COP 3503 – Computer Science II – CLASS NOTES - DAY #16

The applications to which the tree data structure has been applied cover a vast array of areas. Searching, compression, expression evaluation, and priority queues are but a few of these areas; which in the interest of time will be the only areas that we will explore. We’ll also look a general tree traversals.

Example:

This is the same example that appeared in Day 16 notes, repeated here for continuity purposes only. Suppose that we have a four letter alphabet consisting of a, b, c, and d, and e only. To encode four letters requires 2 bits. Suppose that these are assigned as follows: a = 00, b = 01, c = 10, and d = 11. Now suppose that we have a sentence of these letters which is 15 characters long. This sentence will require 30 bits to encode. Suppose that we also have some information about the frequency of occurrence of each of our letters and know that “a” occurs most frequently, followed by b and so on. A Huffman coding tree is built as shown below with the most frequently occurring letters closest to the root.

 0 1

 0 1

 0 1

Reading the new codes from the tree we have: a = 0, b = 10, c = 110, and d = 111. Now suppose our 15 character sentence contains 8 a’s, 4 b’s, 2 c’s, and 1 d. With the new code this sentence requires (8*1) + (4*2) + (2*3) + (1*3) bits = 8 + 8 + 6 + 3 = 25 bits. The original code required 30 bits so we have save (30-25)/30 = 16%.

We mentioned that the occurrence frequency of every “character” in the file which is to be compressed must be known prior to building the coding tree. This information might appear in a frequency array like the one shown below:

	Letter
	a
	b
	c
	d

	Frequency
	8
	4
	2
	1

Building a Huffman Coding Tree

Let’s assume that the file to be compressed consists of alphabetic characters, like a text file. (Huffman’s coding algorithm can be used to compress a file of basically any type of object for which a frequency of occurrence can be established.)

The first step in building the Huffman coding tree is to generate the file of frequency values for each character in the file to be compressed. This can be accomplished in a number of different fashions involving a pass over the file to be compressed (works for static files) or by statistical methods (commonly historically based) applied to streams of characters to be compressed.

The next step is to generate a binary tree, which will not necessarily be balanced, that utilizes this frequency information to structure the tree. Each of the letters which appear in the file will be stored in a leaf node of the binary tree. Each non-leaf node will be the root of a sub-tree (think of the recursive definition of a binary tree). These internal nodes will store the sum of the frequencies of the letters stored in that subtree. In our example above, the root of the tree has a value of 15 which indicates that this subtree contains letters which occur 15 times in our “file”. Since the example dealt with 15 character strings, this is our file. The next internal node has a value of 7 which indicates all of the letters in this subtree appear with a frequency (sum of) 7 (i.e., 4 b’s + 2 c’s + 1 d = 7 characters).

Algorithm to Produce a Huffman Coding Tree

The following is an algorithm which will produce a correct Huffman coding tree based upon a frequency array.

(1) Let T be a set of trees. At the end of the algorithm T will contain a single tree.

(2) Initialize T to contain 1 tree for each letter in the frequency array. Each of these trees will contain a single root node which stores the letter and its frequency of occurrence.

(3) Repeat the following until (T(= 1. [Note: the running time of this algorithm is exactly (L((1 steps, where L is the number of letters in the array of frequencies.]

(3a) Find the two trees in T that have the two minimum values stored at their root.

(3b) Merge these trees into one tree by creating a new root node (this is the getNextParent method that was previously mentioned). This new root node will ONLY store the sum of the values of its children (the roots of the two trees which are being merged). The new root’s left pointer will reference one of the old trees while its right pointer will reference the other.

Example Run this algorithm on the original example from above.

	Letter
	a
	b
	c
	d

	Frequency
	8
	4
	2
	1

We will initially have a set of four trees (consisting only of root nodes) as shown below:

T =

The two trees with the lowest frequency are the last two on the right. These are merged into a new tree with a root whose “data” consists only of the sum of the frequencies of its two children. This is shown in the next step.

T =

Step 3b continues until only a single tree remains in T. The next step will merge the two trees with minimum values 4 and 3 as shown below:

T =

One more merge will result in T containing only a single tree. This is shown in the next diagram, which is the final binary tree.

T =

Notice that this tree is (except for the encoding protocol which isn’t in place on this tree yet) the same tree that was shown in the original example.

Generating the Encoding Protocol

Recall from the original example that the Huffman algorithm produces a variable-length encoding. This means that the codes assigned to the letters in the original file are not all of the same length. Recall in the non-compressed code that every letter required two bits to encode, yet the Huffman code required only one bit for the letter a and needed three bits for the letters c and d. If we are to be able to decode an encoded file we must operate under the assumption that the code for one letter is NOT the prefix for the code corresponding to another letter. In other words, suppose you encoded the letter a to be 011, the letter b to be 0, and the letter c to be 11. When reading the string of bits 011 from the encoded file how will you know whether you have “seen” the letters b and c or you have “seen” the letter a? Either case is potentially valid with this code.

One of the characteristics of the Huffman coding tree is that it is a full binary tree (remember this does not mean that it is a complete binary tree). This means that each non-leaf node (internal node) has two children. It can be proven that the Huffman coding tree is “optimal” meaning that it produces an optimal variable length prefix encoding based upon occurrence frequency. Optimal means that there will not be another encoding based upon the same occurrence frequency which requires fewer bits to encode the same file. Notice that this does not preclude the possibility that there may be more than one optimal encoding, it simply states that the Huffman encoding will be optimal.

In the example above, the tree which was generated by the Huffman algorithm was a skewed tree (a right-skewed tree in this case). This is simply a property of the frequency values that were in place in the frequency array. Question: should we or should we not attempt to balance this tree?

right-skewed

balanced

Notice that if we attempt to balance the tree we will in effect revert to the old uncompressed form of the encoding which required 2 bits for every character! So the answer to the question is, no, we should not attempt to balance the tree even if it is skewed.

Question two: Will the Huffman algorithm always generate a right-skewed tree? Answer: No, depending upon the frequency data the tree may be skewed but it is arbitrary whether the tree becomes left or right skewed, in the above examples I always chose the new root node’s right child to point to the already merged tree, it could have been the left child just as well with no change (other than the exact encoding) to the Huffman compression ratio.

Example: To further illustrate the Huffman algorithm, consider the following frequency data for a set of 6 characters.

	Letter
	a
	b
	c
	d
	e
	f

	Frequency
	22
	9
	32
	5
	8
	6

	Code
	000
	001
	010
	011
	100
	101

Notice that a non-compressed code will require 246 bits to represent these characters with their specific frequencies. The Huffman tree built from the algorithm shown above for this frequency data is: (see if you can generate this tree correctly – it might be important later that you can do this!)

From the Huffman tree we have:

	Letter
	a
	b
	c
	d
	e
	f

	Frequency
	22
	9
	32
	5
	8
	6

	Compressed Code
	01
	0000
	1
	0011
	0001
	0010

Now the same letters with the same frequency will require:

= (22*2) + (9*4) + (32*1) + (5*4) + (8*4) + (6*4)

= 44 + 36 + 32 + 20 + 32 + 24

= 188 bits (approximately 23.5% compression rate)

Level order traversals come in two flavors: depth-first and breadth-first. A depth-first traversal means that “traverse as deep as possible before you go wide”. In other words from a given node you go as deep as possible in the tree from that point prior to visiting any other node on the same ply as the initial node. A breadth-first traversal means that “traverse wide before you go deep”. In other words you visit all of the nodes on a given ply prior to visiting any of their siblings. The preorder, inorder, and postorder traversals that we have already seen are simply special cases of the depth-first traversal technique which apply to binary trees. There is no corresponding breadth-first traversal which is typically applied to a binary tree.

Depth-First Search

Algorithm:

1. Initialize a stack and push the first ply onto the stack (right to left order!).

2. Pop the stack and push the children of the popped node onto the stack in right to left order. Push nothing if the node is a leaf node.

3. Recursively perform step #2 above until:

a. the node is reached – then return that node.

b. the stack is exhausted – then return “not found”.

Example:

Consider the tree shown below with a call to depth-first(d).

Note: shows traversal order are tree links

1. tos

	b
	c
	d
	
	
	

1. pop b

 tos

	e
	f
	c
	d
	
	

2. pop e

 tos

	j
	k
	f
	c
	d
	

3. pop j

 tos

	k
	f
	c
	d
	
	

4. pop k

 tos

	f
	c
	d
	
	
	

5. pop f

 tos

	c
	d
	
	
	
	

6. pop c

 tos

	d
	
	
	
	
	

7. pop d

 tos

	
	
	
	
	
	

return d;

Breadth-First Traversal

Algorithm:

1. Initialize a queue and enqueue the first ply in the queue in left-to-right order.

2. Dequeue an element and enqueue its children in the queue in left-to-right order.

3. Recursively perform step #2 until:

a. the node is reached – then return the node.

b. the queue is exhausted – then return “not found”.

Example:

Consider the tree shown below and a call to breadth-first(d).

Note: shows traversal order while shows tree structure

1.

 head tail

	
	b
	c
	d
	
	

2. pop b

 head

 tail

	
	c
	d
	e
	f
	

3.pop c

 head

 tail

	
	d
	e
	f
	
	

4. pop d

head tail

	
	e
	f
	
	
	

return d;

Expression trees are a useful technique for representing and evaluating expressions. The leaves of an expression tree represent the operands of the expression which may be either constants or variables. The internal nodes represent the operations embedded in the expression. Most operations are binary operations and thus most internal nodes will have two children, however, this is not always the case. Unary operators, such as unary minus, will have only a single child node representing the single operand of such an operator. Other operations may be tertiary, quadary, etc. and such operation nodes will have three or more child nodes. An expression tree T is evaluated by applying the operator in the root node to values obtained through recursive evaluation of the left and right subtrees. Shown below is an expression tree which represents the expression (a+b)*(c(d):

Evaluation of the expression tree shown above produced the expression: ((a+b)*(c(d)). Note that this is an overly parenthesized infix expression as a result of the recursive production of a parenthesized left sub-expression followed by the operator in the root node followed by a recursively generated parenthesized right sub-expression. The traversal of the tree that produced this expression is called an inorder traversal and occurred by recursively traversing the left sub-tree followed by the root followed by the right sub-tree.

Specific Traversal Algorithms to Convert Expressions

The following algorithms convert infix expressions to either prefix or postfix expressions.

A preorder expression tree traversal generates a preorder expression if the expression tree represents a valid inorder expression. The example below illustrates this process.

Example: Consider the infix expression tree shown earlier in this set of notes which represents the expression (a+b)*(c(d). The prefix form of this expression as generated by a preorder traversal of the tree is: * +a b (c d. Generated as follows:

print *, traverse left, print +, traverse left, print a, traverse right, print b, traverse right, print (, traverse left, print c, traverse right, print d, end.

A postorder expression tree traversal generates a postfix expression if the expression tree represents a valid inorder expression. The example below illustrates this process.

Example: Consider the infix expression tree shown earlier in this set of notes which represents the expression (a+b)*(c(d). The postfix form of this expression as generated by a postorder traversal of the tree is: a b + c d (*. Generated as follows: traverse left, traverse left, print a, traverse right, print b, print +, traverse right, traverse left, print c, traverse right, print d, print (, print *, end.

Building an Expression Tree from an Infix Expression

Since it is easy to convert an infix expression to a postfix expression, what we need to be able to do, as far as the compiler is concerned, is to generate the expression tree from the postfix expression. This is also fairly simple to do as the algorithm and example below illustrate.

Example - Assume that we have the postfix expression a b + c d (/ (the infix form is (a + b) / (c (d)).

Evaluation is as follows:

1. push a, push b, “see” + so pop b (right operand), then pop a (left operand), finally push new tree (a b +) [form is: left sub-tree, right sub-tree, root].

2. push c, push d, “see” (so pop d (right operand), then pop c (left operand), finally push new tree (c d ().

3. “see” /, pop (c d () (right operand), then pop (a b +) (left operand), push new tree ((a b +) (c d () /).

Example – Assume that we have the postfix expression a b ^ c d / + (the infix form of this expression is a ^ b + c / d).

Evaluation is as follows:

1. push a, push b, “see” ^ so pop b (right operand), then pop a (left operand), finally push new tree (a b ^).

2. push c, push d, “see” / so pop d (right operand), then pop c (left operand), finally push new tree (c d /).

3. “see” +, pop (c d /) (the right operand), then pop (a b ^) (the left operand), push new tree ((a b ^) (c d /) +).

In general, a search tree is a tree that supports efficient search, insertion, and withdrawl techniques. In this context the tree is used to store a finite set of keys drawn from a totally ordered set of keys K. Each node of the tree contains one or more keys and all the keys in the tree are unique (no duplicate keys are allowed). What turns a tree into a search tree is that the keys do not appear in arbitrary nodes of the tree. Instead, there is a data-ordering criterion, which determines where a given key may appear in the tree in relation to the other keys in the tree. General search trees are called M-way search trees and are beyond the scope of this course, instead we will focus on binary search trees. A binary search tree is a special case of an m-way search tree defined as follows:

Examples:

a binary search tree

not a binary search tree

why? (nodes 2 and 6)

Searching a binary search tree for a particular value is quite similar to the way the binary search is performed on an array of values. The use of the tree makes a recursive search algorithm quite natural to implement.

How do you insert a new node into a binary search tree in the correct node? The simplest way is to pretend that the key is already in the tree and then follow the path into the tree based upon the search traversal to determine where the item would be. Assuming that the item is not already in the tree, the search will fail and would terminate on external empty node (a null pointer). This is exactly where the new key should be placed into the tree! (Question: is it possible to insert a new key value into a BST (binary search tree) that would be an internal node? Answer: No, since no key value can be duplicated, the new value must be either smaller in value or larger in value than every node which is currently in place in the BST and therefore it must be that all new key values will become leaf nodes!)

Deleting a node from a BST occurs in two forms: a leaf node is to be deleted (the trivial case) or an internal node is to be deleted (the complex case). Since a leaf node has empty left and right subtrees, deleting a leaf node will render a tree with one less node but which remains a BST. This is illustrated below:

A BST with a leaf node

The BST with the leaf node

marked for deletion

deleted. A BST remains

To remove an internal node, it is moved down the tree until it becomes a leaf node, since a leaf node can be easily deleted as we have just seen. To move a node down the tree, it is swapped with another node which is deeper in its subtree. More specifically, to move an internal node down in the tree, it is swapped with the smallest key value in the right subtree or with the largest key value in the left subtree. At least one such swap is always possible, since the internal node has a least one child and hence one of its subtrees is non-empty. If after the swap, the node to be deleted is not a leaf node, it is pushed further down the tree with yet another swap. Eventually, the node must reach the bottom of the tree where it can be deleted. This is illustrated in the next sequence of diagrams:

A BST with an internal

node marked to be

deleted

The marked internal node has

no left subtree so it is swapped

with the smallest node in its

right subtree

The node has been deleted

and a BST remains once

again

cb

b

db

3

7

a

15

b/4

a/8

d/1

c/2

b/4

a/8

Huffman Coding Revisited

c/2

d/1

3

3

d/1

c/2

b/4

a/8

7

82

17

11

d

f

Tree Applications

7

3

d/1

c/2

b/4

a/8

15

e

a

18

15

3

d

c

b

a

b

28

50

c

a

0

1

1

1

1

1

0

0

0

0

b

c

d

e

f

g

h

i

j

k

l

m

n

f

e

d

c

b

a

Level Order Tree Traversals

*

(

+

d

c

b

a

Tree Traversal to Produce Infix Expressions

Recursively produce the left sub-expression.

Print out the root node.

Recursively produce the right sub-expression.

General Inorder Tree Traversal

Recursively traverse the left sub-tree.

Visit the root node.

Recursively traverse the right sub-tree.

General Preorder Tree Traversal

Visit the root node.

Recursively traverse the left sub-tree.

Recursively traverse the right sub-tree.

General Postorder Tree Traversal

Recursively traverse the left sub-tree.

Recursively traverse the right sub-tree.

Visit the root node.

Tree Traversal to Convert Infix Expressions To Prefix

Print out the root node.

Recursively produce the left sub-expression.

Recursively produce the right sub-expression.

Tree Traversal to Convert Infix Expressions To Postfix

Recursively produce the left sub-expression.

Recursively produce the right sub-expression.

Print out the root node.

Algorithm to Produce Expression Trees from Postfix Expressions

Maintain a stack of trees (actually references to trees, i.e. pointers).

Whenever an operand is “seen” in the expression – create a single node tree and push it onto the stack.

Whenever an operator is “seen” in the expression – pop the top two entries on the stack. The first tree popped is the right node and the second tree popped is the left node of a new tree where the operator is the root node of this new tree. Finally, push the new tree onto the stack.

At the end of the input, there will be one entry on the stack which is the entire expression.

(a b +)

a b

a

(a b +) (c d ()

(a b +) c d

(a b +) c

((a b +) (c d () /)

Expression Trees

Binary Search Trees

Binary Search Tree

A binary search tree T is a finite set of keys. Either the set is empty, T = (; or the set consists of a root r and exactly two binary search trees TL and TR, T = {r, TL, TR}, such that the following properties are satisfied:

All keys contained in left subtree, TL, are less than r.

All keys contained in right subtree, TR, are greater than r.

c

c

a

b

c

e

d

f

g

i

h

21

25

22

9

2

6

c

5

3

7

c

5

1

6

7

3

2

4

2

2

3

7

6

1

5

3

7

6

1

5

1

3

7

6

2

5

7

3

7

6

2

5

3

d/1

c/2

b/4

a/8

15

Day 16 - 8

