COP 3503 – Computer Science II – CLASS NOTES - DAY #6
Additional Data Structures
Balancing Trees
· As search trees get large, it becomes important to ensure that the tree is balanced, otherwise the time required by the various tree operations (searching primarily) will increase to a worst case of O(N).

· Later in the term, we will examine several different variants of trees and see how they are balanced. Some trees require that balance be maintained by all operations on the tree while other trees allow balancing to occur only after the tree has become unbalanced to the point of requiring too much time for individual operations on the tree.

Recall that a binary tree is height-balanced or simply balanced if the difference in height of both subtrees of any node is either zero or one. A perfectly balanced tree is one in which all leaf nodes are found on one or two levels.

For example, a perfectly balanced binary tree consisting of 10,000 nodes, the height of this tree will be (log(10,001)(= (13.289(= 14. In practical terms, this means that if 10,000 elements are stored in a perfectly balanced tree, then at most 14 nodes will need to be checked to locate a specific element. This is a substantial difference when compared to the worst case of 10,000 elements in a list! Therefore, in trees which are to be used primarily for searching, it is worth the effort to either build the tree so that it is balanced or modify the existing tree so that it is balanced.

Hash Tables

Hash functions are a specific case of a more general technique known as key-to-address transformations (KTA transformations). There are many different KTA transformation techniques possible. Figure 1, illustrates the hierarchy of KTA transformations.

Figure 1 – Key-to-address transformation hierarchy.

Distribution dependent transformations depend on at least approximate knowledge of the key values that will be expected. The benefits that can be gained by distribution dependent techniques depend on open-addressing, bucket size. file density, and the appropriateness of the transformation itself. For small bucket size and a good distribution algorithm, the improvement over randomizing transformations can be significant. On the other hand, the liabilities of distribution dependent transformations are major, since a change in the key distribution can cause these methods to generate many more collisions than a randomization would generate for the same data. A benefit of some distribution dependent KTA transforms is that they can allow for maintaining sequentiality. Such sequence maintaining transforms allow the addresses produced to increase with increasing value of the key. Serial access is made possible in this case. Otherwise, a direct file does not generally support serial access. In Figure 1, there are two distribution dependent transformation shown; digit analysis and sequence maintaining transformations.

Deterministic transformations take the set of all key values and determine a unique corresponding address. Algorithms which produce such transformations become very difficult to construct if the number of key values is large (more than a few dozen). Adding a new key value requires a new algorithm, since the algorithm is dependent on the distribution of the source keys. Therefore only static files can be feasibly processed using deterministic procedures. Replacing the algorithm with a table of addresses corresponding to key values makes the problem more tractable (solvable) but in so doing, you have essentially created an indexed file structure which is a completely different beast. Deterministic algorithms are quite common for extremely static data in which the KTA transformation can be optimized to ensure O(1) access time. We won’t discuss deterministic transformations any further.

Probabilistic transformations translate the key values into addresses which are within the file-address space using an algorithmic process. Probabilistic take advantage of the random properties of the digits of a key value. Operations such as arithmetic multiplication and addition, which tend to produce normally distributed random values, are undesirable when hashing. A uniform distribution of the addresses is desired since this will evenly spread the key values (records) across the file space. Uniform distribution of the data within the file-address space is optimal but difficult to achieve in general. We’ll see why this is later.

At any point, the KTA transformation may produce, for two or more different key values, the same corresponding file address. This causes a collision which must be handled by some technique such as rehashing, chaining, buckets, etc. (we’ll see these later as well). Probabilistic transformations may either preserve the order of the records (sequence maintaining transformations) or they may be designed to maximize the degree of uniqueness of the resulting address. The more common probabilistic transformation take this latter approach which is called a random KTA transformation or more commonly a hashing technique.

Digit analysis is a known distribution, probabilistic hashing technique that attempts to capitalize on the existing distribution of key digits. An estimate or a tabulation is made for each of the successive digit positions of the keys using a sample of the records to be stored. For example, if the key is social security number then the sample of records that would be examined will probably show a uniform distribution over the low-order three digits. A tabulation simply lists the frequency of distribution of zeros, ones, twos, and so on. The digit positions that show a reasonably uniform, even distribution are candidates for use as digits in the file address. A sufficient number of such digit positions must be found to make up the full address; otherwise combinations of other digit positions (perhaps taken modulo 10 or as appropriate) can be tested.

A sequence maintaining transformation function can be obtained by taking a simplified inverse of the distribution of keys found. The addresses are generated to maintain sequentiality with respect to the source key. In a piece-wise linear transformation the observed distribution is approximated either automatically or manually, by simple line segments. This approximation is then used to distribute the addresses in a complementary manner.

The remainder of division (modulo operation) of the key by a divisor equal to the number of record spaces allocated in the file, can be used to obtain the desired address. Division is in some sense similar to taking the low-order digits, but when the divisor is not a multiple of the base of the number system of the key (or the hardware), information from the high-order portions of the key will be included; and this additional will have a positive effect on the number of addresses generated and thus on the uniformity of the generated addresses. Large prime numbers are generally used as divisors, since their quotients exhibit a well-distributed behavior, even when parts of the keys do not. In general, divisors that do not contain small primes (<= 19) are adequate. Empirical data has shown that division tends to preserve better than other methods preexisting uniform distributions, especially uniformity due to sequences of low-order digits in assigned identification numbers. The remainder does not preserve sequentiality. The problem with division is in the capability of the available division operation itself. Frequently the key field to be transformed is larger than the largest dividend the divide operation can accepts, and some hardware does not have division instructions which provide a remainder (although this is rare). When this occurs, the remainder (address) can be calculated according to the expression:

[image: image1.wmf]m

m

key

key

address

´

ú

û

ú

ê

ë

ê

-

=

The floor operation is necessary to prevent a smart optimizer from generating address = 0 for every key, which would lead to an extreme number of collisions (n-1 if n records are to be stored).

The exclusive-or technique typically divides the key digit string is segmented into parts which match the required address size. Using this operation results in random patterns for random binary inputs. The various segments are then exclusively-or’ed together to produce the address. Segment sizes need to be chosen carefully so that they have no common divisor relative to word sizes. This is among the faster KTA transformations available and is widely used.

Folding and adding of the key digit string produces a shorter string as the address and is a commonly used hashing technique. Alternate segments of the key digit string are bit-reversed.

· Static hashing and dynamic hashing are two very different problems and result in two very different structures to support them. Static hashing is most suitable for “internal hash structures” which are relatively small structures which fit into main memory in their entirety while dynamic hashing is most suitable for “external hash structures” which are relatively large structures on secondary memory.

· Provides dynamic searching capabilities based upon name alone.

· Avoids two problems of the BST. (1) Not O(N) in the worst case, and (2) does not require the repetitive memory maintenance of the BST which requires reorganization of the tree after every insertion and deletion.

· A hashing function is associated with the table that converts an input value (a key value) into an integer value that represents an address within the table (a location in the hash table).

· Data collision results any time that the hash function yields an address for a new input value that is already occupied by an existing data value. Without resolving the collision – the new input value is simply lost!

· Many different collision resolution techniques have been developed including, open addressing (linear probing or rehashing), chaining, multiple hash functions, and buckets.

· Searching the hash table is an O(1) operation in optimal situations.

· Hash tables are used in search engines and extensively by compilers and assemblers.

· Hash tables are very useful any time a fast lookup is needed.

· Search space (file space) is of size M, key space (set of all possible key values) is K, and the number of expected key values is k. The relationship that must hold between these three parameters (for internal hash structures) is:
K >> M > n

General form of Internal Hash Structure

1

0

1

0

 1

0

Example of a Dynamic Hash Structure (indexed on 2 bits)

1

 0

 1

 0

1

 0

 1

0

Example of Dynamic Hashing showing tree expansion and 3-bit key value

Priority Queues

· This data structure supports access only to the item which has the highest priority (this is the minimum priority value).

· Three operations are supported:

1. insertion – a normal queue insertion.

2. deleteMin – deletes the item in the queue with minimum priority value.

3. FindMin – searches for the item in the queue with minimum priority value.

· Worst case performance is faster the BST (O(log 2 N) in worst case)

· Less pointer overhead than with BST.

· FindMin operation is O(1).

· deleteMin operation is O(log 2 N).

· Insert is O(1) on average and O(log 2 N) in worst case.

· Basic priority queue with these three operations is called a binary heap.

Basic Operations on the Heap

Insert:
1. Insert a node into the next available spot (i.e., in the bottom ply).

2. Compare the key value of the new node with its parent’s key value, if the new node’s key value is less than its parent’s – interchange the nodes.

3. “Percolate” the node up into its correct position by recursively applying step #2.

Example:

Example:

Final tree maintaining structure and ordering properties.

DeleteMin:
1. Get the key value from the root node.

2. Locate the bottom, rightmost child and interchange it with the root.

3. Compare the key values of the two children of the root and the compare the smaller of them with the key value of the root. Interchange if the root key value is greater than that of the smaller child key value.

4. Percolate down by treating each current node as a “root” and recursively applying step #3.

Example: return node “1”

Example: return 1

	Data Structure
	Access is to
	Comments

	Stack
	only to most recently inserted item, pop = O(1)
	very, very fast

	Queue
	only to least recently inserted item, dequeue = O(1)
	very, very fast

	Linked List
	any item
	O(N)

	Search Tree
	any item by name or ranking, O(log 2 N)
	average case; worst case is O(N)

	Static Hash Table
	any named item = O(1)
	collision rate affects performance

	Priority Queue
	findMin = O(1)

deleteMin = O(log 2 N)
	insert is O(1) on average and O(log 2 N) in worst case

Table summarizing the basic data structures

21

17

41`

30

20

7

17

20

30

41`

7

21

10

2

7

3

5

1

5

7

3

2

1

Folding and

Adding

XOR

Remainder

of

Division

Digit

Analysis

Piecewise

Linear

Transform

Exponential

Transform

Hashing

Techniques

Sequence

Maintaining

Transformation

Probabilistic

Transformations

Deterministic

Transformations

Unknown

Key

Distribution

Known

Key

Distribution

Key-to-address Transformations

100110

100000

101100

101111

13

16

7

21

107

41`

30

20

17

10

100110

101100

100000

101111

	File Space

key attribute other attributes

Key-to-address

transformation

KAT

(hash function)

A binary tree is height-balanced (or simply balanced) if the difference in height of both subtrees of any node in the tree is either zero or one. A tree is said to be perfectly balanced if it is balanced and all of the leaves are found on one or two levels.

5

7

1

13

7

5

16

7

5

13

16

17

16

13

8

7

1

7

8

13

16

17

7

17

8

13

16

7

13

8

17

16

Day 6 - 7

_1086517978.unknown

