FlixBook: A Movie and Tv Tracker from the Future
High-Level Design
<COP 4331C, Fall, 2014>

Version Date Who Comment
v0.0 10/22/14 Ramses M. Template, added High-Level Architecture
v0.1 10/22/14 | Lakshmidhar C. Added Design Issueus
Team Name:
Group 15

Team Members(click on name for website):

Roman Larinov - rlarionov@knights.ucf.edu

Ramses Mederos - ramsesmederos@knights.ucf.edu

Lakshmidhar Chigurupati - lakshmidharc@knights.ucf.edu
Michael Wahlberg - wahlberg2012@knights.ucf.edu

Michael Pittmman - m.pittman@knights.ucf.edu

Benjamin Kirksey -

High-Level Architecture

Design Issues

Table of Contents



http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Froman.html&sa=D&sntz=1&usg=AFQjCNHQ3EozMmtC-KwF6dFfyQyPoBou1A
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Framses.html&sa=D&sntz=1&usg=AFQjCNHM99xd1NwyprdVBEyLVINEhRI_xw
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2FchedDocs%2Fched.html&sa=D&sntz=1&usg=AFQjCNE-lFE6RFQgUIEJX14KBOK3s6VZnw
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Fmikew.html&sa=D&sntz=1&usg=AFQjCNFDPW27juQag47LPzQGG4pnev-wKg
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Fmikep.html&sa=D&sntz=1&usg=AFQjCNFbEvh2_t9xJqx8xRZ5ci87u30UoA
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Fben.html&sa=D&sntz=1&usg=AFQjCNFm-Jsbm5st361KpMIPr_bbO661vw

High-Level Architecture:

Web Browser: any broswer on a device which has internet access.

Front-End Application: the user interfaces on the website that
facilitates use of the websites functions.

Back-End Application: handles requests from front-end app,
accesses the database and returns data to front-end.

TvYRage APL: an APl for accessing TVRage’s database on TV shows.
RottenTomataes APL an AP for accessing RT's movie database,

JSON Response: aresponse that is sent back from back-end
application, cantaining requested information from server.

HTML Request )
S e rve r HTML Request: a request to the server to retrieve database infromation.

Server: hardware that the back-end application runs within, accepting
HTML requests.
Database: physical location staring user information and movie data,

Query)

Back-End
Application |'

Front-End

JSON
Response

Database

TVRage API

Delete

Design Issues:

During the planning process, we decided that the above architecture would best suit our needs for
our product. We arrived at this conclusion after considering such things as maintainability, performance,
scalability across different devices (i.e. different browsers/versions of browsers), and safety.

Since we are following the Agile method of software development, our maintainability will be rapid. In
other words, the ability of our development team to fix issues will be quick and responsive. This ensures that
the current product is as free of issues as possible. The product, FlixBook, will be tested after every sprint
to ensure that the product functions as it should and that no previous features have been broken. This will
ensure that at the end of each sprint, the release candidate of the product will always be a more functional
edition of the product in production.

A key component that we must consider in the development of the product is the performance of the
product. This means that throughout the whole development process, we must keep in mind the speed of
the response to requests made by the user.This ensures that the user will have a pleasurable experience
while using the site and will also ensure that the user is more likely to return as the site is quick to respond.
To ensure that we, as a company, have a secure product, we will attempt to prevent the user from having
access to the backend as much as possible. This can be done by putting most, if not all, the business logic



in server side files. This ensures that the only source files that the user has access to are the files that are
associated with the frontend of the website (i.e. the html/css/javascript).

In order to ensure the website is scalable among different devices as well as different browsers, we
will be using a CSS framework that automatically scales the website based on the screen resolution. This
ensures that the user, regardless of which device they're on, be it mobile, tablet, phablet, laptop, or desktop,
will always be shown a site that has an excellent user experience.

We decided to go with the above architecture because it allows us to modularize as much of the
code as possible. By modularizing, we are able to group together parts of code that function in the same
way. For example, we are able to keep all user interface related code in the frontend of the application and
keep all the server and database code in the backend of the application. Not only does this allows for a
faster isolation of the problem, which allows for quicker responses to bugs and issues in production, but it
also adds a layer of security by ensuring that the user does not have access to the business logic or
database of the product. The architecture was based on our design, so no valuable design tradeoffs were
made.

Some of the technical difficulties that we expect to encounter during the development of the product
include, but are not limited to, improper user authentication, failure to save user data, incorrectly saving user
data, and slow response times from the server. Improper user authentication is a major technical issue
because it means that the user cannot login even when they are providing the correct login credentials. This
would mean there is a problem with the way the password checking or username checking. To fix this
problem, we would have to reexamine our hashing function as well as the way in which the data is being
stored and retrieved from the database.

Technical difficulties can also occur when attempting to save user data. This could mean anything
from the user data being lost while being stored in the database to the user data not saving at all in the
database. This is a major problem because it would mean that users will never be able to use a significant
portion of the website as it requires a user account. To fix this, we would need to ensure that all the data is
being passed correctly to the database and that the database handles the storing correctly. This means that
we have to check and make sure that the proper commands are being called to link user interaction with the
server and database.

Finally, a minor technical difficulty that we can encounter is slow response times from the server.
This is an issue because if there is a large amount of user requests, the server could suffer from a DDOS.
This would mean the server either crashes or has large amounts of latency due the large number of
requests. The way to fix this would be to ensure that the server uses some sort of queue to ensure that all
requests are server in a first in, first out fashion. This will ensure that all users have similar response times
as well as short response times. Another solution is to present the user with a loading screen so that they
are not inclined to refresh the page or repeat their actions, which if they did, would further exacerbate the
issue.



