FlixBook: A Movie and Tv Tracker from the Future
Detailed Design
<COP 4331C, Fall, 2014>

Version Date Who Comment
v0.0 10/18/2014 | Lakshmidhar C. Began Work on Document
v0.1 10/19/2014 | Lakshmidhar C. Added Design Issues
v0.2 10/23/2014 | Michael W. Added Data Flow and State Machine

Diagrams.
v0.3 10/23/2014 | Roman L. Added Class Diagram.
Team Name:
Group 15

Team Members(click on name for website):

Roman Larinov - rlarionov@knights.ucf.edu

Ramses Mederos - ramsesmederos@knights.ucf.edu
Lakshmidhar Chigurupati - lakshmidharc@knights.ucf.edu

Michael Wahlberg - wahlberg2012@knights.ucf.edu
Michael Pittman - m.pittman@knights.ucf.edu

Benjamin Kirksey -

Design Issues

Detailed Design Information

Data Flow Diagram

State Machine Diagram

Class Diagram

Trace of Requirements Design

Table of Contents



http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Froman.html&sa=D&sntz=1&usg=AFQjCNHQ3EozMmtC-KwF6dFfyQyPoBou1A
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Framses.html&sa=D&sntz=1&usg=AFQjCNHM99xd1NwyprdVBEyLVINEhRI_xw
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2FchedDocs%2Fched.html&sa=D&sntz=1&usg=AFQjCNE-lFE6RFQgUIEJX14KBOK3s6VZnw
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Fmikew.html&sa=D&sntz=1&usg=AFQjCNFDPW27juQag47LPzQGG4pnev-wKg
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Fmikep.html&sa=D&sntz=1&usg=AFQjCNFbEvh2_t9xJqx8xRZ5ci87u30UoA
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.ucf.edu%2Fcourses%2Fcop4331%2Ffall2014%2Fcop4331-15%2Fteam%2Fben.html&sa=D&sntz=1&usg=AFQjCNFm-Jsbm5st361KpMIPr_bbO661vw

Design Issues:

During our planning phase, we decided that we would use a CSS Framework called Bootstrap for
creating a website design that is easy to use and has a very unique appeal to the user. Some of the issues
related with using this framework is that it limits our control over the CSS of the website as we’re required to
use specific class names. This is an issue because it means that we could encounter compatibility issues
when using our own custom css due to using the same class names. A solution to this problem is to use
the framework to create the website first and then add custom CSS afterwards so that we are aware of what
class names are already being used.

We decided to integrate Bootstrap into our website design because it allows us focus more on the
backend functionality so that the business logic is as efficient and as bug-free as possible. The use of
Bootstrap also allows us to ensure a pleasant user experience because Bootstrap is a widely used CSS
framework by many large companies.

We will also be using Express.js, a web application framework. We will be using this because it
allows us to interact with our node.js backend in a very intuitive manner. This also allows us to make the
usage of the website a seamless process and therefore allow us to provide an excellent user experience.
This is crucial because it allows for us retain as many users as possible, which in turn allows us to maintain
the product for an extended time period. A potential risk with using this framework is that it might have
compatibility issues with some remote parts of our backend. This could potentially be a major risk as it
would mean that the product might not function correctly even though the business logic is correct. A
possible solution to this problem would to be test all the basic functionality of the product upon edition of
new frontend code.

To summarize, the whole of the frontend is structured to allow for an excellent user experience as
well as an intuitive user interface. These were the primary concerns when coming up with the design plans.
As previously stated, the user experience and intuitive user interface were primary concerns because it is
the first step towards attracting and retaining users. Based on this and our research about various user
interfaces, we came to the conclusion that the best way to achieve our goals would be to use the CSS
Framework, Bootstrap, and the Web Application Framework, Express.js.



Detailed Design Information

Data Flow Diagram

h

Create User

Hash Value, and User Object
Maovie, Rating

/—’——,\ Database

Basic Information

User Movie, Rating Add Movie
User Library
User Library
Get Library
Rating, Movie Rating, Movie )
Rotten Tomatoes AP
View Library
Ee———
arch Inguiry
Rate Movie Search Inquiry |
Movie
S— Search Results
Search for Movie

Movie | Times

TV Rage
| Search Inguiry

Get Times Results

R



State Machine Diagram

Create New Instance of User

Log In to New Account

Rate morne than one movie
Acoess TV Rage API
Access Rotten Tomatoes API




Class Diagram

SessionManager Renderer

currUser : User event : Event
renderer : Renderer —

. getChangesToScreen(event : Event)
getUser(userlD : string)

authenticateUser(userlD : String)
updateSession(}

endSession()

login(username : String,password : String)
logQut() name : String
likedMovies : MovieArray
likedActors @ ActorArray
signUpDate : Integer
AccountCreator moviesWatched : Integer
currentSession : Session

User

name : String

Eitgs:l\r:[r)il.es:[::lgger —D’ addLikedMovie(movieName : String)
addLikedActor{actorName : String)
get{property : Property)
set{property : Property)
setAdmin{admin : bool)

createUser(name : String,password : String,signUpDate : Integer)
checkUserNameAvailability(name : String)

Admin J Evant

eventType : Integer

isAdmin : bool userOrigin : User

getlsAdmin(isAdmin : bool]} confirmed : bool
MediaManager createEvent(type : Integer)
g setConfirmed(confirmed : boaol)
watchingMovie : bool processEvent()
movies : MovieArray newQperation(}

actors @ ActorArray

. . SearchManager
watchMovie(name : String)

likeMovie(name : String,liked : boal) whatToSearch : String
likeActor(name : String,liked : bool)

getRelatedMedia(movie : Movie) listenForSearches(searchString : String)
getRelatedMediafactor : Actor) processSearch(}
getMovielnfolmovie : Movie) getSearchResults()

getActorinfolactor : Actor)




Trace of Requirements to Design

Requirement

Trace

Users must have the ability to create accounts and
have the ability to login and logout easily.

When ‘create account’ button is clicked on the
user interface a new ‘User Account’ entity is
created in the the User Account Database. When
the ‘login’ button is clicked on the user interface
and authentication is verified the FlixBook server
will access the User Account Database and send
the specified information to the client. When the
‘logout’ button is clicked on the user interface the
user will be brought to a generic screen for
non-user interaction.

Users must have the ability to search movies based on
title, actors, year, or genre.

The Rotten Tomatoes API, which our web
application is using, allows for queries of movies
based on movie title, movie actors, movie release
date, and/or movie genre.

Users must have the ability to save movies to a library
that can only be accessed through the user account on
which it was created.

Each ‘User Account’ entity in the user account
database stores a list of the movies that the user
has saved into his/her library. The library (list of
movies) is presented to the user through the user
interface.

The web application must have the ability to
recommend movies to the users.

A list of recommended movies is presented to the
user on the user's homepage. The algorithm that
picks movies to recommend is based off of the
movies that the user has saved into his/her library.

The web application must have the ability to
alert/remind users of when specified movies are coming
on television or being released into theatres.

Once a day the FlixBook server will search the
Rotten Tomatoes API for upcoming movies. If a
movie is coming out in theatres in one week the
server will send an email to all users who have
signed up for an alert for that movie.

The interface must have a guest user home page which
will allow the user to login or create an account.

The initial interface that every user is brought to
when they enter the FlixBook URL into the browser
is the guest user interface. This user interface has
buttons for ‘login’ and ‘create account’. The ‘login’
button will call the login() method on the server and
the ‘create account’ button will call the
createAccount() method on the server.

Once a user logs in they should be brought to a
registered user home page that will show them
recommended movies based on the movies the user’s
library.

Once a user logs in to FlixBook, the information
contained in the specified ‘User Account’ entity in
the user account database is sent from the
FlixBook server to the client. The client will then
build a customized user interface which will present
recommended movies to the user.




The registered user home page should also have a link
to the user’s library and account settings.

The registered user home page user interface
includes both ‘Library’ and ‘Account Settings’
buttons. When the ‘Library’ button is clicked the
client will request, from the server, the information
needed to build the library user interface for the
user. When the ‘Account Settings’ button is
clicked the client will build a user interface which
allows the user to update settings. When the user
is done changing the setting he/she will click an
‘Update Settings’ button. When this button is
clicked the client will send the server all of the new
settings and the server will update the settings
attributes in the user account database.

A screen for searching for movies must be available to
both guest users and to registered users. The input for
the search should be a string describing an actor,
movie title, or movie genre.

The user interfaces for both guest-users and
registered-users will have a ‘Search Movie’ input
box. The string from this input box will be sent to
the server. The server will use the string to search
the Rotten Tomatoes API and will return the
information to the client.

A button to return the user to the home page should be
available at any time when navigating the web
application.

All pages on the FlixBook web application have a
‘FlixBook’ logo button. When a user clicks this
button the server sends the client the appropriate
information to build the registered user’s custom
home page. If a guest user clicks the button the
server sends the client the information to build the
generic non-user home page.




