
[bookmark: _GoBack]Final Exam	Topics	COP3530H, Fall 2011
Topics (since or in vicinity of midterm):
1.	Depth First Search
Algorithms Based on Depth First Search
	Finding cycles in a directed graph; Topological sort; Reachability problem;
	Connected components; Reflexive transitive closure
Alternative of using Union/Find partitioning to compute connected components.
2.	Greedy
Min Spanning Tree
Prim's Algorithm
Kruskal's Algorithm
Shortest Path Problem by Dijkstra’s Algorithm
	Greedy based on closest unsettled node
	Use Adjacency Lists for weighted arcs and POT for unsettled – O(M lg N) time
	O(N M lg N) time extension for all shortest paths
	Or use Adjacency Matrix for arcs and List for unsettled – O(N2) time
Huffman Coding
Scheduling Problems
	Greedy heuristics for hard problems (min the max finishing time)
	Cases where greedy works (min the mean finishing time)
3. 	NP, NP-Complete and NP-Hard
Decision vs optimization problems
NP as collection of non-deterministic polynomial time decision problems
NP as collection of deterministically checkable polynomial time decision problems
Polynomial reducibility
NP-Complete class
Show SAT is in NP
Polynomial time reduction of SAT to 3SAT
SAT, 3SAT as canonical NP-Complete problems
Polynomial time reduction of 3SAT to SubsetSum
Show SubsetSum is in NP and hence NP -Complete
Polynomial time equivalence of SubsetSum and Partition
Partition and scheduling
Scheduling problem anomalies
Optimal strategy for UET (unit execution tree or anti-tree)
QSAT (or TQBF) as NP-Hard problem
4. 	Flow Typing Problems
Maximum Network Flow (Ford-Fulkerson)
Using BFS to improve performance
Focusing on the heaviest residual path
Data flow analysis (loops and forward/backward flow)
5. 	Relational Data Model
Relational database is a collection of tables, called relations
Each row is called a tuple and is an instance of the relation
Each column is a labeled attribute; Set of attribute names is scheme of the relation
Each relation has a key, which is a set of attributes that uniquely identifies each row
Data Structures for Relations:
	BST – sorted by key; Hash, as function of key; List (linked or array) of tuples
Using keys to navigate among relations
Relational algebra – The operators:
	Union		Intersection	–	Difference
C (R)	Selection	B1,…Bn (R)	Projection
R Ai=Bj S	Join	R S	Natural Join
Complexity Analyses of Implementing Relational Operators
Query optimization – Algebraic Properties of Relational Operators
Views – dynamically derived relations
6. 	Divide and Conquer
Integer multiplication
Tromino Tiling
Closest Points
Doubly Log Max (D&C plus amortization)
7. 	Lindenmayer Systems (an aside)
Parallelism in Lindenmayer Systems
8.	Dynamic Programming
Cocke-Kasami-Younger
	Use Principle of Optimality – build from pairs of shorter substrings
Let your fingers do the walking – O(N3) time
LCS – longest Common Subsequence – O(N*M)
	Use Principle of Optimality – build from shorter prefixes
Edit distance – O(N*M)
	Use Principle of Optimality – build from shorter prefixes
Reflexive Transitive Closure by Warshall’s Algorithm
	Use Principle of Optimality – intermediate (pivot) nodes
	Use a Boolean Adjacency Matrix – O(N3) time
	Comparison to reflexive transitive closure by depth first search
All Shortest Paths Problem by Floyd’s Algorithm
	Use Principle of Optimality – intermediate (pivot) nodes
	Use an Adjacency Matrix to represent weighted arcs – O(N3) time
Knapsack (parameters now N and W, rather than just N)
	Analogy to Radix Sort
9.	Randomized Algorithms
Las Vegas (Hopefully fast; If succeeds, gives correct answer)
	Ethernet Protocol
	Dining Philosophers
Monte Carlo (Fast; Can give approximation)
Integration
Digests for file transfers
Global Illumination
10.	String matching
Brute Force (expected n; worst case m*n)
Rabin-Karp Fingerprint Technique (expected m+n)
	Monte Carlo in nature if accept possible failure (worst case m+n)
	Las Vegas in nature if do check on each candidate match (worst case m*n)
Knuth-Morris-Pratt: KMP
	Pre-compute pattern shifts against self (expected and worst m+n)
	Uses DFA to compute shift
Horspool’s Algorithm
	Focus on matching right to left
Boyer-Moore
	Similar to Horspool but improves how to shift pattern (can be sublinear)
11.	Halting Problem (another aside)
Uses diagonalization

Samples on Database Operations
	1.	The following table shows algorithmic costs for naive approaches (ones not involving sorts or indices) to relational operations. Fill in the columns associated with the use of indices. You may assume constant time index lookup via a hash table. Assume |R| = n, |S| = m, t = n+m, and |Result| = k

	
	Naive
	Indexed

	R  S
	nm
	

	R – S
	nm
	

	C (R)
	n
	

	– (R)
	n^2
	

	R S
	nm
	

	2.	Assume we wish to issue the following query :
NAME (STATE=FL((DIRECTORS  BORROWERS) LOCATIONS)))
Present the tree associated with this query expression.

Now show how the following algebraic rules may be applied to optimize the query by pushing the projection and selection operators as low as possible. Present the new expression and its corresponding tree
Selection Pushing below Joins
(C (R S))  (C (R) S) , provided all attributes of C are in R
(C (R S))  (R C (S)) , provided all attributes of C are in S
Projection Pushing below Unions
(L (R  S))  (L (R)  L (S))
Limited Projection Pushing below Joins
(L (R A=B S))  (L (M (R) A=B N (S))) , where
1) M consists of attributes of L from R followed by attribute A, if it is not in L,
2) N consists of attributes of L from S followed by attribute B, if it is not in L.
Projection Identity
L (R)  R , when L is all the attributes of R

