COP 3503 – Computer Science II – CLASS NOTES - DAY #5
General Big-Oh Rules

Def.(Big-Oh): T(N) is O(F(N)) if there are positive constants c and No such that T(N) (cF(N) when N (No. [an upper bound]

Def. (Big-Omega): T(N) is ((F(N)) if there are positive constants c and No such that T(N) (cF(N) when N (No. [a lower bound]

Def. (Big-Theta): T(N) is ((F(N)) if and only if T(N) is O(F(N)) and T(N) is ((F(N)). [an upper and lower bound]

Def. (Little-Oh): T(N) is o(F(N)) if and only if T(N) is O(F(N)) and T(N) is not ((F(N)). [a strict upper bound]

Mathematical Expression
Relative Rates of Growth

T(N) = O(F(N))
Growth of T(N) is (growth of F(N)

T(N) = ((F(N))
Growth of T(N) is (growth of F(N)

T(N) = ((F(N))
Growth of T(N) is = growth of F(N)

T(N) = o(F(N))
Growth of T(N) is < growth of F(N)

Big-Oh analysis does not yield an exact asymptotic answer, but rather an upper bound. We are mostly interested in worst case analysis over all inputs of size N. Sometimes, however, we are interested in the average case where the running time is measured as an average over all inputs of size N.

Verifying an Algorithmic Analysis

T(N) is the empirical (observed) running time of the code and the claim is made that T(N) (O(F(N)).

Technique is to compute a series of values T(N)/F(N) for a range of N (commonly spaced out by a factors of two). Depending upon these values of T(N)/F(N) we can determine how accurate our estimation for F(N) is according to:

is a tight answer if the values converge to a positive constant

F(N) = is an overestimate if the values converge to zero (stabilizes near 0)

 is an underestimate if the values diverge (more rapidly + or -)

Examples

 Example 1

Consider the following table of data obtained from running an instance of an algorithm assumed to be cubic. Decide if the Big-Oh estimate, O(N3) is accurate.

Run
N
T(N)

1
100
0.017058 ms

2
1000
17.058 ms

3
5000
2132.2464 ms

4
10000
17057.971 ms

5
50000
2132246.375 ms

T(N)/F(N) = 0.017058/(100*100*100) = 1.0758 (10-8

T(N)/F(N) = 17.058/(1000*1000*1000) = 1.0758 (10-8
T(N)/F(N) = 2132.2464/(5000*5000*5000) = 1.0757 (10-8
T(N)/F(N) = 17057.971/(10000*10000*10000) = 1.0757 (10-8
T(N)/F(N) = 2132246.375/(50000*50000*50000) = 1.0757 (10-8
The calculated values converge to a positive constant (1.0757 (10-8) – so the estimate of O(n3) is a tight estimate.

 Example 2

Consider the following table of data obtained from running an instance of an algorithm assumed to be quadratic. Decide if the Big-Oh estimate, O(N2) is accurate.

Run
N
T(N)

1
100
0.00016 ms

2
1000
0.01638 ms

3
10000
1.6478 ms

4
100000
166.0177 ms

5
1000000
17057.971 ms

T(N)/F(N) = 0.00016/(100 * 100) = 1.6 (10-8
T(N)/F(N) = 0.01638/(1000 * 1000) = 1.638 (10-8
T(N)/F(N) = 1.6478/(10000 * 10000) = 1.6478 (10-8
T(N)/F(N) = 166.0177/(100000 * 100000) = 1.6601 (10-8
T(N)/F(N) = 17057.971/(1000000 * 1000000) = 1.70579 (10-8
The values diverge, so the estimate of O(n2) is an underestimate.

Limitations of Big-Oh Notation

· not useful for small sizes of input sets

· omission of the constants can be misleading – example 2NlogN and 1000N, even though its growth rate is larger the first function is probably better. Constants also reflect things like memory access and disk access.

· assumes an infinite amount of memory – not trivial when using large data sets

· accurate analysis relies on clever observations to optimize the algorithm (recall MCSS).

Growth Rates of Various Functions

The table on the next page illustrates how various functions grow with the size of the input n.

Assume that the functions shown in this table are to be executed on a machine which will execute a million instructions per second. A linear function which consists of one million instructions will require one second to execute. This same linear function will require only 4(10-5 seconds (40 microseconds) if the number of instructions (a function of input size) is 40. Now consider an exponential function.

log n
n
n log n
n2
n3
2n

0
1
0
1
1
2

1
2
2
4
8
4

2
4
8
16
64
16

3
8
24
64
512
256

4
16
64
256
4096
65,536

5
32
160
1024
32,768
4.294(109

(5.3
40
(212
1600
64000
1.099(1012

6
64
384
4096
262,144
1.844(1019

The Growth Rate of Functions

When the input size is 32 approximately 4.3(109 steps will be required (since 232 = 4.29(109). Given our system performance this algorithm will require a running time of approximately 71.58 minutes. Now consider the effect of increasing the input size to 40, which will require approximately 1.1x1012 steps (since 240 = 1.09x1012). Given our conditions this function will require about 18325 minutes (12.7 days) to compute. If n is increased to 50 the time required will increase to about 3.57 years. If n increases to 60 the time increases to 36558 years and if n increases to 100 a total of 4x1016 years will be needed!

Suppose that an algorithm takes T(N) time to run for a problem of size N – the question becomes – how long will it take to solve a larger problem? As an example, assume that the algorithm is an O(N3) algorithm. This implies:

T(N) = cN3.

If we increase the size of the problem by a factor of 10 we have: T(10N) = c(10N)3. This gives us:

T(10N) = 1000cN3 = 1000T(N) (since T(N) = cN3)

Therefore, the running time of a cubic algorithm will increase by a factor of 1000 if the size of the problem is increased by a factor of 10. Similarly, increasing the problem size by another factor of 10 (increasing N to 100) will result in another 1000 fold increase in the running time of the algorithm (from 1000 to 1(106).

T(100N) = c(100N)3 = 1(106cN3 = 1(106T(N)

A similar argument will hold for quadratic and linear algorithms, but a slightly different approach is required for logarithmic algorithms. These are shown below.
For a quadratic algorithm, we have T(N) = cN2. This implies: T(10N) = c(10N)2. Expanding produces the form: T(10N) = 100cN2 = 100T(N). Therefore, when the input size increases by a factor of 10 the running time of the quadratic algorithm will increase by a factor of 100.

For a linear algorithm, we have T(N) = cN. This implies: T(10N) = c(10N). Expanding produces the form: T(10N) = 10cN = 10T(N). Therefore, when the input size increases by a factor of 10 the running time of the linear algorithm will increase by the same factor of 10.

In general, an f-fold increase in input size will yield an f 3-fold increase in the running time of a cubic algorithm, an f 2-fold increase in the running time of a quadratic algorithm, and an f-fold increase in the running time of a linear algorithm.

The analysis for the linear, quadratic, cubic (and in general polynomial) algorithms does not work when in the presence of logarithmic terms. When an O(N logN) algorithm experiences a 10-fold increase in input size, the running time increases by a factor which is only slightly larger than 10. For example, increasing the input by a factor of 10 for an O(N logN) algorithm produces: T(10N) = c(10N) log(10N). Expanding this yields: T(10N) = 10cN log(10N) = 10cN logN + 10cN logN = 10T(N) + c(N (where c(= 10clog10). As N gets very large, the ratio T(10N)/T(N) gets closer to 10 (since c(N/T(N) ((10 log10)/logN gets smaller and smaller as N increases.

The above analysis implies, for a logarithmic algorithm, if the algorithm is competitive with a linear algorithm for a sufficiently large value of N, it will remain so for slightly larger N.

Static Searching

Searching is an important use of computer systems. Static searching involves searching for data which is not allowed to change during the search – the data is static. [The techniques involved with static searching are completely different than those used for dynamic searching – where the data may change while the search is underway.] The static searching problem is more precisely stated below.

Static searching algorithms can be classified into two broad categories: those algorithms that search unsorted data and those which search through sorted data.

// Sequential Search Algorithm – for unsorted data

int i = 0, x, A[N], N;

while (i < N)

 if (x = A[i])

 return (i); //match found at position i

 else

 i++

return(i); //if i=N at return – then search failed

Binary Search

If the array is sorted in advance of the search, then the binary search may be used rather than the sequential search. The binary search makes use of repeated halving of the search space as it narrows in on the area of the array in which the value x must be located (if it exists) in the array. Note that the binary search requires the execution of more instructions than does the sequential search. Also note too that the division operation in the binary search is commonly a simple shift right operation.

The binary search algorithm is shown below.

//Binary Search Algorithm

int found, low = 0, high = N-1, mid, x, A[N], N;

while (low <= high)

 { mid = (low + high)/2;

 if (x == A[mid])

 found = mid;

 if (x > A[mid])

 low = mid + 1;

 else

 high = mid – 1;

 }

Analysis of Binary Search

1. Unsuccessful search: The number of iterations of the loop will be (log N(+ 1. Since the range of array locations encompassed by the search is halved at each iteration. The one is added because the last iteration will set low > high and the loop will terminate (its like the last search range includes no elements).

2. Worst case – successful search: The worst case for a successful search results when the range of elements to be searched is of size one and this is the search item. Thus, the worst case successful search is (log N(.

3. Average case – successful search: The average case save exactly one iteration. This is because half of the items in the array will require the worst case time, one-quarter of the items will save one iteration and only one in 2n items will save n iterations from the worst case. Thus the average case is (log N(- 1.

Interpolation Search
Interpolation searching is an efficient searching technique under certain conditions. These conditions are: (1) an access to the search space must be very expensive compared to the cost of an instruction, and (2) the data must be fairly uniformly distributed across the search key space. Phone books and dictionaries are fairly uniformly distributed, sequences of numbers such as 1, 2, 4, 8, 16, … are not uniformly distributed. These conditions on the efficiency of the interpolation search are quite restrictive, however, it illustrates that there is more than one way to approach most problems.

If the data is not uniformly distributed in the search space then the interpolation search performance deteriorates to that of a linear search. If the conditions are adhered to the average performance of the interpolation search has been shown to be O(log log N). If N = 4x109, then (log log N) = 5, since log(4x109) (32 and log(32) (5.

Static Searching Problem

Given an integer x and an array A, return the position of x in A or an indication that x does not occur in A. If x occurs more than once in A, return the position of any occurrence. The array A is static.

Logarithms Revisited

Definition: For any B, N >0, log B N = K if BK = N. In computer science the default base is 2.

Observation: Logarithms grow slowly. 210 = 1024 (log 2 1024 = 10). 220 = 1048576 (1x106 (log 2 1x106 (20). 230 = 1073741824 (1x109 (log 2 1x109 (30). This means that the performance of an O(N log N) algorithm is much closer to that of an O(N) algorithm than an O(N2) algorithm, even for moderately large amounts of input.

Ceiling Function: (N(is the ceiling function and represents the smallest integer that is at least as large as N.

Floor Function: (N(is the floor function and represents the largest integer that is at least as small as N.

Examples:

repeated halving – starting from x = N, if N is repeatedly halved, how many iterations must occur to make N smaller than or equal to 1?

If the division rounds up: (log N(iterations.

If the division rounds down: (log N(

Example - If you start with the number 3 how many times can you halve the number before the number you have is smaller than or equal to 1? Solution: 3/2 = 1.5. If this number is rounded up you are left with 2 which requires another division before the number you are left with is equal to or smaller than 1. If the number is rounded down then only a single first division is required since 1.5 rounded down would be 1.

Example: Array A[0..15]

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�
13�
14�
15�
�
1.5�
1.8�
2.1�
2.3�
2.7�
3.0�
3.3�
3.6�
4.8�
5.6�
6.6�
6.8�
7.8�
8.5�
8.8�
9.3�
�

Search for: 3.3

mid = [0+15]/2 = 7 {integer division}

A[7] = 3.6

search value < 3.6

	high = mid-1 = 6

	mid = [0+6]/2 = 3

	A[3] = 2.3

	search value > 2.3

		low = mid+1 = 4

		mid = [4+6]/2 = 5

		A[5] = 3.0

		search value > 3.0

			low = mid+1 = 6

			mid = [6+6]/2 = 6

			A[6] = 3.3

			found – return 6 as location of search value

The running time for the binary search is O(log N).

repeated doubling – starting from x = 1, how many times should x be doubled before it is at least as large as N? Answer: (log N(iterations.

Example - If you start with the number 1 how many time do you have to double the number before the number you have is larger than 106? Solution: After N doublings you have a number that is 2N. So you want to find the smallest N that satisfies the equation 2N > 106 or N = (log 106(and thus N = 20.

Repeated Halving Principle: An algorithm is O(log N) if it takes constant time O(1) to reduce the problem size by a constant amount (usually 1/2).

Repeated Doubling Principle: Starting from 1 a value can only double (log N(times until the value of N is reached.

Day 5 - 9

