
 1

Linked Lists

 2

Static and Dynamic Variables

• Static Variables:

− They are created during compilation. (Fixed

memory is reserved for them.)
− They cannot be allocated / de-allocated during the

execution of the program.
− Names are associated with them.

int x;
char y[10];
int z[100];

• Dynamic Variables:

− They are created (allocated) and de-allocated

during the execution of the program.
− no names are associated with them. The only way

to access them is to use pointers.
− They don’t exist during compilation. Once they

are created they contain data and must have a type
like any other variable. Thus we can talk about
creating a new dynamic variable of type x and
setting a pointer to point to it, or returning a
dynamic variable of type x to the system (de-
allocation).

 3

A Conceptual View of Memory

PROGRAM MEMORY

RAM

main

called and
standard
functions

global

program
heap

system
stack

DATA MEMORY

 4

Dynamic Data

For example:

• We must maintain a list of data
• At some moments, the list is small, so we want

to use only a little memory

• At other moments, the list is larger, so we need
to use more memory

• Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

• We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

 5

Dynamic Memory Allocation

Creating and maintaining dynamic data structures
requires dynamic memory allocation – the ability for
a program to obtain more memory space at execution
time to hold new values, and to release space no
longer needed.

In C, functions malloc and free, and operator
sizeof are essential to dynamic memory allocation.

• Unary operator sizeof is used to determine the size in

bytes of any data type.
e.g.
sizeof(double)
sizeof(int)

• Function malloc takes as an argument the

number of bytes to be allocated and return a pointer
of type void * to the allocated memory. (A
void * pointer may be assigned to a variable of
any pointer type.) It is normally used with the
sizeof operator.

 6

Let us say we want to store an integer pointed by
nump, a character pointed by letp and a user defined
structure of type planet_t pointed by planetp. This
will be done as follows:

int *nump;
 char *letp;
planet_t *planetp; user defined structure type

nump = (int *)malloc(sizeof (int));

letp = (char *)malloc(sizeof (char));

planetp = (planet_t *)malloc(sizeof (planet_t));

nump will now point to one byte of integer location
in memory.

Letp will now point to one location in memory to
hold a character

Planetp will now point to a group of locations in
memory sufficient to hold the information needed for
a structure of type planet_t.

 7

An example:

struct node{
 int data;
 struct node *next;
};

struct node *ptr;

ptr = (struct node *)
 malloc(sizeof(struct node));

• Function free de-allocates memory- i.e. the
memory is returned to the system so that the
memory can be reallocated in the future.
e.g.

free(ptr);

?

?

ptr

ptr ?

 8

Linked Lists

• It is an important data structure.
• An abstraction of a list: i.e. a sequence of nodes in which

each node is linked to the node following it.
• Lists of data can be stored in arrays, but linked lists

provide several advantages:

Arrays

− In an array each node (element) follows the previous one
physically (i.e. contiguous spaces in the memory)

− Arrays are fixed size: either too big (unused space) or

not big enough (overflow problem)

− Maximum size of the array must be predicted which is

sometimes impossible.

− Inserting and deleting elements into an array is difficult.

 Have to do lot of data movement, if in array of size 100,
an element is to be inserted after the 10th element, then
all remaining 90 have to be shifted down by one
position.

 9

Linked Lists

− Linked lists are appropriate when the number of

data elements to be represented in the data
structure are not known in advance.

− Linked lists are dynamic, so the length of a list can

increase or decrease as necessary.

− A linked list is a collection of nodes, each node

containing a data element.

− Each node does not necessarily follow the previous

one physically in the memory. Nodes are scattered
at random in memory.

− Insertion and Deletion can be made in Linked lists ,

by just changing links of a few nodes, without
disturbing the rest of the list. This is the greatest
advantage.

− But getting to a particular node may take large

number of operations, as we do not know the
address of any individual node .

− Every node from start needs to be traversed to

reach the particular node.

 10

A simple Node Structure

A node in a linked list is a structure that has at least two
fields. One of the fields is a data field; the other is a pointer
that contains the address of the next node in the sequence.

struct list {
 int data;
 struct list *next;
}

The pointer variable next is called a link. Each structure is
linked to a succeeding structure by way of the field next.
The pointer variable next contains an address of either the
location in memory of the successor struct list
element or the special value NULL.

data next

 11

More examples of Nodes

A node with one data field:

struct node{
 int number;
 struct node * link;
};

A node with 3 data fields:

struct student{
 char name[20];
 int id;
 double grdPts;
 struct student
 *next_student;
};

A structure in a node:

struct person{
 char name[20];
 char address[30];
 char phone[10];
};

struct person_node{
 struct person data;
 struct person_node
 *next;
};

 name id grdPts next_student

number link

name address phone

 data next

 12

A simple Linked List

• The head pointer addresses the first node of the list,
and each node points at its successor node.

• The last node has a link value NULL.

Empty List

No data elements, no nodes. So Head points to NULL.

Empty Linked list is a single pointer having the value
of NULL.

pHead = NULL;

head

head

 13

Basic Linked List Operations

1. Add a node
2. Delete a node
3. Looking up a node
4. List Traversal (e.g. Counting nodes)

Add a Node

There are four steps to add a node to a linked list:

1. Allocate memory for the new node.
2. Determine the insertion point (you need to know

only the new node’s predecessor (pPre)
3. Point the new node to its successor.
4. Point the predecessor to the new node.

Adding to Empty List

Let us first define a structure to hold two pieces of
information in each node- an integer value, and the
address corresponding to the next structure of same
type.

 14

typedef struct node_s{

 int data;
 struct node_s *next;

} node_t;

node_t *pNew, *pHead;
pHead = NULL;

Now to store 39 in the data part of the node, we can
use
(*pNew).data = 39;

A more convenient way is to use the notation

pNew->data = 39;
pNew->next = NULL;

At this moment there are no elements in the list. (why?)

Pointer pHead points to NULL.

First element 39 is stored in node pNew.

 15

BEFORE

pNew->next = pHead;
/* set link to NULL*/

pHead = pNew;
 /* point list to first node*/

AFTERWARDS

39 pNew

pHead

39 pNew

pHead

pPre

 16

Add Node at Beginning

 Suppose we want to add node containing data 39 to a
list 75, 124,….. The head node points to node
containing first element 75.

BEFORE

pNew->next = pHead;
pHead = pNew;

AFTER

39 pNew

pHead

pPre

75 124

39 pNew

pHead

pPre

75 124

 17

Insert a node in the middle

Now a new node containing value 96 is to be inserted
in between nodes containing 75 and 124 . Let pPre
be the previous node containing 75.

pNew->next = pPre->next;
pPre->next = pNew;

AFTER

96 pNew

pPre

75 124

96 pNew

pPre

75 124

 18

Add Node at End

BEFORE

pNew->next = NULL;
pPre->next = pNew;

 OR:

pNew->next = pPre->next;
pPre->next = pNew;

134 pNew

pPre

75 124

 19

AFTER

134 pNew

pPre

75 124

 20

Inserting a Node in a Linked List

Given the head pointer (pHead), the predecessor
(pPre) and the data to be inserted (item), we must
allocate memory for the new node (pNew) and adjust
the link pointers.
/*Insert a node in a linked list*/

 struct node *pNew;

 pNew =(struct node*)
 malloc(sizeof(struct node));

 pNew->data = item;

 if (pPre == NULL){
 /*Adding before first node or to
empty list*/

39 pNew

pHead

pPre

75 124

 21

 pNew->next = pHead;
 pHead = pNew;

 }
 else {
 /* Adding in middle or at end*/

 pNew->next = pPre->next;
 pPre->next = pNew;

 }

96 pNew

pPre

75 124

 22

Counting the nodes in a List

• Recursive version:

int count (struct node * pHead)
{
 if (pHead==NULL)
 return 0;
 else
 return(1 + count(pHead->next));
}

• Iterative version:

int count(struct node *pHead)
{
 struct node * p;
 int c = 0;

 p = pHead;
 while (p != NULL){
 c = c + 1;
 p = p->next;
 }
 return c;
}

 23

Look up an item in the list pointed by head

/* Given the item and the pointer to the head of the
list,

 the function returns NULL if the item is not found;

 or

 returns a pointer to the node which matches the item
*/

struct node * lookup(int item,
struct node *pHead)
{
 if (head == NULL)
 return NULL;
 else if (item == pHead->data)
 return pHead;
 else
 return(lookup(item,pHead->next));
}

 24

Creating a List

• Recursive version:

// Copies the contents of an array into
a dynamically growing list.

struct node *alist(int a[],int j, int n)
{

struct node *pHead;

if (j >= n) //base case
 return NULL;
 else {
 pHead = (struct node *)
 malloc(sizeof(struct node));
 pHead->data = a[j];
 pHead->next = alist(a, j+1, n);
 return pHead;

}
}

Calling the function:

int array[] = {1, 2, 3, 4};
struct node *my_list;

my_list = alist(array, 0, 4);

 25

• Iterative version:

struct node *alist(int a[], int n)
{
 struct node *pHead, *current;
 int j;

 if (n == 0)

//the array is empty

return NULL;

else {

//create the head node for

 //the first element

 pHead = (struct node *)
 malloc(sizeof(struct node));
 current = pHead;
 current->data = a[0];

//create nodes for the other elements
 j = 1;

 while (j < n){

 26

 current->next = (struct node *)
malloc(sizeof(struct node));

 current = current->next;
 current->data = a[j];

 j = j +1;
 }
 current->next = NULL;

//finish the list

 return head;
}

}

Calling the function:

my_list = alist(numbers, 4);

