
1) Please determine a Big-Oh bound for the following recurrence using the iteration technique:

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 1

Note: ∑ 4𝑖 =𝑘−1
𝑖=0

4𝑘−1

3
.

Solution

Iterate the recurrence three times:

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 1

𝑇(𝑛) = 4(4𝑇 (
𝑛

4
) + 1) + 1

𝑇(𝑛) = 16𝑇 (
𝑛

4
) + ∑ 4𝑖

1

𝑖=0

𝑇(𝑛) = 16(4𝑇 (
𝑛

8
) + 1) + ∑ 4𝑖

1

𝑖=0

𝑇(𝑛) = 64𝑇 (
𝑛

8
) + ∑ 4𝑖

2

𝑖=0

Now we guess the general form of the recurrence after k iterations to be:

𝑇(𝑛) = 4𝑘𝑇 (
𝑛

2𝑘
) + ∑ 4𝑖

𝑘−1

𝑖=0

To solve the recurrence, plug in the value of k for which
𝑛

2𝑘 = 1, alternatively, when 𝑛 = 2𝑘.

Note that 4𝑘 = (22)𝑘 = (2𝑘)2 = 𝑛2.

𝑇(𝑛) = 𝑛2𝑇(1) +
4𝑘 − 1

3

𝑇(𝑛) = 𝑛2𝑇(1) +
𝑛2 − 1

3

𝑇(𝑛) = (𝑇(1) +
1

3
)𝑛2 −

1

3

𝑇(𝑛) = 𝑂(𝑛2)

Note, that T(1) is a constant, so we can take the last step, since any function that is less than or

equal to cn2 for some constant c is O(n2).

2) Write a recursive function, equal, that takes in pointers to two linked lists and returns 1 if the

two lists are equal and 0 otherwise. For two lists to be equal, they have to have the same number

of elements, and each corresponding element must be equal. (For example, the lists 3, 9, 5 and 3,

9, 5 are equal, but the lists 3, 4, 7 and 3, 7, 4 are not equal and the lists 2, 9, 1 and 2, 9, 1, 4 are not

equal.)

typedef struct node {

 int data;

 struct node* next;

} node;

int equal(node* listA, node* listB) {

 if (listA == NULL && listB == NULL) return 1;

 if (listA == NULL || listB == NULL) return 0;

 if (listA->data != listB->data) return 0;

 return equal(listA->next, listB->next);

}

3) A algorithm that sorts n items runs in 𝑂(𝑛√𝑛). When run on an input of 10,000 items, the

algorithm takes 200 milliseconds. How long, in seconds, will the algorithm take when run on an

input of 90,000 items?

Let T(n) represent the run time of the algorithm. Let 𝑻(𝒏) = 𝒄𝒏√𝒏, for some constant c.

Using the given information, we have:

𝑻(𝟏𝟎𝟎𝟎𝟎) = 𝒄(𝟏𝟎𝟎𝟎𝟎)√𝟏𝟎𝟎𝟎𝟎 =. 𝟐 𝒔𝒆𝒄𝒐𝒏𝒅𝒔

𝒄(𝟏𝟎𝟒)(𝟏𝟎𝟐) =. 𝟐𝒔𝒆𝒄𝒐𝒏𝒅𝒔

𝒄 = 𝟐 × 𝟏𝟎−𝟕𝒔𝒆𝒄𝒐𝒏𝒅𝒔

Now, solve for T(90000):

𝑻(𝟗𝟎𝟎𝟎𝟎) = 𝒄(𝟗𝟎𝟎𝟎𝟎)√𝟗𝟎𝟎𝟎𝟎

= (𝟐 × 𝟏𝟎−𝟕𝒔𝒆𝒄𝒐𝒏𝒅𝒔)(𝟗 × 𝟏𝟎𝟒)√𝟗√𝟏𝟎𝟎𝟎𝟎

= 𝟐 × 𝟏𝟎−𝟕 × 𝟗 × 𝟏𝟎𝟒 × 𝟑 × 𝟏𝟎𝟐𝒔𝒆𝒄𝒐𝒏𝒅𝒔

= 𝟓𝟒 × 𝟏𝟎−𝟏𝒔𝒆𝒄𝒐𝒏𝒅𝒔

= 𝟓𝟒 × 𝟏𝟎−𝟏𝒔𝒆𝒄𝒐𝒏𝒅𝒔

= 𝟓. 𝟒 𝒔𝒆𝒄𝒐𝒏𝒅𝒔

4) We define a set of strings s1, s2, ... as follows: s1 = "1" and to form si+1 we stick together two

copies of si next to each other followed by the character i+1. For example, s2 = 112 and s3 =

1121123. Write a function that takes in n (guaranteed to be in between 1 and 9, inclusive) and

prints out sn.

void printSequence(int n) {

 if (n > 0) {

 printSequence(n-1);

 printSequence(n-1);

 printf("%d", n);

 }

}

5) Determine a closed form solution for the following summation, in terms of n:

∑ (4𝑖 + 7)

2𝑛−1

𝑖=𝑛

∑ (𝟒𝒊 + 𝟕)

𝟐𝒏−𝟏

𝒊=𝒏

= 𝟒 (∑ 𝒊

𝟐𝒏−𝟏

𝒊=𝒏

) + 𝟕(𝟐𝒏 − 𝟏 − 𝒏 + 𝟏)

= 𝟒[(∑ 𝒊

𝟐𝒏−𝟏

𝒊=𝟏

) − (∑ 𝒊

𝒏−𝟏

𝒊=𝟏

) + 𝟕𝒏

= 𝟒 [
(𝟐𝒏 − 𝟏)(𝟐𝒏)

𝟐
−

(𝒏 − 𝟏)𝒏

𝟐
] + 𝟕𝒏

= 𝟐𝒏[𝟐(𝟐𝒏 − 𝟏) − (𝒏 − 𝟏)] + 𝟕𝒏

= 𝟐𝒏[𝟒𝒏 − 𝟐 − 𝒏 + 𝟏] + 𝟕𝒏

= 𝟐𝒏[𝟑𝒏 − 𝟏] + 𝟕𝒏

= 𝟔𝒏𝟐 − 𝟐𝒏 + 𝟕𝒏

= 𝟔𝒏𝟐 + 𝟓𝒏

= 𝒏(𝟔𝒏 + 𝟓)

6) Determine the run-time, in terms of the formal parameter n, of the following function. Leave

your answer in a Big-Oh bound and justify your answer.

int f(int array[], int n) {

 int i, total = 0;

 for (i=0; i<n; i++) {

 int low = 0, high = n-1;

 while (low < high) {

 int mid = (low+high)/2;

 if (2*array[i] < array[mid])

 high = mid-1;

 else

 low = mid+1;

 }

 total += low;

 }

 return total;

}

The outer loop runs n times. The inner loop runs roughly log n times, since its code structure

is similar to a binary search. Namely, the difference between low and high is roughly n at the

beginning and at each while loop iteration, we divide this difference by about 2. This sets up

the equation n/2k = 1, where k is the maximum number loop iterations. The solution is k =

log2n. It follows that the total run time of the segment of code is O(nlgn).

7) Consider the following recursive function:

int compute(int array[],int low, int high) {

 if (low == high) return array[low]%3 + 1;

 int mid = (low+high)/2;

 int left = compute(array, low, mid);

 int right = compute(array, mid+1, high);

 return left*right;

}

Consider the function call compute(array, 0, 6) where array is shown below:

index 0 1 2 3 4 5 6

array 17 4 19 30 47 999 13

Determine the result of this recursive call, as well as each other recursive call that gets made as a

result of this original one and its return value. Please fill in the recursive calls in the order that they

start. (Note: This order is different than the order in which they finish and a significant hint has

been given to you below.)

Recursive Call Return Value

compute(array, 0, 6) 72

compute(array, 0, 3) 12

compute(array, 0, 1) 6

compute(array, 0, 0) 3

compute(array, 1, 1) 2

compute(array, 2, 3) 2

compute(array, 2, 2) 2

compute(array, 3, 3) 1

compute(array, 4, 6) 6

compute(array, 4, 5) 3

compute(array, 4, 4) 3

compute(array, 5, 5) 1

compute(array, 6, 6) 2

8) Complete the program below so that it prints out all the permutations of 0,1,2, ...,SIZE-1 such

that the absolute value of the difference between each pair of adjacent numbers in the permutations

is 2 or greater. For example, when SIZE = 4, the code would print out:

1 3 0 2

2 0 3 1

the only 2 permutations such that the absolute value of the difference between each pair of adjacent

terms is 2 or greater.

#include <stdio.h>

#include <math.h>

#define SIZE 4

void printPerms(int perm[], int used[], int k, int n);

void print(int perm[], int n) ;

int main() {

 int perm[SIZE], used[SIZE], i;

 for (i=0; i<SIZE; i++) used[i] = 0;

 printPerms(perm, used, 0, SIZE);

 return 0;

}

void printPerms(int perm[], int used[], int k, int n) {

 if (k == n) print(perm, n);

 int i;

 for (i=0; i<n; i++) {

 if (!used[i]) {

 if (k == 0 || abs(perm[k-1]-i) >= 2) {

 used[i] = 1 ;

 perm[k] = i ;

 printPerms(perm ,used ,k+1 ,n);

 used[i] = 0 ;

 }

 }

 }

}

9) Write a function that takes in pointers to two sorted linked lists, combines them by rearranging

links into one sorted linked list, effectively merging the two sorted lists into one, and returns a

pointer to the new front of the list. Since no new nodes are being created and no old nodes are

being deleted, your code should NOT have any mallocs or frees. Also, note that this destroys the

old lists. If you try to print either listA or listB after calling merge, the lists are likely to print

differently. (Hint: This is probably much easier to do recursively.) Fill in the function prototype

provided below and use the struct provided below:

Solution

typedef struct node {

 int data;

 struct node* next;

} node;

node* merge(node* listA, node* listB) {

 if (listA == NULL) return listB;

 if (listB == NULL) return listA;

 if (listA->data < listB->data) {

 listA->next = merge(listA->next, listB);

 return listA;

 }

 listB->next = merge(listA, listB->next);

 return listB;

}

10) Evaluate the following postfix expression, showing the state of the operand stack at the three

points A, B and C indicated below:

 A B C

12 6 2 - / 5 42 7 / 4 - * +

 7

 42 2

4 5 5

12 3 3

 A B C

Value of the Expression: 13

11) Circle either True or False about each of the following assertions about queues.

a) A queue is a Last In, First Out (LIFO) abstract data structure. True False

b) If a queue is implemented with a regular linked list, with a pointer True False

to the front of the queue only, the enqueue operation would take Θ(n)

time for a list with n elements. (Θ indicates proportional to n.)

c) If a queue is implemented with a regular linked list, with a pointer True False

to the front of the queue only, the dequeue operation would take Θ(n)

time for a list with n elements.

d) A queue must be implemented with a linked list. True False

e) A queue allows for access to any of its elements in O(1) time. True False

12) Convert the following infix expression to postfix, showing the state of the operator stack at the

three points A, B and C indicated below:

 A B C

((42 - 9) / (2 + 5 - 2 * 2) - 2 * 3) * (3 + 4)

+

(

/ /

((*

 A B C

Equivalent Postfix Expression:

42 9 - 2 5 + 2 2 * - / 2 3 * - 3 4 + *

