue
 if (nw >0) { // if more in w queue, must pass the baton to next

V(w); // pass baton – note we assume we hold control until blocked
if (!satisfied) { nd++; P(d); nw++; V(awake); } // delay until the queue is drained

}
else { // there’s no left to whom we should pass the baton

while(nd>0) { // queue is drained so wake up all those delayed
V(d); // wake up one; that is only one who can continue since we hold lock
P(awake); // be sure it actually is awake
nd- -; // count down to zero

}
V(lock); // all have awakened

}
}

}
}

This works perfectly if we never force release of a processor unless the current thread blocks or issues a delay().
That’s really similar to SC (signal, not signal_all) so far as V is concerned, but it works since the lock is held,
somewhat in the fashion of SW. this holding of lock prevents outside intervention, an issue with the monitors.

COP 4520: Concepts of Parallel & Distr. Processing – 7 – Fall 2005 Midterm#2 – Hughes

10 6. Redo the resource manager from question 4, but using some combination of tuple space services (read, readIfExists,
take, takeIfExists, write). Unlike in 4 and 5, you do NOT have to be concerned about fairness. In other words, it is
okay to have a random requestor satisfied. Use a general method called delay() anytime you need to do a busy wait.

procedure produce(int n) { // add n units of the resource

take(“ASSETS”, ?assetCount); // see what’s available
assetCount += n; // add new resources
write(“ASSETS”, assetCount); // write back updated resource amount

}
procedure consume(int m) { // acquire m units of the resource

boolean satisfied = false; // not yet; must see what’s available
while (!satisfied) {

take(“ASSETS”, ?assetCount); // see what’s available
if (assetCount >= m) { // if can satisfy request, allocate them

assetCount -= m; satisfied = true; // allocate recourses and indicate success
}
write(“ASSETS”, assetCount); // write back updated resource amount
if (!satisfied) delay(); // to avoid constantly taking and writing

}
}

procedure init() {

write(“ASSETS”, 0); // initial tuple indicate no instances of resource
}

BUTT UGLY VERSION
procedure produce(int n) { // add n units of the resource

for (int i=0; i<n; i++) write(“ASSETS”); // write one tuple per unit of resource
}
procedure consume(int m) { // acquire m units of the resource

for (int i=0; i<m; i++) take(“ASSETS”); // creates unnecessary delays, perhaps of production
 }

