COP 3503 – Computer Science II  –  CLASS NOTES  - DAY #23 Supplement

Example: Suppose that we have a four letter alphabet consisting of a, b, c, and d, and e only.  To encode four letters requires 2 bits.  Suppose that these are assigned as follows: a = 00, b = 01, c = 10, and d = 11.  Now suppose that we have a sentence of these letters which is 15 characters long.  This sentence will require 30 bits to encode.  Suppose that we also have some information about the frequency of occurrence of each of our letters and know that “a” occurs most frequently, followed by b and so on.  A Huffman coding tree is built as shown below with the most frequently occurring letters closest to the root.


                    0                     1

                                     0              1

                                                     0            1

Reading the new codes from the tree we have:  a = 0, b = 10, c = 110, and d = 111.  Now suppose our 15 character sentence contains 8 a’s, 4 b’s, 2 c’s, and 1 d.  With the new code this sentence requires (8*1) + (4*2) + (2*3) + (1*3) bits = 8 + 8 + 6 + 3 = 25 bits.  The original code required 30 bits so we have save (30-25)/30 = 16%.  

We mentioned that the occurrence frequency of every “character” in the file which is to be compressed must be known prior to building the coding tree.  This information might appear in a frequency array like the one shown below:

Letter
a
b
c
d

Frequency
8
4
2
1

Building a Huffman Coding Tree

Let’s assume that the file to be compressed consists of alphabetic characters, like a text file.  (Huffman’s coding algorithm can be used to compress a file of basically any type of object for which a frequency of occurrence can be established.)

The first step in building the Huffman coding tree is to generate the file of frequency values for each character in the file to be compressed.  This can be accomplished in a number of different fashions involving a pass over the file to be compressed (works for static files) or by statistical methods (commonly historically based) applied to streams of characters to be compressed.  

The next step is to generate a binary tree, which will not necessarily be balanced, that utilizes this frequency information to structure the tree.  Each of the letters which appear in the file will be stored in a leaf node of the binary tree.  Each non-leaf node will be the root of a sub-tree (think of the recursive definition of a binary tree).  These internal nodes will store the sum of the frequencies of the letters stored in that subtree.   In our example above, the root of the tree has a value of 15 which indicates that this subtree contains letters which occur 15 times in our “file”.  Since the example dealt with 15 character strings, this is our file.  The next internal node has a value of 7 which indicates all of the letters in this subtree appear with a frequency (sum of) 7 (i.e., 4 b’s + 2 c’s + 1 d = 7 characters).

Algorithm to Produce a Huffman Coding Tree

The following is an algorithm which will produce a correct Huffman coding tree based upon a frequency array.

(1) Let T be a set of trees.  At the end of the algorithm T will contain a single tree.  

(2) Initialize T to contain 1 tree for each letter in the frequency array.  Each of these trees will contain a single root node which stores the letter and its frequency of occurrence.

(3) Repeat the following until (T( = 1.  [Note: the running time of this algorithm is exactly (L( ( 1 steps, where L is the number of letters in the array of frequencies.]

(3a)  Find the two trees in T that have the two minimum values stored at their root.

(3b) Merge these trees into one tree by creating a new root node (this is the getNextParent method that was previously mentioned).  This new root node will ONLY store the sum of the values of its children (the roots of the two trees which are being merged).  The new root’s left pointer will reference one of the old trees while its right pointer will reference the other.

Example  Run this algorithm on the original example from above.

Letter
a
b
c
d

Frequency
8
4
2
1

We will initially have a set of four trees (consisting only of root nodes) as shown below:


T = 










The two trees with the lowest frequency are the last two on the right.  These are merged into a new tree with a root whose “data” consists only of the sum of the frequencies of its two children.  This is shown in the next step.


T = 

Step 3b continues until only a single tree remains in T.  The next step will merge the two trees with minimum values 4 and 3 as shown below:



T =

One more merge will result in T containing only a single tree.  This is shown in the next diagram, which is the final binary tree.



T =

Notice that this tree is (except for the encoding protocol) the same tree that was shown in the original example.

Generating the Encoding Protocol

Recall from the original example that the Huffman algorithm produces a variable-length encoding.  This means that the codes assigned to the letters in the original file are not all of the same length.  Recall in the non-compressed code that every letter required two bits to encode, yet the Huffman code required only one bit for the letter a and needed three bits for the letters c and d.  If we are to be able to decode an encoded file we must operate under the assumption that the code for one letter is NOT the prefix for the code corresponding to another letter.  In other words, suppose you encoded the letter a to be 011, the letter b to be 0, and the letter c to be 11.  When reading the string of bits 011 from the encoded file how will you know whether you have “seen” the letters b and c or you have “seen” the letter a?   Either case is potentially valid with this code.

One of the characteristics of the Huffman coding tree is that it is a full binary tree (remember this does not mean that it is a complete binary tree).  This means that each non-leaf node (internal node) has two children.  It can be proven that the Huffman coding tree is “optimal” meaning that it produces an optimal variable length prefix encoding based upon occurrence frequency.  Optimal means that there will not be another encoding based upon the same occurrence frequency which requires fewer bits to encode the same file.  Notice that this does not preclude the possibility that there may be more than one optimal encoding, it simply states that the Huffman encoding will be optimal.

cb





b





db





3





7





a





15





b/4





a/8





d/1





c/2





b/4





a/8





Huffman Coding Revisited





c/2





d/1





3





3





d/1





c/2





b/4





a/8





7























7





3





d/1





c/2





b/4





a/8





15








Day 23 Supplement - 5

