COP3503H, Fall 2011
-- 5 --
Quiz#1

COP 3503H– CS2 Fall 2011
Quiz # 1
Name:
Key

6
1.
Consider an Abstract Data Type, EventQueue (EQ), defined by the following protocol

public EventQueue() – constructs the EQ with an empty state (no upcoming events)
public void put(int t, Event ev) – adds a new event, ev, scheduled to occur at time, t, to the EQ. Multiple events can occur at the same time, so this always changes the EQ.
public Event peek() – returns an event with the smallest time value of all events in the EQ. Null is returned if the queue is empty. This does not change the EQ.

public Event pop() – pops an event with the smallest time value of all events from the EQ. Null is returned if the queue is empty. This changes the EQ.

Fill in the order of complexities in terms of N, the number of events already stored, of each of the three services provided for the EQ ADT, given the following four approaches to implementation. In all cases, assume that you are concerned with average, not worst case performance.

i.)
The state of the EQ is represented as a Balanced Priority Ordered Tree (BPOT). Here we store the minimum time value at the root of each subtree. Assume a Min Heap data structure is used.

ii.)
The state of the EQ is represented by an AVL Tree (AVL), the time serving as the sort key. Assume a left child / right child linked list data structure.

iii.)
The state of the EQ is represented by an Unsorted List (UL). Assume a simple array data structure that stores the N events unsorted in positions 0 to N-1 with a new elements stored at position N.

iv.)
The state of the EQ is represented by a Sorted List (SL). Assume a simple array data structure that stores the N events in positions 0 to N-1, sorted high to low by time (lowest is at position N-1).

	
	BPOT (min heap)
	AVL
	UL
	SL (high to low)

	put
	lg N
	lg N
	1
	N

	peek
	1
	lg N
	N
	1

	pop
	lg N
	lg N
	N
	1

8
2.
Assuming that T(1) = 1 and k(0, use the following table to solve the recurrence equations in a.)-d.). For each case, explicitly write down the values of c, d and k, as appropriate, the relevant comparison, and the order.
	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

a.)
T(n) = 2 T(n/3) + n; c=2; d=3; k=1;
c < dk
O(n)

b.)
T(n) = 2 T(n–1) + 2n2
; c=2; k=2;
c > 1

O(2n)
c.) T(n) = 2 T(n/2) + 2; c=2; d=2; k=0
c > dk

nlog2(2) = O(n)
d.) T(n) = T(n–1) + n2; c=1; k=2

c = 1

O(n3)

3.
Consider an Abstract Data Type, Deque, defined by the following protocol:

public Deque() // constructs an empty deque

public boolean isEmpty() // returns true if the deque is empty

public boolean addLeft(Object item) // add an element on the left end

public boolean addRight(Object item) // add an element on the right end

public Object removeLeft() // removes an element from the left end

public Object removeRight() // removes an element from the right end

A reasonable data structure for this ADT is a pointer to the tail (right) element in a circularly linked lists of elements, with links pointing from left towards right (the rightmost pointing back circularly to the leftmost.)

[image: image1.wmf]…

right

deque

el

next

el

next

el

next

element

element

element

2
a.)
What is the worst case complexity of algorithms needed for each of the four main services (two adds and two removes), given a deque containing N items.?

	Service
	Worst case

	addLeft
	O(1)

	addRight
	O(1)

	removeLeft
	O(1)

	removeRight
	O(N)

2
b.)
What data structure change(s) would you recommend to produce fast versions of all of these services? Justify.

Change the singly linked list to a doubly linked list. This allows access to the 2nd from rightmost in O(1) time, so removeRight now takes O(1).

6
4.
Analyzing the complexity of algorithms often requires that you solve a recurrence equation. For instance, an algorithm involving recursion might yield a time T(n), for n>1, defined recursively by

T(n) = 2(T(n-1) + 2, with the boundary condition that T(1) = 2.

Show that T(n) is 2n+1 – 2. You must use induction to prove that this equality holds for all n > 0, i.e., inductively prove the statement S(k) : T(k) = 2k+1 – 2 for all k(1.

Basis: S(1)
T(1) = 2 by definition of T (this is the boundary condition)

But, 2k+1 – 2 = 21+1 - 2 = 4 - 2 = 2 . 

Inductive Hypothesis: Assume for some k>1 that S(i) is true whenever i<k.

That is assume T(i) = 2i+1 – 2, for i<k.

Inductive Step: Show S(k), k>1
T(k)
= 2(T(k-1) + 2, by definition and fact that k>1.

= 2((2(k-1)+1 - 2) + 2, by induction hypothesis.

= 2(k-1)+1+1 - 4 + 2

= 2k+1 - 2 
2
5.
An expression is often represented in a binary tree.

What is the order of a depth-first traversal of such a tree?
O(N)

What kind of traversal (preorder, inorder or postorder) is carried out in order to produce a fully parenthesized standard form version of the expression?

inorder

6.
The following questions are all about min heaps. Below is a part of an IntPriorityQueue class we might develop.

public class IntPriorityQueue {

private int[] heap; // Assume we start at heap[1], ignoring heap[0]
private int curentSize = 0; // Data is in heap[1] … heap[currentSize]
private void swap(int i, int j) { /* might be useful */

int temp = heap[i]; heap[i] = heap[j]; heap[j] = temp;

}

5
a.)
Present the method percolateDown that is used in heapify (buildHeap) and priority queue deletion (deleteMin).

private void percolateDown(int hole) { // hole is the index of element to bubble down

int child = 2 * hole;

if (child < currentSize) if (heap[child+1] < heap[child]) child++;

if (child <= currentSize) if (heap[i] < heap[child]) {

swap(i, child);

percolateDown(child);

 }

}

6
b.)
If N=8 and heap has the following n elements prior to the heapify (buildHeap)

10 14 19 2 30 1 20 22

Show this as a balanced binary tree (that is, show the tree that this heap represents.)

[image: image2.wmf]19

2

22

20

30

1

14

10

What does the min heap look like after buildHeap? Show it as a list (heap) and as a BPOT

1 2 10 14 30 19 20 22

[image: image3.wmf]

1

0

1

4

22

20

30

19

2

1

4
7.
Consider the following trees being used to represent equivalence classes (partitions) over the set {1,2,3,4,5,6,7,8,9,10}. Show the resulting combination of the first two trees if we do a union(3,8). Assume that the union starts with two finds, each of which uses path compression, and that the union uses tree heights to minimize path lengths.

[image: image4.wmf]4

6

2

8

5

1

3

7

9

10

[image: image5.wmf]

4

6

2

8

5

1

3

7

9

10

4
8.
QuickSort is often viewed as the quickest of sorts, but this is not necessarily so. In any case, it is interesting and forms the basis for a very fast “selection” algorithm. Answer the following questions about quicksort and QuickSelect. In each case, assume there are N items to sort, or N from which we wish to select the k-th.

What is the worst case performance of quickSort?

O(N2)

What is the best case performance of quickSort?

(NlgN)

What is expected performance of quickSort?

O(NlgN)

What is the expected performance of quickSelect?

O(N)

6
9.
Apply the even-odd parallel transposition algorithm presented in class for sorting the 6 elements in the following linear array of 6 processors. Show the results of each of the up to 6 passes that it takes to complete this ascending (low to high) sort. Note: This is NOT a ring, so the last and first processors have no direct communication.

[image: image6.wmf]

9

7

2

4

1

3

Initial Contents

[image: image7.wmf]

7

9

2

4

1

3

After Pass 1

[image: image8.wmf]

7

2

9

1

4

3

After Pass 2

[image: image9.wmf]

2

7

1

9

3

4

After Pass 3

[image: image10.wmf]

2

1

7

3

9

4

After Pass 4

[image: image11.wmf]

1

2

3

7

4

9

After Pass 5

[image: image12.wmf]

1

2

3

4

7

9

After Pass 6

10.
Other parallel sort that we have studied include Bitonic Sorting Networks, ShearSort and RevSort.

1
a.)
Assuming that we do not virtualize our Bitonic Sorting Network and so have one value per comparator – two comparators per pair of values, how many parallel compares (count just one compare even if n comparators operate simultaneously) does it take to complete a sort of N elements?
O(lg2N)
4
b.)
ShearSort and RevSort are similar to an even-odd transposition sort in that both are examples of OCE algorithms.
What does OCE stand for? Oblivious Comparison Exchange

Assuming RevSort is being used with 64 elements in a 16 by 16 array of processors, what column position (counting from 0 to 15) does each of the following rows starts at?
row 5 (0101) ? column 1010 = 10

row 12 (1100)? column 0011= 3

What is the order of execution time of a RevSort with N elements in a (N by (N array? O((N lg lg N)
6
11.
Using the OCE property of ShearSort, show why ShearSort converges in log (N row/column passes. Be sure to explain the concepts of clean and dirty rows.

First we need only show that the algorithm converges for 0,1 data to the correct sort.
A clean 0,1 row is one that contains either all 1’s or all 0’s. A dirty row contains a mix of 0’s and 1’s.
We can analyze convergence by studying how many rows are clean after each row/column sort.
Consider any adjacent even/odd pair of dirty rows. The first will be ordered low to high (0’s then 1’s) and the second will be ordered high to low (1’s to 0’s) after any row sort.
There are now three possibilities:
(1) There are more zeroes than ones. In this case, we will end up with a row of zeroes on top of a dirty row.
 000…00…011...1 => 0000…000000
 111…1000…0000 => 111…00…000
(2) There are more ones than zeroes. In this case, we will end up with a row of ones under a dirty row.
 000…11…111…1 => 000…11…000
 111…1110...0000 => 1111…111111
(3) There are an equal number of ones and zeroes. In this case, we will end up with two clean rows.
 00000…1111 => 0000…00000
 11111…0000 => 1111…11111

In all three cases, we end up with half as many (or fewer) dirty rows than we started with. This and the fact that the column sort causes 0’s to rise and 1’s to fall leads to the analysis that we will end up with at most one dirty row after lg (N passes.
_1378483381.doc

3

1

4

2

7

9

_1378667953.doc

4

9

3

7

1

2

_1378990957.doc

14

22

10

20

19

1

30

2

_1378991242.doc

7

1

5

3

9

10

8

2

6

4

_1378668003.doc

9

4

7

3

2

1

_1378668048.doc

9

7

4

3

2

1

_1378667748.doc

3

4

1

9

2

7

_1378667907.doc

4

3

9

1

7

2

_1378667718.doc

3

1

4

2

9

7

_980255637.doc

19

2

22

10

20

30

14

1

_985631283.doc

4

6

2

8

5

1

3

7

9

10

_979505298.doc

…

right

deque

el

next

el

next

el

next

element

element

element

