
COP 3502 Quiz #1 Version A (SLMP, Dynamic Memory Allocation)

Last Name: ___________________, First Name: ______________________

Circle Your Recitation: F12:30 F1:30 F2:30 F3:30 F4:30

1) (6 pts) Write three lines of code which do the following: (1) read in an integer from the user and store it

in a variable called n, (this is two lines) (2) dynamically allocate an array of n chars called word, (3) set

each of those chars to '\0'. (Note: The integer value of the null character is 0. Steps 2 and 3 are one line.)

2) (12 pts) Edit the solution to the sorted list matching problem below so that instead of printing out the

solution to the screen, the code returns a dynamically allocated array of integers representing the list of

items common to both lists. To do this, you must initially allocate an array the size of either of the two input

arrays, but after you have copied the result into that array, you must resize the array (using a function that

we learned) before returning it. Blank lines have been provided for you to add the necessary code. . (Note:

*news is set to the size of the returned list.)

// Pre-condition: list1 is length n, sorted, with unique values.

// list2 is length m, sorted, with unique values.

// Post-condition: All elements belonging to both lists are

// returned in a dynamically allocated array.

int* slmp_linear(int list1[], int n, int list2[], int m, int* news) {

 int* res = __ ;

 int i = 0, j = 0, k = 0;

 while (i < n && j < m) {

 if (list1[i] < list2[j]) ______ ;

 else if (list2[j] < list1[i]) j++;

 else {

 __ ;

 __ ;

 i++;

 j++;

 }

 }

 __ ;

 *news = _______ ;

 return res;

}

3) (12 pts) One can create a custom multiplication table using one array of integers storing the first operand

and another array of integers storing the second operand. For example, if the array [3, 2, 6] represented the

possible first operands and the array [5, 7, 9, 12] represented the second operand, then the following table

would be built to represent all possible multiplications that could be done:

 5 7 9 12

3 15 21 27 36

2 10 14 18 24

6 30 42 54 72

Note: The actual table has 3 rows and 4 columns and its entries are highlighted.

Write a complete function which takes in the first array, list1, the length of the first array, len1, the second

array, list2 and the length of the second array, len2, and dynamically allocates a 2D integer array of size

len1 by len2, fills it with the custom multiplication table defined by the two input lists, and returns a pointer

to that 2D array.

int** makeCustomMultTable(int* list1, int len1, int* list2, int len2) {

}

4) (5 pts) Assume that in the main function that called makeCustomMultTable, the pointer to the 2D array

is called multtable and the variables len1 and len2 store the dimensions of the 2D array. (So, there are len1

pointers to 1D arrays and each of those 1D arrays are of length len2.) Write code to free all of this associated

memory.

