
 1

Trees

Examples of Tree structure
Definition of trees
Binary tree
Height of tree
Tree traversals
Finding max
Finding sum

 2

Trees

You have seen that using linked lists you can
represent an ordered collection of values without
using arrays. Although linked lists require more
memory space than arrays (as they have to store
address at each node), they have definite advantages
over arrays. Insertion and deletion of items can be
carried out with out involving considerable
movement of data.

The ordering relationship amongst a set of values is
obtained through use of pointers. However, we need
not restrict ourselves to only linear structures. In this
chapter we shall extend the use of pointers to define a
non-linear structure to model hierarchical
relationships, such as a family tree.

In such a tree, we have links moving from an
ancestor to a parent, and links moving from the
parent to children. We have many other examples of
tree-structured hierarchies.

Directory Hierarchies: In computers, files are stored
in directories that form a tree. The top level directory
represents the root. It has many subdirectories and

 3

files. The subdirectories would have further set of
subdirectories.

Organization charts: In a company a number of vice
presidents report to a president. Each VP would have
a set of general managers, each GM having his/her
own set of specific managers and so on.

Biological classifications: Starting from living being
at the root, such a tree can branch off to mammals,
birds, marine life etc.

Game Trees: All games which require only mental
effort would always have number of possible options
at any position of the game. For each position, there
would be number of counter moves. The repetitive
pattern results in what is known a game tree.

Tree as a data structure

• A tree is a data structure that is made of nodes and
pointers, much like a linked list. The difference
between them lies in how they are organized:

• The top node in the tree is called the root and all

other nodes branch off from this one.

 4

• Every node in the tree can have some number of
children. Each child node can in turn be the parent
node to its children and so on.

• Child nodes can have links only from a single

parent.

• Any node higher up than the parent is called an

ancestor node.

• Nodes having no children are called leaves.

• Any node which is neither a root, nor a leaf is

called an interior node.

• The height of a tree is defined to be the length of

the longest path from the root to a leaf in that tree
(including the path to root)

• A common example of a tree structure is the binary

tree.

Binary Trees

 5

Definition: A binary tree is a tree in which each
node can have maximum two children. Thus each
node can have no child, one child or two children.
The pointers help us to identify whether it is a left
child or a right child.

Application of a Binary tree

Before we define any formal algorithms, let us look
at one possible application of a binary tree.
Consider a set of numbers: 25,63,13, 72,18,32,59,67.

Suppose we store these numbers in individual nodes
of a singly linked list. To search for a particular item
we have to go through the list, and maybe we have to
go to the end of the list as well. Thus if there were n
numbers, our search complexity would be O(n).

 Is it because the numbers are not in any particular
sequence? Now suppose we order these numbers:
13,18,25,32,59,63,67,72. and store these in another
linked list.

What would be the search complexity now? You may
be surprised to discover that it is still O(n). You
simply cannot apply binary search on a linked list
with O(log n) complexity. You still have to go

 6

through each link to locate a particular number. So a
linear linked structure is not helping us at all.

 Let us see if we can improve the situation by storing
the data using a binary tree structure. Consider the
following binary tree where the numbers have been
stored in a specific order. The value at any node is
more than the values stored in the left-child nodes,
and less than the values stored in the right-child
nodes.

59

18 67

13 32 63 72

25

 7

With this arrangement any search is taking at most 4
steps.
 For larger set of numbers, if we can come up with a
good tree arrangement than the search time can be
reduced dramatically.

Examples of binary trees:

root root

 8

• The following are NOT binary trees:

 9

Definitions:

• tree, then n1 is the parent of n2 and n2 is the left or

right child of n1.

• The level of a node in a binary tree:

- The root of the tree has level 0
- The level of any other node in the tree is one more

than the level of its parent.

root Level 0

Level 1

Level 2

Level 3

 10

Full Binary Tree

How many nodes?

Level 0 : 1 node (height 1)
Level 1: 2 nodes (height 2)
Level 3 : 4 nodes (height 3)
Level 3: 8 nodes (height 4)

Total number of nodes

n = 2h – 1 (maximum)

h = log (n+1)

45

24 76

14 32 61 87

8 20 27 37
56 67

 81 94

 11

Implementation

• A binary tree has a natural implementation in linked
storage. A tree is referenced with a pointer to its root.

• Recursive definition of a binary tree:

 A binary tree is either

- Empty, or
- A node (called root) together with two binary trees

(called left subtree and the right subtree of the root)

• Each node of a binary tree has both left and right

subtrees which can be reached with pointers:

struct tree_node{
 int data;
 struct tree_node *left_child;
 struct tree_node *right_child;
};

left_child data right_child

 12

Note the recursive definition of trees. A tree is a node with
structure that contains more trees. We have actually a tree
located at each node of a tree.

Traversal of Binary Trees

Linked lists are traversed sequentially from first node to the
last node. However, there is no such natural linear order for
the nodes of a tree. Different orderings are possible for
traversing a binary tree. Every node in the tree is a root for
the subtree that it points to. There are three common
traversals for binary trees:

• Preorder
• Inorder
• Postorder

These names are chosen according to the sequence in
which the root node and its children are visited.

Suppose there are only 3 nodes in the tree having the
following arrangement:

 13

− With inorder traversal the order is left-child, root node,

right-child
− With preorder traversal the order is root node, left

child , right child.
− With postorder traversal the order is left child, right

child, root node.

n1

n2 n3

In – order : n2 n1 n3
Pre-order : n1 n2 n3
Post order : n2 n3 n1

 14

A tree will typically have more than 3 nodes. Instead of
nodes n2 and n3 there would be subtrees as shown below:

− With inorder traversal the order is left subtree, then the

root and finally the right subtree. Thus the root is visited
in-between visiting the left and right subtrees.

− With preorder traversal the root node is visited first,

then the nodes in the left subtree are visited followed by
the nodes in the right subtrees

root

Left
subtree

Right
subtree

 15

− With postorder traversal the root is visited after both the

subtrees have been visited.(left subtree followed by right
subtree.

• As the structure of a binary tree is recursive, the traversal

algorithms are inherently recursive.

Algorithm for Preorder traversal

In a preorder traversal, we first visit the root node.

If there is a left child we visit the left subtree (all the
nodes) in pre-order fashion starting with that left child .

If there is a right child then we visit the right subtree in
pre-order fashion starting with that right child.

The function may seem very simplistic, but the real power
lies in the recursive formulation. In fact there is a double
recursion. The real job is done by the system on the run-
time stack. This simplifies coding while it puts a heavy
burden on the system.
void preorder(struct tree_node * p)
{ if (p !=NULL) {
 printf(“%d\n”, p->data);

 16

 preorder(p->left_child);
 preorder(p->right_child);

}
}
Take a tree of say height 3 with maybe 6 nodes and try to
run the above recursion to find out the actual order of
printing the nodes.

Example:

Preorder Traversal : a b c d f g e

a(root)

 b(left)

 c d f g e (right)

Algorithm for Inorder traversal

root a

b c

d e

f g

 17

In the inorder traversal, we first visit its left subtree (all the
nodes) , then we visit the root node and then its right
subtree.

void inorder(struct tree_node *p)
{ if (p !=NULL) {
 inorder(p->left_child);
 printf(“%d\n”, p->data);
 inorder(p->right_child);

}
}

Inorder: b a f d g c e

 b(left)

a(root)

f d g c e(right)

Algorithm for Postorder traversal

root a

b c

d e

f g

 18

In a postorder traversal, we first visit its left subtree (all the
nodes) and then visit its right subtree (all the nodes) and
then finally we visit the root node.

void postorder(struct tree_node *p)
{ if (p !=NULL) {
 postorder(p->left_child);
 postorder(p->right_child);
 printf(“%d\n”, p->data);

}
}

Example:

Postorder: b f g d e c a

b(left)

root a

b c

d e

f g

 19

f g d e c(right)

a(root)

 20

Finding Maximum value in a given tree p

int findMax (struct tree_node *p)
{
 int node_data, leftmax, rightmax, max;

 max = -1
//assume all values in the tree are positive
integers

 if (p != NULL)
 { node_data = p -> data;
 leftmax = findMax(p -> left_child);
 rightmax = findMax(p->right_child);

 //find the largest of the tree values.

 if (leftmax > rightmax)
 max = leftmax;
 else
 max = rightmax;
 if (node_data > max)
 max = node_data;
 }
 return max;

 21

node_value = 45
leftmax = 24 (max of 24, -1, -1)
rightmax = 76 (max of 76, -1, -1)

max = max of 45, 24, 76
 = 76

24

45

76

 22

max of left subtree
leftmax = max (24,12,32)
 = 24
rightmax = 76
max of tree = max (45, leftmax, rightmax)
 = 76

24 76

14 32

45

 23

Finding sum of values of all the nodes of a tree

To find the sum, add to the value of the current node, the
sum of values of all nodes of left subtree and the sum of
values of all nodes in right subtree.

int sum(struct tree_node *p)
{
 if (p!= NULL)
 return(p->data + sum(p->left_child)
 + sum(p->right_child));
 else
 return 0;
}

 24

