
1. As regards Accelerated Cascading Max, analyze this 
algorithm if the binary tree reduction cutoff is: 
a.) lg lg lg lg N 
b.) square root(lg N) 
Determine which are fast and/or efficient. Do precise 
analysis. 
 

a) lg lg lg lg N steps in binary reduction requires  
O(lg lg lg lg N) time and no more than O(N) 
work. The problem size is now reduced to  
N/ 2^(lg lg lg lg N) or N/(lg lg lg N) elements. 
The doubly log algorithm now completes in  
O(lg lg N) time, but takes N (lg lg N)/(lg lg lg N) 
work. Thus, even though the time is fine, the work 
exceeds our goal of O(N). 

b) sqrt(lg N) steps in binary reduction requires more 
than lg lg N time, as O(sqrt k) contains O(lg N), 
but not vice versa. The work is still O(N). The 
doubly log has N/2^sqrt(lg N) elements to reduce, 
but that’s fewer than N/lg N, and can be reduced 
in O(lg lg N) time taking (N/lg N * lg lg N) work. 
But that’s O(N) work. Thus, the work is fine, but 
the time is too long. 

 



2. For each of (a) Bitonic Sort and (b) lg lg trees Max, operating 
on N values, determine if there is a magic p (similar to 
Brent's Scheduling), for which this algorithm is work 
efficient and fast (lg2N and lg lg N, resp.) when virtualized 
with each processor starting with N/p values. Prove that your 
value of p is optimal, as in Brent's choice of p = N/lg N, or 
argue convincingly that no such p can be found for arbitrary 
N. 

a) At a prepass, we do local sorts, taking  
N/p lg(N/p) time and N lg(N/p) work. At each 
pass, we take N/p time and do N work. At 
convergence, we have spent  
N/p * lg(N/p) + (N/p) lg2p time and done  
N lg(N/p) + Nlg2p work. To get work down to  
N lg N, we will assume p = 2k, for some k. That’s 
a good assumption for Bitonic. Now, lg2p is then 
k2. Letting N=2j, we can choose p=2sqrt(j). Thus, p 
must be 2sqrt(lg N) in order to keep the work under 
control. Plugging in, we get time of  
N/2sqrt(lg N) * (lg(N/2sqrt(lg N)) + lg2 2sqrt(lg N) or  
2j /2sqrt(j) * (lg(2j /2sqrt(j)) + lg2 2sqrt(j) or 
2j-sqrt(j) * (j-sqrt(j) + j) = O((N-sqrt(N)) lg N). 
Unfortunately, that’s a bad time, so there is no p 
that satisfies our needs. 

b) At a prepass, we do local max, taking  
N/p time (really (N-1)/p) and N work (really N-1). 
We would then compute the max in lg lg (p) time 
and p lg lg (p) work. Total time is N/p + lg lg p. 
Total work is N + p lg lg p. Let p = N/lg lg N. 
Time is then lg lg N and work is N, as desired.  

 
 


