
 
 
 
Application of linked lists  
 
 

Stacks and Queues , 
Polynomial handling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Inserting an element in a sorted linked list. 
 
Let the data be sorted and put in a singly linked linear list 
which is being pointed by address “head “. 
 Let the new data to be entered be “d”. 
 Use  malloc  get a node with address “pNew”.  
Suppose we want to write a code to enter data  “d” into the 
node  and insert it  into its proper place in the list. 
 
 
typedef struct node { 
     int data; 
     struct node  *next; 
     }; 
 
struct node* pNew = (struct node*) 
(malloc(sizeof(struct node))); 
 
pNew -> data = d;  
pNew ->next = NULL;   
pCur = head ;  
 
/* check if data is smaller than smallest item on the list*/ 
if (pNew -> data  <   pCur -> data ) 
 { 
      pNew ->next = pCur ; 
      head = pNew; 
  }  
 
/* now examine the remaining list */ 
 



p = pCur -> next ;  
 
while(p!=NULL ||p->data <  pNew->data ) 
 { 
       pCur = pCur -> next ; 
    p = p -> next ; 
 }  
 
pNew -> next = pCur -> next;  
pCur -> next = pNew ; 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Implementation of  stacks and queues 
using linked lists.  
 
 
Stacks and Queues are easier to implement using linked 
lists. There is no need to set a limit on the size of the stack. 
Let us develop push, pop and enqueue and dequeue 
functions for nodes containing  integer data. 
 
 
 
 

typedef struct node { 
     int data; 
     struct node  *next; 
     }; 
 
The Push function places the data in a new node, attaches 
that node to the front of stacktop. 
 
 
void push(struct node**stacktop,int d ) 
{ 
struct node* pNew = (struct node*) 
(malloc(sizeof(struct node))); 
 
       pNew-> data =  d ; 
       pNew->next  =  *stacktop; 
      *stacktop  =  pNew ; 
} 
 
 



 
 
 
 
 
 
 
 
 
 
Pop Function returns the data from top element, and 
frees that element from the stack. 
  
int pop(struct node* *stacktop) 
{ 
  struct node* temp; 
  
 if(*stacktop== NULL) 
   { 
       printf(“\nstack empty\n”); 
    } 
  else 
   { 
      temp = *stacktop;     
      d  =  temp->data; 
      *stacktop  =  temp->next ; 
      free (temp); 
   } 
 return d; 
} 
 



 
 
 
 
 
 
 
For  Queue operations, we can maintain two pointers – 
qfront and qback as we had done for the case of array 
implementation of queues.  
 
 
 
 

For the Enqueue operation, the data is first loaded on a new 
node.   
If the queue is empty, then after insertion of the first node, 
both qfront and qback are made to  point to this node, 
otherwise, the new node is simply appended and qback 
updated. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
void enqueue(struct node**qfront,int d 
, struct node**qback) 
{ 
 
  struct node* pNew = (struct node*)  
(malloc(sizeof(struct node))); 
 
 pNew-> data =  d ; 
 pNew->next  = NULL;  
 
 if (*qfront ==NULL && *qback == NULL) 
      { 
        *qfront = pNew; 
        *qback  = pNew; 
      } 
 else 
      { 
        *qback->next = pNew; 
        *qback = pNew; 
      } 
    
 } 
 
 
 
 
 
 
 



In Dequeue function, first of all check if at all there is any 
element . 
 If there is none, we would have *qfront  as  NULL, and so 
report queue to be empty,  
otherwise return the data element, update the *qfront 
pointer and free the node.  Special care has to be taken if it 
was the only node in the queue. 
 
int dequeue(struct node**qfront, struct 
node**qback) 
{  
  struct node* temp; 
 
  if (*qfront== NULL) 
     printf(“\nqueue is empty\n”); 
 
  else 
    { 
        temp = *qfront; 
        d = temp->data; 
        *qfront = *qfront->next; 
        if (*qfront == NULL) 
             *qback = NULL; 
        free (temp); 
 
 
    } 
  return d; 
} 
 
 



Representing a polynomial using a linked 
list   
 
A polynomial can be represented in an array or in a linked 
list by simply storing the coefficient and exponent of each 
term.  
However, for any polynomial operation , such as addition 
or multiplication of polynomials , you will find that the 
linked list representation is more easier to deal with. 
First of all note that in a polynomial all the terms may not 
be present, especially if it is going to be a very high order 
polynomial.  Consider 
 
 
5  x12   + 2 x9  + 4x7  + 6x5  +  x2 + 12 x  
 
 
Now this 12th order polynomial does not have all the 13 
terms (including the constant term).   
It would be very easy to represent the polynomial using a 
linked list structure, where each node can hold information 
pertaining to a single  term of the polynomial.    
 
Each node  will need to store  
the variable x,  
the exponent  and  
the coefficient for each term.  
 



It often does not matter whether the polynomial is in x or y. 
This information  may not be very crucial for the intended 
operations on the polynomial. 
  
Thus we need to define a node structure to hold two 
integers , viz.  exp  and coff 
 
Compare this representation with storing the same 
polynomial using an array structure.  
In the  array we have to have keep a slot for each exponent 
of x,  
thus if we  have a polynomial of order 50 but containing 
just 6 terms, then a large number of entries will be zero in 
the array. 
 
You will also see that it would be also easy to manipulate a 
pair of polynomials if they are represented using linked 
lists. 
 
Addition  of two polynomials 
 
Consider addition of the following polynomials 
 
 
5  x12   + 2 x9  + 4x7  + 6x6  +  x3  
 
7  x8   + 2 x7  + 8x6  + 6x4  +  2x2 + 3 x + 40 
 
The resulting polynomial is going to be 
 
5  x12   + 2 x9  + 7  x8  +  6 x7  +   14x6   + 6x4    +x3   



 2x2     + 3 x + 40 
 
Now notice how the addition was carried out. Let us say the 
result of addition  is going to be stored in a third list.  
We started with the highest power in any polynomial. 
 
 If  there was no item having same exponent , we simply 
appended the term to the new list, and continued with the 
process.  
 
Wherever we found that the exponents were matching, we 
simply  added the coefficients and then stored the term in 
the new list.  
 
If one list gets exhausted earlier and the other list still 
contains some lower order terms, then simply append the 
remaining terms to the new list. 
 
Now we are in a position to write our algorithm for adding 
two polynomials. 
 
Let phead1 , phead2 and phead3 represent the pointers of 
the three lists under consideration.  
 
Let each node contain two integers  exp  and coff .  
 
Let us assume that the two linked lists already contain 
relevant data about the two polynomials.  
 
Also assume that we have got a function append to insert a 
new node at the end of the given list. 



 
 

p1 = phead1;  
p2 = phead2; 

   
 Let us call malloc to create a new node p3  to build the 
third list  

 p3 = phead3; 
 
 /* now traverse the lists till one list gets exhausted */ 
 
while ((p1 != NULL) || (p2 != NULL))  
{ 
 
    / * if  the exponent of p1 is higher than that of p2 then 
the  next term in final list is going to be the node of  p1* / 
 
    while (p1 ->exp   >  p2 -> exp )   
       { 
            p3 -> exp  = p1 -> exp;  
            p3 -> coff = p1 -> coff ;  
            append (p3, phead3); 
 
           /* now move to the next term in list 1*/  
 
           p1 = p1 -> next; 
        } 
 
   / * if  p2 exponent turns out to be higher then  make p3 
same as p2 and append to final list * / 
 



 
 while (p1 ->exp   <  p2 -> exp ) 
     {  
          p3 -> exp  = p2 -> exp;  
          p3 -> coff = p2 -> coff ;  
          append (p3, phead3);  
          p2 = p2 -> next;  
      }  
 
/* now consider the possibility that both exponents are 
same , then we must add the coefficients to get the term for 
the final list */  
 
while (p1 ->exp   =  p2 -> exp ) 
     {  

p3-> exp = p1-> exp;  
p3->coff = p1->coff + p2-> coff ;  

    append (p3, phead3) ;   
    p1 = p1->next ;   
       p2 = p2->next ;  
   } 
} 
 
 /* now consider the possibility that list2 gets exhausted , 
and there are terms remaining only in list1. So all those 
terms have to be appended to end of list3. However, you do 
not have to do it term by term, as p1 is already pointing to 
remaining terms, so simply append the pointer p1 to phead3 
*/ 
 
 if ( p1 != NULL)  



      append (p1, phead3) ;  
else  
      append (p2, phead3); 
 
 Now, you can implement the algorithm in C, and maybe 
make it more efficient. 


