11/7/2025 Lecture: Hash Tables

Thursday, October 30, 2025 2:00 PM

With AVL Trees, we can insert items, delete items and search for items in O(lg n)
time, where n is the number of items in the tree.

Can we do better?

Hash Table - expected O(1) performance for insert and search, and also delete (for
one of the implementations)

Idea is as follows:

The table is long array, table size is p.

The table uses a function called a hash function.

A hash function is a many-to-one function. Output has to be an integer in the
range of the size of the table (0 to p - 1). If it doesn't you can just mod by p.

A hash function takes in whatever items you're storing and returns an integer in
range (0 to p - 1). The properties of a good hash function are:

1. Each output is equally likely.

2. Small changes in the input lead to unpredictable changes in the output

3. We want the probability of H(x) = H(y) for two randomly chosen strings x and y
to be roughly 1/p.

4, Must be fast to compute.

Bad Hash Functions:

int hash(char* s) {
int len = strlen(s);
intres=0;
for (int i=0; i<len; i++)
res = res + slil;
return res;

This is bad because all anagrams will give the same hash value. Also the sum of
these values for regular words tends to be close to one another since ascii values
are in such a small range.

Really bad:

int hash(char* s) {
return s[0];

}

Let's say we're storing integers in the table of size 7, and our hash function is
f(x)=B3x+2)% 7

To insert something into the table, we calculate the input value's hash function

and go to that index in the table. [@,‘, Z; J/Z)

lns?rts I l T\ \I\A/\ -~)/) Ob7

COP3502-F25 Page 1

= 17 oK)
(T 110 :

0 v 1 % U g yp
Insert 15 Qi}i\gJ/?,)/]

) 0

—
To search for say 15, first calculate f(15) --> 5, then look in index 5. -~ %

Works great until???

Insert 10 into the table... f(12) = (3*12 + 2)%7 = 38%7 = 3 --> ISSUE, 5 is
already in slot 3...00ps...COLLISION
A collision is when the index to insert a new item is the same as an
index already storing an item in the table!!!
How to deal with collisions?

1) We don't, we evict the previous element in that index. (LOSSY)

2) Linear Probing

3) Quadratic Probing

4) Separate Chaining Hashing

Idea behind linear probing is that if a spot, idx is filled, then go to idx+1,
then idx+2, ... wrap around back to the beginning if necessary.

sl |z
¢ 1 0 v b
nNSe Y\ —> 6 b opad 2 full 74

1N seft f; 5 %ﬁ) |\ ole”) LNl 2SIk

~ /07’“’7;
—> O/£7>/}2 V] g
i G % };Uza}_w BN = Sk 1266029

?64) 5(%0 TZ> ”/07

ﬁ——

Search --> calculate hash value, then if that spot is full and the number
is there, return yes it's in the table. If that spot is empty return it's not

in the table. Otherwise, continue to the next spot over and over again

until either you find the value or find an empty spot.

COP3502-F25 Page 2

Question: How on earth is this thing O(1) expected run time???

Make the table large, at least twice as big as the number of elements
you are going to store. So that most of the time, there aren't collisions
and usually there is a free spot "pretty soon"

Implementation in sample program: htablelinear.c

Array of strings size 200,003, max length string 29 letters

/3) N\
/

/)g,&/m > vt

This definitely works, but it has issues...in the last example, we had a
ton of numbers that didn't necessarily have the same hash function

consecutively placed in the array, causing really long search times if you

hit that group. This idea is called clustering, and it tends to happen
because of how linear probing works.

No matter where something hits in a cluster, you are guaranteed to
grow it.

To avoid clustering, we must not look space by space, but instead,
"jump" somehow.

The idea is quadratic probing.
In linear probing, the indexes we look at if the hash value is x are

X, Xx+1,x+2,x+3,x+4.., (modp)
In quadratic probing, the indexes we look at are:

X, X+1,Xx+4,x+9,x+16, .., x +i% in general
Gapsare+l, +3, +5, +7

The complicating issue here is what if this pattern loops between the
same spots and gets stuck and doesn't discover open spots.

Solution: Make the size of the table a prime number, p, and we can

prove that the first (p-1)/2 spots that quadratic probing looks at are all

different. If you know you are going to add upto n elements, then
choose a table size that is a prime number that is at least 2*n + 1.

Assume to the contrary that x +i2and x + j?, where i and j are not
equal and both are 0 < i, j <= (p-1)/2, map to the same place in the

COP3502-F25 Page 3

\FO(% \){2\9&)

ssume to the contr ary that x +i2and x +j%, where i and j are no
equal and both are 0 < i, j <= (p-1)/2, map to the same plac

array, e, thei mdiq valen mdp\,\} \mo& P>

)CT - 7/) = 0 L»r»d F>

\ﬂ)) z O Lmedp)
é\c\)&g \m)) bt AVl VQK/M

il o oS

J-—f’“‘

\-)’\)7

b= @wmg =541l =H)

W) — vl =2
%((S%, Lf(*lé 15 = 1SR = G

< ’ ”%’0{\(oY
)~ 254 | Sxf oS

f\f\ W) 7[n//”\

Tt i BRSO S Y '“70(~75
QS“} 5+5 — |
«pt\ﬂ J;CS -]/@g 0 il £ lers)

EV ARl
7 ZQ(VE);/]L/C;/LU;\?J 2L\

. ml
‘,\./0 =57 0/o\| =L

| 7= LS =

Obvious idea: store multiple items at one array slot so you're not
jumping around between slots hoping that you don't loop infinitely!

Separate Chaining Hashing:

Make each array slot a linked list, and then when searching, just go to
the right index and for loop through the linked list...

Why do people do the other options???

Answer: SPEED. Linked lists require dynamically allocating memory for
each insertion, and the list sizes are small, but just managing the lists is
a bunch of overhead that adding to array indexes is not. (Memory for
each link...)

f//\/.)ﬁ(»@ZJ é\pfgﬂ/a H

