APPLICATIONS OF QUEUES IN REAL WORLD SIMULATION

Stacks and queues have number of applications in computer science.

You have already seen use of stacks in converting an infix expression into a post fix expression, in evaluation of a post fix expression, and also for carrying out arithmetic of big numbers. They are also used to store the return addresses of the function calls.

Queues have number of applications in processing jobs or for simulating a real-world application. In this section we shall learn about the simulation using queues.

SIMULATION AND MODELLING

Beyond the world of programming, there are large number of real-world events and processes that are too complicated to understand completely. For example, population growth of any type of living organisms, weather forecasting , functioning of national economy, working of customer service centers such as banks, super markets, flight scheduling, inventory control of items in warehouses etc.

To find a good solution for such problems, it is usually necessary to come up with an idealized model, which is a simplified representation of some real-world process. This helps us to simplify a complicated process , by omitting some details while retaining its fundamental character.

If we have a reasonable model for a process, we can translate the dynamics of the model into a program that captures the behavior of that model. Such a program is called a simulation.

Creating a simulation involves two steps. First step is to design a conceptual model for the real-world behavior we are trying to simulate. The second step is to write a program to implement the conceptual model.

Waiting Line model

Suppose you want to design a simulation that models the behavior of a supermarket waiting line. This is going to help the company in making such decisions as how many cashiers are needed, how much space needs to be reserved for the line itself etc.

 To make the initial implementation as simple as possible, you can assume that there is only one cashier, who serves the customers from a single queue.

You might then assume that customers arrive at random intervals and join the queue at the end of the line.

Whenever the cashier is free, and someone is waiting in the line, the cashier begins to serve the customer in the front of the queue.

 The time to service a customers is also a random value and would depend on how many items he has on his shopping cart.

 As soon as the cashier completes the transaction with the current customer, he can start serving the next customer in the queue.

The concept of Discrete time

Now in this model we have to forgo the issue of accuracy. How do we record the time to service? In minutes, or fractions of minutes or seconds? Should we say the customer took 5.2 minutes or just put down the figure at 5 minutes.

For most models , and particularly for a simulation model, it is useful to introduce a simplifying assumption that all events within the model happen in discrete integral time units.

 The time unit used in simulation should be small enough to ensure that only one event takes place during a single time unit .

 In the checkout line simulation, minutes may not be accurate enough. It is quite probable that two customers join the queue , less than a minute apart. So maybe here using seconds could be a good unit, as there is no possibility of two customers arriving precisely the same second.

In general, there is no reason for you to measure time using conventional units. When you write a simulation, you can define unit of time in any way that best fits the process under consideration.

For example you could choose the smallest time interval to be 5 seconds, so that simulation clock ticks at every 5 second interval.

Discrete Event Simulation

The real advantage of using discrete time units is that it allows you to structure the simulation as a loop in which each time unit represents a single cycle.

To complete the model, you need to say something about how often customers arrive and how much time they spend at the cash register.

 You can not have a very simplistic situation that customers arrive at say 20 second intervals, because in real world , sometimes nobody shows up for quite a while, and then couple of customers bunch together.

What does simulation provide:

The simulation program could tell us

 - The number of customers served during the loop,

 - Average amount of waiting time for the customers

- Average length of the waiting line

Implementing the simulation

The overall loop of simulation runs for a fixed time, which is an integer multiple of smallest time interval. In each interval, the simulation performs the following operations:

1. Determine whether a new customer has arrived, and if so add that person to the queue.

2. If the cashier is busy, record that cashier has spent another time interval with the current customer.

The cashier would be free when the required service time will be complete.

3. If the cashier is free, serve the next customer in the waiting line.

To service a customer, the corresponding operation on the queue would be to delete the element at front.

The data present in that node could possibly be the time required to service that particular customer.

You have to start the simulation clock for the cashier as well , so that you know when he would be free after the current customer.

When a new customer arrives, he is to be given a new customer number and added at the end of the queue.

At the same time you have to start a time counter for him, and keep checking whether the cashier is free. This would help in figuring out the total waiting time before his turn comes to be serviced.

 The customer number also tells us how many were served during one simulation session.

In parallel, you have to keep a record of number of customers at every unit interval, to find out average length of the line.

Thus at every time unit of simulation, you check cashier position, whether he is serving the customer or he is free to serve the next customer.

 You also check whether any new customer has joined during that time unit.

Scene from a simulation run

Time interval 326

Cashier started with new customer (15)

 7 customers in queue(each having own waiting time)

 Time interval 329

cashier servicing customer 15.

 new customers (23) and (24) join the queue.

 Time interval 330

 cashier servicing customer 15

9 customers in queue.

 Time interval 333

customer 15 just finished

 9 customers in queue.

Time interval 334

cashier started servicing customer 16

8 customers in queue.

More complex simulations

When you go for a more complex simulation with more cashiers, you can also find out average free time for the cashiers, as they are operating on a single queue or make a provision that they can close the counters for brief periods to attend to their own needs.

Later you can try a real super market scenario with multiple checkout points, having their own queues, and customers randomly joining the shortest queues they can observe.

The real –world is very complex. You will find situations where jobs or people are in queues, but some are serviced earlier irrespective of their position in the queues.

May be some are valued customers for an organization.

Or within a computer system, there could be jobs waiting to be processed, and it may be a very sound idea to carry out the shortest jobs first , from all jobs that have queued up for processing.

Such queues are called Priority Queues, and you will get to study them later.

