
COP 3502 Quiz #1 Version A (SLMP, Dynamic Memory Allocation) Solutions

1) (8 pts) Assume that the struct artifact had been created by the user and a typedef was set up to refer

to the type as artifact. Write lines of code that do the following:

1) Read in an integer (from standard input) into an integer variable n, that is already declared.

2) Dynamically allocate memory for an array of size n, storing n pointers to artifact. Call the array

arr.

3) Manually, using a for loop, set each of the pointers in the array to NULL.

scanf("%d", &n);

artifact** arr = calloc(n, sizeof(artifact*));

for (int i=0; i<n; i++)

 arr[i] = NULL;

Grading: 2 pts scanf, 3 pts either malloc or calloc, 3 pts loop (2 pts first line, 1 pt inside line)

2) (10 pts) Write a function that takes in an array, array, its length, n, and dynamically allocates a new

array of size 2n, and fills it with the contents of array, followed by those same contents reversed, so that

the resulting array is a palindrome. So, if the input array stores [3,4,5,1,9], the newly returned pointer will

point to a new array storing [3,4,5,1,9, 9,1,5,4,3]. No changes should be made to the original array.

// Pre-condition: array is of length n.

// Post-condition: No change is made to array and a new array of

// size n is created storing array's contents followed by array's

// contents reversed, and a pointer to this new array is returned.

int* makePalArray(int array[], int n) {

 // 3 pts, can use calloc or malloc.

 int* res = calloc(2*n, sizeof(int));

 // 2 pts for loop, assignment.

 for (int i=0; i<n; i++)

 res[i] = array[i];

 // 2 pts for loop, 2 pts for assignment.

 for (int i=n; i<2*n; i++)

 res[i] = array[2*n-1-i];

 // 1 pt for returning correct pointer.

 return res;

}

3) (10 pts) Write a function that takes in an array of strings, words, its length, n, representing the number

of words in the array, and returns a pointer to a new integer array, dynamically allocated, where index i of

the new array stores the length of the string stored in words[i].

#include <string.h>

int* getStringLengths(char** words, int n) {

 // 4 pts, can use calloc or malloc.

 int* res = malloc(n*sizeof(int));

 // 2 pts for loop, 2 pts for assignment

 for (int i=0; i<n; i++)

 res[i] = strlen(words[i]);

 // 2 pts for returning correct pointer.

 return res;

}

4) (7 pts) When the strcat function is called, it's the programmer's responsibility to see if the first string

passed to the function has enough memory allocated to it to have the second string concatenated to the end

of it. Let len1 be the amount of space allocated to the string str1 and len2 be the amount of space

allocated to the string str2. In the code segment below, two strings are read into str1 and str2. In the space

provided after that, please write the necessary code to reallocate memory for str1 before the strcat function

call. Make sure this realloc allocates precisely the correct amount of memory needed to store both strings.

#include <string.h>

int len1, len2;

scanf("%d%d", &len1, &len2);

char* str1 = malloc(len1*sizeof(char));

char* str2 = malloc(len2*sizeof(char));

scanf("%s%s", str1, str2);

// 4 pts for this calculation.

int need = strlen(str1) + strlen(str2) + 1;

// 3 pts for this realloc. LHS and assignment unnecessary.

str1 = realloc(str1, need);

strcat(str1, str2);

