
1. As regards Accelerated Cascading Max, analyze this
algorithm if the binary tree reduction cutoff is:
a.) lg lg lg lg N
b.) square root(lg N)
Determine which are fast and/or efficient. Do precise
analysis.

a) lg lg lg lg N steps in binary reduction requires
O(lg lg lg lg N) time and no more than O(N)
work. The problem size is now reduced to
N/ 2^(lg lg lg lg N) or N/(lg lg lg N) elements.
The doubly log algorithm now completes in
O(lg lg N) time, but takes N (lg lg N)/(lg lg lg N)
work. Thus, even though the time is fine, the work
exceeds our goal of O(N).

b) sqrt(lg N) steps in binary reduction requires more
than lg lg N time, as O(sqrt k) contains O(lg N),
but not vice versa. The work is still O(N). The
doubly log has N/2^sqrt(lg N) elements to reduce,
but that’s fewer than N/lg N, and can be reduced
in O(lg lg N) time taking (N/lg N * lg lg N) work.
But that’s O(N) work. Thus, the work is fine, but
the time is too long.

2. For each of (a) Bitonic Sort and (b) lg lg trees Max, operating
on N values, determine if there is a magic p (similar to
Brent's Scheduling), for which this algorithm is work
efficient and fast (lg2N and lg lg N, resp.) when virtualized
with each processor starting with N/p values. Prove that your
value of p is optimal, as in Brent's choice of p = N/lg N, or
argue convincingly that no such p can be found for arbitrary
N.

a) At a prepass, we do local sorts, taking
N/p lg(N/p) time and N lg(N/p) work. At each
pass, we take N/p time and do N work. At
convergence, we have spent
N/p * lg(N/p) + (N/p) lg2p time and done
N lg(N/p) + Nlg2p work. To get work down to
N lg N, we will assume p = 2k, for some k. That’s
a good assumption for Bitonic. Now, lg2p is then
k2. Letting N=2j, we can choose p=2sqrt(j). Thus, p
must be 2sqrt(lg N) in order to keep the work under
control. Plugging in, we get time of
N/2sqrt(lg N) * (lg(N/2sqrt(lg N)) + lg2 2sqrt(lg N) or
2j /2sqrt(j) * (lg(2j /2sqrt(j)) + lg2 2sqrt(j) or
2j-sqrt(j) * (j-sqrt(j) + j) = O((N-sqrt(N)) lg N).
Unfortunately, that’s a bad time, so there is no p
that satisfies our needs.

b) At a prepass, we do local max, taking
N/p time (really (N-1)/p) and N work (really N-1).
We would then compute the max in lg lg (p) time
and p lg lg (p) work. Total time is N/p + lg lg p.
Total work is N + p lg lg p. Let p = N/lg lg N.
Time is then lg lg N and work is N, as desired.

