COP3503H, Fall 2011
-- 4 --
Sample Final

COP 3503H– CS2 Fall 2011
Sample Final
Name:
KEY

1.
Consider an Abstract Data Type, WaitingQueue (WQ), defined by the following protocol

public WQ() – constructs the WQ with an empty state (no tasks are waiting)
public void put(Task t, int p) – adds a new task, t, with priority, p, to the WQ. There can be many tasks of the same priority.

public int max() – returns the priority of the highest priority task in the WQ, -1 if there are none.

public boolean match(int p) – returns true if there is a task in the WQ whose priority is at least as large as p.

public Task deleteHighest() – returns a task in the WQ whose priority is the highest. Returns null if there are no tasks in WQ. The returned task is deleted from the WQ.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure.

Fill in the order of the average complexities in terms of N, the number of elements being stored, of each of the last four services provided for the WQ ADT, given the following three approaches to implementation. In all cases, assume that individual sizes can be compared in constant time and that you are concerned with expected, not worst case performance. You should not be surprised if one or more of these suggested approaches is a poor choice.

All orderings are based on a task priorities, and duplicate priorities are allowed.

i.)
The state of the WQ is represented in a Max Heap implementation of a Balanced Priority Ordered Tree (BPOT).

ii.)
The state of the WQ is represented by a Hash Table (HT). You may assume that collisions are handled by using buckets and that the hash function evenly distributes the N elements over B buckets.

iii.)
The state of the WQ is represented by an Unsorted List (UL). Assume a simple array data structure, storing data in positions 0 to N-1.

	
	BPOT
	HT
	UL

	put
	O(lg N)
	O(1)
	O(1)

	max
	O(1)
	O(N)
	O(N)

	match
	O(1)
	O(N)
	O(N)

	deleteHighest
	O(lg N)
	O(N)
	O(N)

2.
Throughout the term we have looked at various ways to use P processors to quickly and efficiently find the largest element in a list A[0…N–1]. One of the early algorithms we looked at was the binary tree reduction. Assuming this algorithm, fill in the following table for values of P = 1, N/2, lg N. I filled in the first row since I'm a nice guy, and it was real easy.

	
	Time
TP(N)
	Cost
CP(N)
	Cost Efficiency
ECP(N)

	P = 1
	O(N)
	O(N)
	O(1)

	P = N/2
	O(lg N)
	O(N lg N)
	O(1/lg N)

	P = lg N
	O(N/lg N)
	O(N)
	O(1)

3.
Throughout the term we have looked at various ways to use P processors to quickly and efficiently find the largest element in a list A[0…N–1]. In our most recent look at this problem, we combined the O(lg N) time, O(N) work binary tree reduction (BTR) algorithm with the O(lg lg N) time, O(N lg lg N) work doubly log tree (DLT) algorithm in hopes of finding a work efficient, super fast algorithm.

a.)
What is the upper bound on the number of BTR steps that we can execute and still be fast?
lg lg N

b.)
What is the lower bound on the number of BTR steps that we can execute and still be efficient in the DLT phase? lg lg lg N

4.
The following is an 4-node bitonic sorting network that we have virtualized to handle 8 numbers. For each comparator, write a plus (+) or minus (–) to distinguish increasing from decreasing comparators.

Next show the values that are produced after each comparator performs its comparison swap. I have written the word Values under each column where you should be placing the four pairs of values written on that communication line.

[image: image1.wmf]

37

40

+

+

-

-

-

+

+

+

+

+

+

+

+

12

18

3

38

17

19

37

40

12

18

19

38

3

17

12

18

19

38

37

40

3

17

3

12

17

18

19

37

38

40

Values
Values
Values

5.
Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of processors, and we wish to minimize the time at which the last task completes.

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto four processors? Answer by showing a Gantt chart for the resulting schedule

(T1,4)
(T2,1)
(T3,3)
(T4,3)
(T5,2)
(T6,7)
(T7,6)
(T8,1)
(T9,7)
(T10,6)

T1 T1 T1 T1 T9 T9 T9 T9 T9 T9 T9
T2 T5 T5 T6 T6 T6 T6 T6 T6 T6
T3 T3 T3 T7 T7 T7 T7 T7 T7

T4 T4 T4 T8 T10T10T10T10T10T10

6.
Warshall’s Algorithm is presented below.

public void warshallsAlgorithm() {

//for each pivot try all pairs of nodes

for (int pivot = 0; pivot < N; pivot++)

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++)

if (v != w)

connectedMatrix[v][w] = connectedMatrix[v][w] ||

(connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);

}

Assuming n nodes and e edges and M=max(n,e), what is the overall complexity of this algorithm? O(n3)

Is this a Greedy or a Dynamic Programming algorithm? Dynamic Programming

An alternative algorithm is to run dfs n times. What is cost of this dfs approach, and when is it better than Warshall's? Be explicit.

n*e This is better if the graph is sparsely connected. In fact, it is only comparable if e is O(n2).

7.
A file contains only digits in the following frequency: 0(80), 1(75), 2(17), 3(34), 4(62), 5(18), 6(12), 7(71), 8(24), 9(81). Construct the Huffman code for this case.

Digit
Frequency
Code

9
81
00

0
80
111

1
75
110

7
71
101

4
62
011

3
34
1001

8
24
0101

5
18
0100

2
17
10001

6
12
10000

 474

 289

185 134

 104 63

 42 29 155

9(81) 5(18) 8(24) 4(62) 2(12) 6(17) 3(34) 7(71) 1(75) 0(80)

8.
Assume we managed to find a way to do divide and conquer on matrix multiplication so that two N by N matrices could be multiplied in time T(N) = 4T(N/2) + O(N2), What could we then say the order of such a multiplication algorithm? Could we lower this to 3T(N/2) + O(N2)? Why or why not?

O(N2 lg N)

While this may be viewed as unlikely, it is not impossible since this implies an O(N2) algorithm which is the obvious lower bound in that we need to convey the result, which is O(N2) in size.

	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

9.
Show the dynamic programming solution for the longest common subsequence of PAJAMAS and PAMELA
	
	P
	A
	J
	A
	M
	A
	S

	P
	1
	1
	1
	1
	1
	1
	1

	A
	1
	2
	2
	2
	2
	2
	2

	M
	1
	2
	2
	2
	3
	3
	3

	E
	1
	2
	2
	2
	3
	3
	3

	L
	1
	2
	2
	2
	3
	3
	3

	A
	1
	2
	2
	3
	3
	4
	4

10.
Show the dynamic programming solution for the edit distance between PAJAMAS and PAMELA
	
	
	P
	A
	J
	A
	M
	A
	S

	
	0
	1
	2
	3
	4
	5
	6
	7

	P
	1
	0
	1
	2
	3
	4
	5
	6

	A
	2
	1
	0
	1
	2
	3
	4
	5

	M
	3
	2
	1
	1
	2
	2
	3
	4

	E
	4
	3
	2
	2
	2
	3
	3
	4

	L
	5
	4
	3
	3
	3
	3
	4
	4

	A
	6
	5
	4
	4
	3
	4
	3
	4

11.
Fill in the Truth (T) or Falseness (F) of each of the following.

	Statement
	Veracity (True or False)

	NP-Hard problems are harder than all NP problems
	F

	All problems in NP are also in P
	?

	Some decision problems about programs are impossible to solve
	T

	The min final finishing time scheduling problem for independent tasks is NP-Hard
	T

	Monte Carlo algorithms always return an answer, but not always a correct one
	T

12.
Use the badCharSkip function of Boyer-Moore to compute the skip vector (also called Index) associated with the pattern TESTER. Apply this in a string match for the target string ATESTTAKERTESTERTAKESTESTS
How many compares does it take to discover the first (and only match).
Do the equivalent for KMP, showing the DFA and discussing the number of compares it takes to find the one and only match.

Boyer-Moore takes 9 compares (3 to shift over and 6 to get match)

SKIP

T
2

E
1

S
3

R
6

*
6

KMP takes 16 compares (no surprise as it’s a DFA)

I apologize. I wanted DFA.

13.
The following table shows algorithmic costs for naive approaches (ones not involving sorts or indices) to relational operations. Fill in the columns associated with the use of indices. You may assume constant time index lookup via a hash table. Assume |R| = n, |S| = m, t = n+m, and |Result| = k
	
	Naive
	Indexed

	R  S
	nm
	n+m

	R – S
	nm
	n+m

	C (R)
	n
	k

	(– (R)
	n^2
	n

	R (S
	nm
	k + n or k + m

FORGET ABOUT IT FOR #14. NO QUESTIONS LIKE THIS.

14.
Assume we wish to issue the following query :

NAME (STATE=FL((DIRECTORS  BORROWERS) (LOCATIONS)))

Present the tree associated with this query expression.

[image: image2.emf] 

STATE = FL



NAME



LOCATIONS

BORROWERS

DIRECTORS



Now show how the following algebraic rules may be applied to optimize the query by pushing the projection and selection operators as low as possible. Present the new expression and its corresponding tree
Selection Pushing below Joins
(C (R (S))  (C (R) (S) , provided all attributes of C are in R

(C (R (S))  (R (C (S)) , provided all attributes of C are in S

Projection Pushing below Unions
(L (R  S))  (L (R)  L (S))

Limited Projection Pushing below Joins
(L (R (A=B S))  (L (M (R) (A=B N (S))) , where

1) M consists of attributes of L from R followed by attribute A, if it is not in L,

2) N consists of attributes of L from S followed by attribute B, if it is not in L.

Projection Identity
L (R)  R , when L is all the attributes of R

[image: image3.emf] 

NAME



LOCATIONS

BORROWERS

DIRECTORS



 STATE = FL

NAME ((DIRECTORS  BORROWERS) (STATE=FL (LOCATIONS))

_1384541786.doc

LOCATIONS

STATE=FL

DIRECTORS

BORROWERS

(

(

NAME



_1384544509.doc

38

40

19

37

17

18

3

12

3

17

12

18

19

38

37

40

3

17

19

38

12

18

37

40

37

40

12

18

3

38

17

19

+

+

+

+

+

+

+

+

-

--

+

+

_1384541404.doc

DIRECTORS

BORROWERS

LOCATIONS

(

(

NAME



STATE=FL



