COP 3503 – Computer Science II  –  CLASS NOTES  - DAY #14
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As we begin the second half of the course, our focus shifts from examining problem-solving techniques and asymptotic algorithm analysis toward the issues involved with the implementation of the basic data structures which support the problem-solving techniques incorporated in our algorithms.  For most of the data structures that we have examined a basic implementation issue centers on whether the structure is implemented in a static or dynamic fashion.  The selection of a static or a dynamic implementation often depends on problem specific issues commonly related to either speed of execution or knowledge of the size of the problem instances which are to be expected.  A static implementation implies that the structure will be implemented using an array.  In most (but not all) programming languages arrays are statically allocated chunks of contiguous memory addresses.  A dynamic implementation implies that the structure is implemented using memory locations which are allocated during execution of the algorithm.  Since the program is in execution at the time a memory request occurs, support from the run-time environment is required (this means OS support).  This run-time support comes with a price tag of increased overhead in the execution of the program (the overhead manifests itself primarily in terms of time) with the benefit of implementation and instantiation flexibility.  

As we move, once again, through a number of different data structures, you should keep in mind that most of them can be implemented either statically or dynamically.  For some of them we will look at both types of implementations, but for the most part we will be assuming a dynamic implementation.  As we examine the implementation issues surrounding these data structures we will focus predominantly on two areas: (1) ensuring that the implementation satisfies the asymptotic behavior that we expect for the various operations that are allowed on the structure, and (2) the implementation is done in such a way that it is efficient in time and space while incorporating the design aspects of the OOP paradigm.

Traditionally, dynamic structures imply the use and manipulation of pointers or pointer variables.  There is a common misconception that Java does not support pointers.  This is not true, per se.  In Java, every variable that is not one of the primitive types is a reference type.  Such a variable is can be thought of as a reference to (or a pointer to) an object of the appropriate type.  Thus, Java supports references and not pointers.  The primary difference in this area between, say Java and C, is that C supports pointer arithmetic and Java does not.  This is a safety feature incorporated in Java which prevents access through a pointer to an address outside the addressing scope of your program and prevents either accidental or malicious memory address violations.

Many complex data structures have their foundational representation based upon a variation of a linked list.  For example, a stack can be thought of as simply a list of objects for which both the insertion of new items and the deletion of items currently in the list occur at the same reference point in the list, namely at the top.  Similarly, a queue can be thought of as a list in which the insertion of new items and the deletion of currently included items occur at different locations in the list, namely at opposite ends of the list.  Since the list structure is a fundamental structure on which many others are based, we will examine it first.
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General Characteristics
· Allows general access to elements in the structure (i.e., not constrained to the beginning or end of the list as with a stack or a queue).

· Consists of dynamically allocated nodes (containing both a data section and a reference section) that are logically connected together.

· There are many different variations on the theme of linked lists including some highly specialized versions which are problem specific.  We will examine only a few of these variations.

Singly Linked List
· This is the simplest form of a linked list.  Each node in the list has at most one predecessor node (a node which logically precedes the node) and at most one successor node (a node which logically follows the node).
· Each node contains a reference to the “next” logical node in the list.

· The last node in the list contains a reference to null, indicating that it is the last node in the list.

· Movement through the list is uni-directional, i.e., one-way.

[image: image3.png]Element Can Be Inserted Here > 70 top

54=70= 87= 1




    null


    head

· Recall that the basic operations that are needed on a linked list are: insert, delete, and find at the minimum, but “helper” operations are extremely useful and many will be problem specific.

Java Implementation
//definition of a node class

public class Node

{
public Object data;


public Node  next;


public Node (Object x)  //constructor for Node alpha = new Node (x);
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{
data = x;




 



next = null;


}  //end constructor


public Node (Object x, Node n)  //for Node beta = new Node (x, alpha);


{
data = x;



next = n;


} //end constructor

} //end class Node





    n

Single Linked List Implementation in Java
public class Singly_Linked_List

{
private Node header;


private Node current;


public Singly_Linked_List ( )


{
header = new Node(null, null);



gotoHeader ( );


} // end constructor


// NOTE: header eliminates the special case for insertion as 

//              now all nodes have at least one node in front of them.

public void resetList ( )

{
header.next = null;

} //end resetList

public boolean isEmpty ( )

{
return (header.next = = null);

} // end isEmpty

public void gotoHeader ( )

{
current = header;

} //end gotoHeader

public void gotoFirst ( )


{
current = header.next;


} //end gotoFirst


public void walkForward ( )


{
current = current.next;


} // end walkForward


public void insert (Object x)

 // new node inserted between current and current.next


{
if (current = = null) 




System.out.println(“ERROR”);



else



{ Node newN = new Node( x, current.next);



   current.next = newN;



   current = newN;



} // end if-else


} // end insert


public void remove (Node n)  //removes the node after node n in the list


{
if (current = = null) 




System.out.println(“ERROR”);




else



{ Node  temp = current.next;



   n.next = temp;



   current = n;



} // end if-else


} // end remove


public Node find (Object x)


{
Node finder = header;



Node temp = header;



while (finder.next != null && !finder.next.data.equals (x))



{  temp = finder;



    finder = finder.next;



}



current = finder.next;



return temp.next;


} // end find


public Node get (Object x)


{
Node n = find (x);


//  assume the user does something like the following after doing a find (x)


//  if (current = = null)


//  {
current = n;


//
System.out.print(x + “ Not Found”);


//  }



return current;


} // end get

} // end Singly_Linked_List

Details Of How It Works
Shown below is a diagram of how insert works:

list before insert:
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list after insert:
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Shown below is a diagram of how remove works:

list before remove:





    current
         temp

list after remove:
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        temp

Shown below are diagrams which illustrate how find works:

Assume this initial list for all cases:
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Case #1:  find (B)
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Note:  Reference to node containing “A” is returned

Case #2:  find (D)
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At this point finder.next = null so the loop ends and a reference to the node containing “C” is returned (temp.next)

Additional Implementation Issues For Linked Lists
Although the concept of linking is common to all linked lists, a number of other issues can affect the implementation of a linked list in different fashions.  Many of the design considerations that we will mention can be applied to virtually any linked list.  Depending upon the application at hand, one or more of these implementations will be an appropriate solution.   Some of these design issues are discussed in the sections that follow.

· Header Object:  Should the list have a special node that maintains the reference to the first actual node in the list?  If this special node is used it is typically called a header node.  The advantage of this technique is that there is always a node which “represents” the list.  Operations on the list must go “through” this header node in order to gain access to the list itself.  If no header node is used, then the first node of the actual list must “represent” the list.  This implies that an empty list is denoted by null.  Another, more subtle advantage of the header node will be illustrated when we develop insert and delete methods .  A simple explanation will suffice for now:  the header node will prevent special case insertion and deletion operations from occurring and will thus streamline the code for these methods.  A disadvantage of the header node is that the list will contain a node which is not really a part of the list.  Sometimes however, this header node can be used for storing useful information about the remainder of the list, such as the number of nodes currently in the list, etc.. 
· List Termination:  How should the list be terminated?  One technique, which is very commonly used, is to have the reference field (the pointer) in the last node of the list refer to the special value null.   A completely different technique, which has certain advantages, is to use a sentinel or special value in the last node of the list (and typically leave the last reference field undefined).  As with the header node, the sentinel can be used to eliminate special cases for inserting and deleting within the linked list.  This will be made clearer when we are actually looking at some of the linked list implementations.
· Single, Double, or Multiple Links:  Single links (a singly linked list), permit the list to be traversed (walked) in only one direction.  It is sometimes useful to be able to traverse the list in either a forward or backward direction and double links will be necessary.  Double links however, will require more care on the programmers part to ensure that insertions and deletions to the list are properly handled.  For more complex linking arrangements, multiple links may “enter” or “leave” a given node and care must be used by the programmer to ensure that the proper link is followed for a given situation.

· First and Last Link References:  A characteristic of the list is that efficient (constant time) access to the elements is only possible at the ends of the list.  To access an element in the middle of the list requires traversing all of the links in between and thus the time required to access an arbitrary node will depend upon the size of the list (the current number of nodes in the list).  If we maintain a reference (pointer) only to the first node in the list, then access to the last node in the list will be the most time-consuming operation (it will be O(n) for an n node list).  By maintaining  references to both the first and last nodes in the list, constant time access will be achieved for both the first and last nodes in the list.  In many situations, depending upon the application and the length of the list, intermediate references may be maintained in the list for constant time access to intermediate list elements as well.

· List Termination Revisited:  Above we discussed some of the ways in which the terminal node of the list can be marked.  The question becomes, does the list need to terminate at all?  The answer is yes and no.  Logically, the list must have a beginning and an end (although these might be the same), but physically, there is no requirement that the list terminate.  This is the concept behind a circular list.  In a singly-linked circular list, the reference field of the logical last node will refer (point to) the logical first node in the list.  Thus, no matter where you are presently positioned within the list, you will be able to completely traverse the n nodes in the list and return to your starting point without requiring an intermediate restart to your search when the physical end of the list is encountered.  Obviously, more care is required on the part of the programmer in constructing and maintaining such a list to prevent an infinite loop from occurring during list traversal (if sentinel or header nodes are not used).

The design considerations that were discussed above are by no means an exhaustive set of issues concerning the implementation of linked lists.  The set of issues above merely reflects some of the important design considerations.  There are many others that will need to be considered when implementing a linked list as part of a solution to a specific problem.  For example, one of the features of a linked list, is that you have the ability to insert a new node (element) at some arbitrary point in the list in constant time.  If you also consider maintaining the nodes in the list in some sequential order you will now have the ability to implement very fast algorithms for merging two collections (two lists) together.  

· Self-Organizing Lists:  Normal lists, like those we have typically dealt with, rely on the fact that the search requests are uniformly distributed across the elements of the list.  In other words, any single element is no more likely to be the basis of a search than any other element in the list.  What happens however, if this is not true?  Suppose that the distribution of search requests is not uniform but skewed toward a single element.  For example, suppose that we had a singly-linked list implemented with a reference only to the first node in the list (no reference to the last node in the list) and the distribution of search requests was such that from every 10 requests 9 were for the last element in the list.  In this case, 90% of the searches would traverse the entire list before finding the search element in the last node.  Thus, the average search time would be very close to n elements.  On the other hand, if we knew that this would be the distribution of search requests, it would be much more sensible to place this highly desired element in the first position of the list so that 90% of our searches would be performed in constant time.  This is the reasoning behind the implementation of self-organizing lists.  A data structure that attempts to improve future performance based upon current usage is said to be self-organizing.  Self-organizing lists present a completely different set of design considerations than do standard (non-self-organizing) lists.  These lists are designed specifically to improve on the normally sequential nature of a search within a list by ensuring that elements which are the basis of frequent searches will be found quickly. 

· Skip Lists:  The major drawback to a linked list structure is the property of sequential access.  This is an O(n) operation and can be quite time consuming for long lists.  Keeping the elements of the list is order is of little help.  Why?  Why can’t we perform something similar to a binary search on a linked list?  To see why we can’t do this with a linked list, note that we would need to have a reference into the middle of the list, something which is not typically there (but could be in certain cases):


Even, if such a link exists, it would only be the first step in the search.  To make the next step, we would need references into the middle of each subgroup of nodes:


This would be required to continue until we reached the level of having references to the individual nodes:



It would be possible to create such a hierarchy of references, but the work required maintain the references as nodes were inserted and deleted from the underlying list would almost certainly overwhelm any benefits the references would provide.

The skip list data structure overcomes this problem by not being precise but rather relying on randomization and chance.  The basic idea behind the skip list is quite simple.  Elements are stored in an ordered list.  Overlaying the list will be a hierarchy of other ordered lists.  The nodes in these auxiliary lists will have an additional field that will point downward to a node in the next-level or ultimately to a node in the lowest level list that holds the element.  The auxiliary lists are arranged so that each level will have, on average, approximately half of the number of elements of the list below it.  A typical skip list might look like the one shown below.
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The skip list maintains two internal data fields.  The field bottom points to the linked list in which the lowest-level elements are stored.  The variable top will point to the right-hand sentinel for the highest-level list.  To illustrate how skip-lists are maintain, suppose that we wish to insert the element with value 38 into the list shown above.  The “search” begins at the list referenced by top.  A method (slidleft) traverses the list backwards until the value encountered in the list is smaller than the new element.  This is shown in the next figure.


However, since we are not at the bottom level of the structure, we drop down one level.  Although we know where the element should be inserted in the upper list, the node found in the down link may not be the proper location for the insertion in the next level down.  So once again, the slideleft operation will locate the proper location in this new level list.  This is illustrated in the next figure.


This process must continue until the proper location at which to insert the new element is found in the bottommost list.  The figure below illustrates where the actual insertion into the skip list will occur for this scenario.


The new element is inserted into the bottommost list.  The next step is where randomization comes into play.  As we return to the level above the bottommost list, we flip a coin (make a random selection).  If the coin is heads, we insert a new link into the list.  This link will point downward to the link for the field that was just inserted into the bottom list.  If the insertion is performed (the coin was heads), the reference to the new link is returned, otherwise, null is returned.  Shown below is the situation if the coin was heads.


At the next level up, we also flip a coin but only if the insertion at the level below resulted in a new link added to the structure.  Since an insertion in the next level up requires that heads be tossed on two consecutive coin flips, the chance is only 25% that a link will be made.  This process repeats all the way up the list.  At the topmost level, if new nodes were generated all the way to the top, we would again, and for the final time, flip a coin.  If heads were once again flipped, a new level in the hierarchy would be formed consisting of one link to the newly added element.

The skip list advantage over a conventional linked list is that searching, insertion, and deletion from the skip list all require, in general, O(log n) time compared to O(n) time for the conventional linked list. 

Doubly Linked Lists
· Better than singly linked list as they are bi-directional.

· Has both a header and a tail node (for the same reason that we added the header node to the singly linked list).

· Each node will contain two reference fields.

  null












    null

header





  tail

public class DLLNode

{
public Object data;


public DLLNode  next;  //reference field to logical successor node


public DLLNode  prev; //reference field to logical predecessor node


public DLLNode (Object x)  //constructor for isolated DLLNode 


{
data = x;
//



prev = null;
//


 



next = null;   //     null


}  //end constructor


public DLLNode (Object x, DLLNode n, DDLNode p) 

//constructor for linked DLLNode


{
data = x;



next = n;



prev = p;


} //end constructor

} //end class DLLNode
 
   p


                            n

Doubly Linked List Implementation in Java
public class Doubly_Linked_List

{
protected DLLNode header;


protected DLLNode tail;


protected DLLNode current;


public Doubly_Linked_List ( )


{
header = new DLLNode(null);



tail = new DLLNode(null);



header.next = tail;



tail.prev = header;


} // end constructor

public void resetList ( )

{
header.next = tail;


tail.prev = header;


current = header;

} //end resetList

public boolean isEmpty ( )

{
return (header.next = = tail);

} // end isEmpty

public void gotoHeader ( )

{
current = header;

} //end gotoHeader

public void gotoTail ( )

{
current = tail;

} //end gotoTail

public void gotoFirst ( )


{
current = header.next;


} //end gotoFirst


public void gotoLast ( )


{
current = tail.prev;


} //end gotoLast


public void walkForward ( )


{
current = current.next;


} // end walkForward

public void walkBackward ( )

{
current = current.prev;

} //end walkBackward

public void insert (Object x) //inserts after current

 // new node inserted between current and current.next


{
if (current = = null) 




System.out.println(“ERROR”);



else



{ DLLNode newN = new DLLNode( x, current.next, current);



   current.next.prev = newN;



   current.next = newN;



   current = newN;



} // end if-else


} // end insert

public void remove (DLLNode  n) 

//removes the node n located after node current in the list


{
if (current = = null) 




System.out.println(“ERROR”);




else



{ n.prev.next = n.next;



   n.next.prev = n.prev;



   n = null;



} // end if-else


} // end remove


public Node find (Object x)


{
DLLNode forward = header;



DLLNode backward = tail;



while (forward != backward && forward.next != backward 

&& !forward.next.data.equals (x) 

&& !backward.prev.data.equals (x))



{  forward = forward.next;



    backward = backward.prev;



}



if (forward.next.data.equals(x))

current = forward;



else if (backward.prev.data.equals (x))




current = backward.prev.prev




else return null;



return current.next;


} // end find


public DLLNode get (Object x)


{
DLLNode temp = find (x);


//  assume the user does something like the following after doing a find (x)


//  if (current = = null)


//  {
current = n;


//
System.out.print(x + “ Not Found”);


//  }



return temp;


} // end get

} // end Singly_Linked_List

Details Of How It Works
Shown below is a diagram of how insert works:

list before insert:











   



        current

list after insert:
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         newN

Shown below is a diagram of how remove works (shown without header and tail nodes):

list before remove:



        current

    n
         

list after remove(B):




                  current

    n

       

deallocate n

 Shown below are examples of how find works:

(A) find(B)



header










     tail

forward









     backward


header
   forward






backward
    tail 


 

   current

returns: current.next

Note: a call to find(X) would return: null with current pointing at B and backward pointing at C.

Given our implementation of the doubly-linked list using both a header and a tail node that an empty list consists of two nodes as shown below (see the constructor for DLL).


null








null

                    header



       tail

Multiply-Linked Lists
So far we have encountered list whose nodes consist of either one or two reference fields.  In general, a node can contain n reference fields which will allow that node to be a member of up to n different logical lists simultaneously.  The techniques for manipulating a multiply-linked list are the same as those for singly and doubly linked lists with the additional requirement that up to n different links will need to be maintained by any operation that affects the state of the structure.  Additional care is required by the programmer to ensure that each logical list is properly maintained.  Also note that, as with any of the linked lists we have seen thus far, each logical list within the multiply-linked list structure can be singly, doubly, and/or circularly linked and any of the implementation methods can be used in any of the logical lists.
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