" &
SOHUCE

INTRO TO ALGORITHM
ANALYSIS

COP 3502

Analysis of Code Segments

Each of the following examples illustrates how
to determine the Big-O run time of a segment
of code or a function.

Each of these functions will be analyzed for their
runtime in terms of the variable n.

Keep in mind that run-time may be dependent on
more than one input variable.

&

Analysis of Code Segments:

int funcl (int n) {
x =0;

for (i = 1; <= n; i++){

;o1
for (j = 1; j <=n; j++) {

x++; “~"“Toperation
}

return x;

This is a straight-forward function to
analyze

We only care about the simple ops in terms
of n, remember any constant # of simple
steps counts as 1.

Let’s make a chart for the different values of
(i,j), since for each change ini,j we do a
constant amount of work.

N N N R ¢

S U R

w N R,

W N = 35

Analysis of Code Segments:

int funcl (int n) {

;
x = 0; .
for (1 = 1; 1 <= n; i++){

. . . 1
for (J =1; j <=n; j++) { .
x++; “~1operation

} 1
} 2
return x; :
2
So for each value of i, we do n steps.
2

n+n+n+..+n

=n*n o

=0(n ?)

w N R,

W N =B 5

Analysis of Code Segments: EX 2

int func2 (int n) {
x = 0;
for (i 1; i <= n; i++)

X++ ; " 1operation

for (1 1l; i<=n; i++)

x++; “1operation

return x;

In this situation, the first for loop runs n times, so we do n steps.

After it finishes, we run the second for loop which also runs n
times.

Our total runtime is on the order of n+ n=2 n.

In order notation, we drop all leading constants, so our runtime is

O(n) &

Analysis of Code Segments: EX 3

int func3(int n) {
while (n>0) {
printf (“3d”, n=%

n =n/2;

Since n is changing, let origN be the original value of the
variable n in the function.

The 15t time through the loop, n gets set to origN/2

The 2" time through the loop, n gets set to origN/4

The 3" time through the loop, n gets set to origN/8

In general, after k loops, n get set to origN/2k

So the algorithm ends when origN/2% = 1 approximate@

Analysis of Code Segments: EX 3

int func3(int n) {
while (n>0) {
printf (“3d”, n=%

n =n/2;

So the algorithm ends when origN/2* = 1 approximately
(where k is the number of steps)

. % Note:
= origN =2 When we use logs in run-time,
take log of both sides we omit the base,
since for all log functions with
i = k
2 Iogz(orlgN) I Iog2(2) different
> |0g2(origN) =k bases greater than 1,
: : 4 : they are all equivalent
So the runtime of this function is Y 3

/ with respect to order notatior@_
O(lg n) s

Logarithms

Sidenote:

We never use bases for logarithms in O-notation

This is because changing bases of logs just involves
multiplying by a suitable constant

and we don’t care about constant of proportionality for O-
notation!

For example:

If we have log,,n and we want it in terms of log,n
We know log,,n = log,n/log,10
Where 1/log,10 = 0.3010
Then we get log,,n = 0.3010 x log,n

Analysis of Code Segments: EX 4

int func4d (int** array, int n) ({
int i=0, j3=0;
while (1 < n) {
while (jJ < n && array[i][]] == 1)
J++;

i+4; A—

return j;

}

In this function, i and j can increase, but they can never decrease.
Furthermore, the code will stop when i gets to n.

Thus, the statement i++ can never run more than n times and the statement
j++ can never run more than n times.

Thus, the most number of times these two critical statements can run is 2n.
It follows that the runtime of this segment of code is %
S

O(n)

Analysis of Code Segments:

int funcS5(int** array, int n) ({
int i=0, j3=0;
while (1 < n) {
j=0; —

while (jJ < n && array[i][]] == 1)

return j;

All we did in this example is reset j to 0 at the beginning of i loop
iteration.

Now, j can range from 0 to n for EACH value of i

(similar to example #1),

so the run-time is %
S

O(n?)

Analysis of Code Segments: EX 6

int funcé6(int array[], int n) {

int i,j, sum=0; i J value
for (i=0; i<n; i++) { 0 123...n-1 n-
for (j=i+l; j<n; j++) 1 234,..,n-1 n-2
if (array[i] > array[]j]) 2 345,..,n1 n-3
- sum++;
} n-1 nothing 0
return sum;
The amount of times the inner loop runs Common Summation:
is dependent on i - - nn+1)
The table shows how j changes w/respect to i z v 2
The # of times the inner loop runs is the sum: L
O+1+2+3+..+(n-1) What we have:
=(n-1)n/2 =0.5n- 0.5n — e %
So the run time is? Q(n_z)_ Z o 2 S

=1

Analysis of Code Segments: EX 7

int £7(int a[], int sizea, int b[], int sizeb) {
int 1, j;
for (1i=0; i<sizea; i++)
for (j=0; j<sizeb; j++)

if (a[i] == b[]])
return 1; -

return 0O;

This runtime is in terms of sizea and sizeb.

Clearly, similar to Example #1, we simply multiply the # of
terms in the 15t loop by the number of terms in the 2" loop.

Here, this is simply sizea*sizeb.

. ic? A °
So the runtime is: O(sizea*sizeb)

Analysis of Code Segments: EX 7

int £7(int a[], int sizea, int b[], int sizeb) {
int 1, j;
for (1i=0; i<sizea; i++)
for (j=0; j<sizeb; j++)

if (a[i] == b[]])
return 1; -

return 0O;

This runtime is in terms of sizea and sizeb.

Clearly, similar to Example #1, we simply multiply the # of
terms in the 15t loop by the number of terms in the 2" loop.

Here, this is simply sizea*sizeb.

. ic? A °
So the runtime is: O(sizea*sizeb)

Analysis of Code Segments: EX &

int £8 (int a[], int sizea, int b[], int sizeb) {
int i, j;

for (1i=0; i<sizea; i++) {
if ((b, sizeb, a[i]))-

return 1;

}

return 0O;

As previously discussed, a single binary search runs in Oflg n)

where n represents the number of items in the original list you're
searching.

In this particular case, the runtime is? O(sizea*Ig(sizeb))

since we run our binary search on sizeb items exactly sizea times.

&

Analysis of Code Segments: EX &

int £8 (int a[], int sizea, int b[], int sizeb) {
int i, j;

for (i=0; i<sizea; i++) {
if (
return 1;

}

return 0O;

In this particular case, the runtime is? Q(sizea*lg(sizeb))
since we run our binary search on sizeb items exactly sizea times.
Notice:

that the runtime for this algorithm changes greatly if we switch the
order of the arrays. Consider the 2 following examples:

sizea = 1000000, sizeb = 10 sizea*lg(sizeb) ~ 3320000 %
sizea = 10, sizeb = 1000000 sizea*Ig(sizeb) ~ 300

