
Bison
The Yacc-compatible Parser Generator
19 November 2008, Bison Version 2.4.1

by Charles Donnelly and Richard Stallman

This manual (19 November 2008) is for GNU Bison (version 2.4.1), the GNU parser generator.
Copyright c© 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005, 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, with the
Front-Cover texts being “A GNU Manual,” and with the Back-Cover Texts as in
(a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU and
promoting software freedom.”

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
Printed copies are available from the Free Software Foundation.
ISBN 1-882114-44-2

Cover art by Etienne Suvasa.

i

Short Contents

Introduction . 1

Conditions for Using Bison . 3

GNU GENERAL PUBLIC LICENSE . 5

1 The Concepts of Bison . 15

2 Examples . 27

3 Bison Grammar Files . 43

4 Parser C-Language Interface . 73

5 The Bison Parser Algorithm . 81

6 Error Recovery . 91

7 Handling Context Dependencies . 93

8 Debugging Your Parser . 97

9 Invoking Bison . 105

10 Parsers Written In Other Languages . 109

11 Frequently Asked Questions . 125

A Bison Symbols . 131

B Glossary . 137

C Copying This Manual . 141

Index . 149

iii

Table of Contents

Introduction . 1

Conditions for Using Bison . 3

GNU GENERAL PUBLIC LICENSE . 5

1 The Concepts of Bison . 15
1.1 Languages and Context-Free Grammars . 15
1.2 From Formal Rules to Bison Input . 16
1.3 Semantic Values . 17
1.4 Semantic Actions . 17
1.5 Writing GLR Parsers . 17

1.5.1 Using GLR on Unambiguous Grammars . 18
1.5.2 Using GLR to Resolve Ambiguities . 20
1.5.3 GLR Semantic Actions . 22
1.5.4 Considerations when Compiling GLR Parsers . 23

1.6 Locations . 23
1.7 Bison Output: the Parser File . 23
1.8 Stages in Using Bison . 24
1.9 The Overall Layout of a Bison Grammar . 24

2 Examples . 27
2.1 Reverse Polish Notation Calculator . 27

2.1.1 Declarations for rpcalc . 27
2.1.2 Grammar Rules for rpcalc . 28

2.1.2.1 Explanation of input . 28
2.1.2.2 Explanation of line . 29
2.1.2.3 Explanation of expr . 29

2.1.3 The rpcalc Lexical Analyzer . 30
2.1.4 The Controlling Function . 31
2.1.5 The Error Reporting Routine . 31
2.1.6 Running Bison to Make the Parser . 31
2.1.7 Compiling the Parser File . 32

2.2 Infix Notation Calculator: calc . 32
2.3 Simple Error Recovery . 33
2.4 Location Tracking Calculator: ltcalc . 34

2.4.1 Declarations for ltcalc . 34
2.4.2 Grammar Rules for ltcalc . 35
2.4.3 The ltcalc Lexical Analyzer. 35

2.5 Multi-Function Calculator: mfcalc . 37
2.5.1 Declarations for mfcalc . 37
2.5.2 Grammar Rules for mfcalc . 38
2.5.3 The mfcalc Symbol Table . 38

2.6 Exercises . 42

iv Bison 2.4.1

3 Bison Grammar Files . 43
3.1 Outline of a Bison Grammar . 43

3.1.1 The prologue . 43
3.1.2 Prologue Alternatives . 44
3.1.3 The Bison Declarations Section . 47
3.1.4 The Grammar Rules Section . 47
3.1.5 The epilogue . 47

3.2 Symbols, Terminal and Nonterminal . 48
3.3 Syntax of Grammar Rules . 49
3.4 Recursive Rules . 50
3.5 Defining Language Semantics . 51

3.5.1 Data Types of Semantic Values . 51
3.5.2 More Than One Value Type . 51
3.5.3 Actions . 52
3.5.4 Data Types of Values in Actions . 53
3.5.5 Actions in Mid-Rule . 53

3.6 Tracking Locations . 55
3.6.1 Data Type of Locations . 55
3.6.2 Actions and Locations . 56
3.6.3 Default Action for Locations . 57

3.7 Bison Declarations . 58
3.7.1 Require a Version of Bison . 58
3.7.2 Token Type Names . 58
3.7.3 Operator Precedence . 59
3.7.4 The Collection of Value Types . 59
3.7.5 Nonterminal Symbols . 60
3.7.6 Performing Actions before Parsing . 60
3.7.7 Freeing Discarded Symbols . 61
3.7.8 Suppressing Conflict Warnings . 62
3.7.9 The Start-Symbol . 63
3.7.10 A Pure (Reentrant) Parser . 63
3.7.11 A Push Parser . 63
3.7.12 Bison Declaration Summary . 65

3.8 Multiple Parsers in the Same Program . 70

4 Parser C-Language Interface . 73
4.1 The Parser Function yyparse . 73
4.2 The Push Parser Function yypush_parse . 74
4.3 The Pull Parser Function yypull_parse . 74
4.4 The Parser Create Function yystate_new . 74
4.5 The Parser Delete Function yystate_delete . 74
4.6 The Lexical Analyzer Function yylex . 74

4.6.1 Calling Convention for yylex . 75
4.6.2 Semantic Values of Tokens . 76
4.6.3 Textual Locations of Tokens . 76
4.6.4 Calling Conventions for Pure Parsers . 76

4.7 The Error Reporting Function yyerror . 77
4.8 Special Features for Use in Actions . 78
4.9 Parser Internationalization . 80

v

5 The Bison Parser Algorithm . 81
5.1 Lookahead Tokens . 81
5.2 Shift/Reduce Conflicts . 82
5.3 Operator Precedence . 83

5.3.1 When Precedence is Needed . 83
5.3.2 Specifying Operator Precedence . 83
5.3.3 Precedence Examples . 84
5.3.4 How Precedence Works . 84

5.4 Context-Dependent Precedence . 84
5.5 Parser States . 85
5.6 Reduce/Reduce Conflicts . 85
5.7 Mysterious Reduce/Reduce Conflicts . 87
5.8 Generalized LR (GLR) Parsing . 88
5.9 Memory Management, and How to Avoid Memory Exhaustion . 89

6 Error Recovery . 91

7 Handling Context Dependencies . 93
7.1 Semantic Info in Token Types . 93
7.2 Lexical Tie-ins . 94
7.3 Lexical Tie-ins and Error Recovery . 94

8 Debugging Your Parser . 97
8.1 Understanding Your Parser . 97
8.2 Tracing Your Parser . 102

9 Invoking Bison . 105
9.1 Bison Options . 105
9.2 Option Cross Key . 108
9.3 Yacc Library . 108

10 Parsers Written In Other Languages . 109
10.1 C++ Parsers . 109

10.1.1 C++ Bison Interface . 109
10.1.2 C++ Semantic Values . 109
10.1.3 C++ Location Values . 109
10.1.4 C++ Parser Interface . 110
10.1.5 C++ Scanner Interface . 111
10.1.6 A Complete C++ Example . 111

10.1.6.1 Calc++ — C++ Calculator . 111
10.1.6.2 Calc++ Parsing Driver . 111
10.1.6.3 Calc++ Parser . 113
10.1.6.4 Calc++ Scanner . 115
10.1.6.5 Calc++ Top Level . 117

10.2 Java Parsers . 117
10.2.1 Java Bison Interface . 117
10.2.2 Java Semantic Values . 118
10.2.3 Java Location Values . 118
10.2.4 Java Parser Interface . 119
10.2.5 Java Scanner Interface . 119
10.2.6 Special Features for Use in Java Actions . 120
10.2.7 Differences between C/C++ and Java Grammars . 121
10.2.8 Java Declarations Summary . 122

vi Bison 2.4.1

11 Frequently Asked Questions . 125
11.1 Memory Exhausted . 125
11.2 How Can I Reset the Parser . 125
11.3 Strings are Destroyed . 126
11.4 Implementing Gotos/Loops . 127
11.5 Multiple start-symbols . 127
11.6 Secure? Conform? . 128
11.7 I can’t build Bison . 128
11.8 Where can I find help? . 128
11.9 Bug Reports . 128
11.10 More Languages . 129
11.11 Beta Testing . 129
11.12 Mailing Lists . 129

Appendix A Bison Symbols . 131

Appendix B Glossary . 137

Appendix C Copying This Manual . 141

Index . 149

Introduction 1

Introduction

Bison is a general-purpose parser generator that converts an annotated context-free grammar
into an LALR(1) or GLR parser for that grammar. Once you are proficient with Bison, you can
use it to develop a wide range of language parsers, from those used in simple desk calculators
to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to work
with Bison with no change. Anyone familiar with Yacc should be able to use Bison with little
trouble. You need to be fluent in C or C++ programming in order to use Bison or to understand
this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc, start by
reading these chapters. Reference chapters follow which describe specific aspects of Bison in
detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it Yacc-compatible.
Wilfred Hansen of Carnegie Mellon University added multi-character string literals and other
features.

This edition corresponds to version 2.4.1 of Bison.

Conditions for Using Bison 3

Conditions for Using Bison

The distribution terms for Bison-generated parsers permit using the parsers in nonfree pro-
grams. Before Bison version 2.2, these extra permissions applied only when Bison was gener-
ating LALR(1) parsers in C. And before Bison version 1.24, Bison-generated parsers could be
used only in programs that were free software.

The other GNU programming tools, such as the GNU C compiler, have never had such a
requirement. They could always be used for nonfree software. The reason Bison was different
was not due to a special policy decision; it resulted from applying the usual General Public
License to all of the Bison source code.

The output of the Bison utility—the Bison parser file—contains a verbatim copy of a siz-
able piece of Bison, which is the code for the parser’s implementation. (The actions from your
grammar are inserted into this implementation at one point, but most of the rest of the imple-
mentation is not changed.) When we applied the GPL terms to the skeleton code for the parser’s
implementation, the effect was to restrict the use of Bison output to free software.

We didn’t change the terms because of sympathy for people who want to make software
proprietary. Software should be free. But we concluded that limiting Bison’s use to free software
was doing little to encourage people to make other software free. So we decided to make the
practical conditions for using Bison match the practical conditions for using the other GNU
tools.

This exception applies when Bison is generating code for a parser. You can tell whether the
exception applies to a Bison output file by inspecting the file for text beginning with “As a
special exception. . . ”. The text spells out the exact terms of the exception.

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.
The licenses for most software and other practical works are designed to take away your

freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU
General Public License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies
of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no war-
ranty for this free software. For both users’ and authors’ sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which is precisely where it is
most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice
for those products. If such problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the GPL, as needed to protect the
freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

http://fsf.org/

6 Bison 2.4.1

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.

GNU GENERAL PUBLIC LICENSE 7

The Corresponding Source need not include anything that users can regenerate automati-
cally from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the
Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.
b. The work must carry prominent notices stating that it is released under this License

and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable

8 Bison 2.4.1

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:
a. Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.
A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything

GNU GENERAL PUBLIC LICENSE 9

designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.
“Installation Information” for a User Product means any methods, procedures, authoriza-
tion keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The infor-
mation must suffice to ensure that the continued functioning of the modified object code is
in no case prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).
The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:
a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and

16 of this License; or
b. Requiring preservation of specified reasonable legal notices or author attributions in

that material or in the Appropriate Legal Notices displayed by works containing it; or

10 Bison 2.4.1

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material gov-
erned by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

GNU GENERAL PUBLIC LICENSE 11

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (includ-
ing a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commit-
ment, however denominated, not to enforce a patent (such as an express permission to
practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license
to downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.

12 Bison 2.4.1

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU Gen-
eral Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-

GNU GENERAL PUBLIC LICENSE 13

ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively state the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:
program Copyright (C) year name of author

http://www.gnu.org/licenses/

14 Bison 2.4.1

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Chapter 1: The Concepts of Bison 15

1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison will not
make sense. If you do not already know how to use Bison or Yacc, we suggest you start by
reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar. This
means that you specify one or more syntactic groupings and give rules for constructing them
from their parts. For example, in the C language, one kind of grouping is called an ‘expression’.
One rule for making an expression might be, “An expression can be made of a minus sign and
another expression”. Another would be, “An expression can be an integer”. As you can see,
rules are often recursive, but there must be at least one rule which leads out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-Naur
Form or “BNF”, which was developed in order to specify the language Algol 60. Any grammar
expressed in BNF is a context-free grammar. The input to Bison is essentially machine-readable
BNF.

There are various important subclasses of context-free grammar. Although it can handle
almost all context-free grammars, Bison is optimized for what are called LALR(1) grammars.
In brief, in these grammars, it must be possible to tell how to parse any portion of an input
string with just a single token of lookahead. Strictly speaking, that is a description of an LR(1)
grammar, and LALR(1) involves additional restrictions that are hard to explain simply; but it
is rare in actual practice to find an LR(1) grammar that fails to be LALR(1). See Section 5.7
[Mysterious Reduce/Reduce Conflicts], page 87, for more information on this.

Parsers for LALR(1) grammars are deterministic, meaning roughly that the next grammar
rule to apply at any point in the input is uniquely determined by the preceding input and a
fixed, finite portion (called a lookahead) of the remaining input. A context-free grammar can be
ambiguous, meaning that there are multiple ways to apply the grammar rules to get the same
inputs. Even unambiguous grammars can be nondeterministic, meaning that no fixed lookahead
always suffices to determine the next grammar rule to apply. With the proper declarations,
Bison is also able to parse these more general context-free grammars, using a technique known
as GLR parsing (for Generalized LR). Bison’s GLR parsers are able to handle any context-free
grammar for which the number of possible parses of any given string is finite.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according to
grammatical rules are called nonterminal symbols; those which can’t be subdivided are called
terminal symbols or token types. We call a piece of input corresponding to a single terminal
symbol a token, and a piece corresponding to a single nonterminal symbol a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal, mean.
The tokens of C are identifiers, constants (numeric and string), and the various keywords,
arithmetic operators and punctuation marks. So the terminal symbols of a grammar for C
include ‘identifier’, ‘number’, ‘string’, plus one symbol for each keyword, operator or punctuation
mark: ‘if’, ‘return’, ‘const’, ‘static’, ‘int’, ‘char’, ‘plus-sign’, ‘open-brace’, ‘close-brace’, ‘comma’
and many more. (These tokens can be subdivided into characters, but that is a matter of
lexicography, not grammar.)

Here is a simple C function subdivided into tokens:
int /* keyword ‘int’ */
square (int x) /* identifier, open-paren, keyword ‘int’, identifier, close-paren */
{ /* open-brace */
return x * x; /* keyword ‘return’, identifier, asterisk, identifier, semicolon */

16 Bison 2.4.1

} /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration, and
the function definition. These are represented in the grammar of C by nonterminal symbols
‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar uses dozens
of additional language constructs, each with its own nonterminal symbol, in order to express the
meanings of these four. The example above is a function definition; it contains one declaration,
and one statement. In the statement, each ‘x’ is an expression and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of simpler
constructs. For example, one kind of C statement is the return statement; this would be
described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semicolon’.
There would be many other rules for ‘statement’, one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a complete
utterance in the language. It is called the start symbol. In a compiler, this means a com-
plete input program. In the C language, the nonterminal symbol ‘sequence of definitions and
declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact that
‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces to
a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for C, the
entire input must be a ‘sequence of definitions and declarations’. If not, the parser reports a
syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you must
write a file expressing the grammar in Bison syntax: a Bison grammar file. See Chapter 3 [Bison
Grammar Files], page 43.

A nonterminal symbol in the formal grammar is represented in Bison input as an identi-
fier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt or
declaration.

The Bison representation for a terminal symbol is also called a token type. Token types as
well can be represented as C-like identifiers. By convention, these identifiers should be upper
case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER, IF or RETURN.
A terminal symbol that stands for a particular keyword in the language should be named after
that keyword converted to upper case. The terminal symbol error is reserved for error recovery.
See Section 3.2 [Symbols], page 48.

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis, plus-sign,
etc.): use that same character in a literal as the terminal symbol for that token.

A third way to represent a terminal symbol is with a C string constant containing several
characters. See Section 3.2 [Symbols], page 48, for more information.

The grammar rules also have an expression in Bison syntax. For example, here is the Bison
rule for a C return statement. The semicolon in quotes is a literal character token, representing
part of the C syntax for the statement; the naked semicolon, and the colon, are Bison punctuation
used in every rule.

stmt: RETURN expr ’;’

Chapter 1: The Concepts of Bison 17

;

See Section 3.3 [Syntax of Grammar Rules], page 49.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions the
terminal symbol ‘integer constant’, it means that any integer constant is grammatically valid in
that position. The precise value of the constant is irrelevant to how to parse the input: if ‘x+4’
is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed. A compiler
is useless if it fails to distinguish between 4, 1 and 3989 as constants in the program! Therefore,
each token in a Bison grammar has both a token type and a semantic value. See Section 3.5
[Defining Language Semantics], page 51, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER, IDENTIFIER
or ’,’. It tells everything you need to know to decide where the token may validly appear and
how to group it with other tokens. The grammar rules know nothing about tokens except their
types.

The semantic value has all the rest of the information about the meaning of the token, such
as the value of an integer, or the name of an identifier. (A token such as ’,’ which is just
punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the semantic
value 4. Another input token might have the same token type INTEGER but value 3989. When
a grammar rule says that INTEGER is allowed, either of these tokens is acceptable because each
is an INTEGER. When the parser accepts the token, it keeps track of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For example,
in a calculator, an expression typically has a semantic value that is a number. In a compiler for
a programming language, an expression typically has a semantic value that is a tree structure
describing the meaning of the expression.

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Bison grammar, a grammar rule can have an action made up
of C statements. Each time the parser recognizes a match for that rule, the action is executed.
See Section 3.5.3 [Actions], page 52.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which says
an expression can be the sum of two expressions. When the parser recognizes such a sum, each
of the subexpressions has a semantic value which describes how it was built up. The action for
this rule should create a similar sort of value for the newly recognized larger expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:
expr: expr ’+’ expr { $$ = $1 + $3; }

;

The action says how to produce the semantic value of the sum expression from the values of the
two subexpressions.

1.5 Writing GLR Parsers

In some grammars, Bison’s standard LALR(1) parsing algorithm cannot decide whether to apply
a certain grammar rule at a given point. That is, it may not be able to decide (on the basis
of the input read so far) which of two possible reductions (applications of a grammar rule)

18 Bison 2.4.1

applies, or whether to apply a reduction or read more of the input and apply a reduction
later in the input. These are known respectively as reduce/reduce conflicts (see Section 5.6
[Reduce/Reduce], page 85), and shift/reduce conflicts (see Section 5.2 [Shift/Reduce], page 82).

To use a grammar that is not easily modified to be LALR(1), a more general parsing algorithm
is sometimes necessary. If you include %glr-parser among the Bison declarations in your file
(see Section 3.1 [Grammar Outline], page 43), the result is a Generalized LR (GLR) parser.
These parsers handle Bison grammars that contain no unresolved conflicts (i.e., after applying
precedence declarations) identically to LALR(1) parsers. However, when faced with unresolved
shift/reduce and reduce/reduce conflicts, GLR parsers use the simple expedient of doing both,
effectively cloning the parser to follow both possibilities. Each of the resulting parsers can again
split, so that at any given time, there can be any number of possible parses being explored. The
parsers proceed in lockstep; that is, all of them consume (shift) a given input symbol before any
of them proceed to the next. Each of the cloned parsers eventually meets one of two possible
fates: either it runs into a parsing error, in which case it simply vanishes, or it merges with
another parser, because the two of them have reduced the input to an identical set of symbols.

During the time that there are multiple parsers, semantic actions are recorded, but not
performed. When a parser disappears, its recorded semantic actions disappear as well, and
are never performed. When a reduction makes two parsers identical, causing them to merge,
Bison records both sets of semantic actions. Whenever the last two parsers merge, reverting
to the single-parser case, Bison resolves all the outstanding actions either by precedences given
to the grammar rules involved, or by performing both actions, and then calling a designated
user-defined function on the resulting values to produce an arbitrary merged result.

1.5.1 Using GLR on Unambiguous Grammars

In the simplest cases, you can use the GLR algorithm to parse grammars that are unambiguous,
but fail to be LALR(1). Such grammars typically require more than one symbol of lookahead, or
(in rare cases) fall into the category of grammars in which the LALR(1) algorithm throws away
too much information (they are in LR(1), but not LALR(1), Section 5.7 [Mystery Conflicts],
page 87).

Consider a problem that arises in the declaration of enumerated and subrange types in the
programming language Pascal. Here are some examples:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant identifiers for the
subrange bounds (‘lo’ and ‘hi’), but Extended Pascal (ISO/IEC 10206) and many other Pascal
implementations allow arbitrary expressions there. This gives rise to the following situation,
containing a superfluous pair of parentheses:

type subrange = (a) .. b;

Compare this to the following declaration of an enumerated type with only one value:
type enum = (a);

(These declarations are contrived, but they are syntactically valid, and more-complicated cases
can come up in practical programs.)

These two declarations look identical until the ‘..’ token. With normal LALR(1) one-token
lookahead it is not possible to decide between the two forms when the identifier ‘a’ is parsed.
It is, however, desirable for a parser to decide this, since in the latter case ‘a’ must become a
new identifier to represent the enumeration value, while in the former case ‘a’ must be evaluated
with its current meaning, which may be a constant or even a function call.

You could parse ‘(a)’ as an “unspecified identifier in parentheses”, to be resolved later, but
this typically requires substantial contortions in both semantic actions and large parts of the
grammar, where the parentheses are nested in the recursive rules for expressions.

Chapter 1: The Concepts of Bison 19

You might think of using the lexer to distinguish between the two forms by returning different
tokens for currently defined and undefined identifiers. But if these declarations occur in a local
scope, and ‘a’ is defined in an outer scope, then both forms are possible—either locally redefining
‘a’, or using the value of ‘a’ from the outer scope. So this approach cannot work.

A simple solution to this problem is to declare the parser to use the GLR algorithm. When
the GLR parser reaches the critical state, it merely splits into two branches and pursues both
syntax rules simultaneously. Sooner or later, one of them runs into a parsing error. If there is
a ‘..’ token before the next ‘;’, the rule for enumerated types fails since it cannot accept ‘..’
anywhere; otherwise, the subrange type rule fails since it requires a ‘..’ token. So one of the
branches fails silently, and the other one continues normally, performing all the intermediate
actions that were postponed during the split.

If the input is syntactically incorrect, both branches fail and the parser reports a syntax error
as usual.

The effect of all this is that the parser seems to “guess” the correct branch to take, or in
other words, it seems to use more lookahead than the underlying LALR(1) algorithm actually
allows for. In this example, LALR(2) would suffice, but also some cases that are not LALR(k)
for any k can be handled this way.

In general, a GLR parser can take quadratic or cubic worst-case time, and the current Bison
parser even takes exponential time and space for some grammars. In practice, this rarely hap-
pens, and for many grammars it is possible to prove that it cannot happen. The present example
contains only one conflict between two rules, and the type-declaration context containing the
conflict cannot be nested. So the number of branches that can exist at any time is limited by
the constant 2, and the parsing time is still linear.

Here is a Bison grammar corresponding to the example above. It parses a vastly simplified
form of Pascal type declarations.

%token TYPE DOTDOT ID

%left ’+’ ’-’
%left ’*’ ’/’

%%

type_decl : TYPE ID ’=’ type ’;’
;

type : ’(’ id_list ’)’
| expr DOTDOT expr
;

id_list : ID
| id_list ’,’ ID
;

expr : ’(’ expr ’)’
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ID
;

20 Bison 2.4.1

When used as a normal LALR(1) grammar, Bison correctly complains about one re-
duce/reduce conflict. In the conflicting situation the parser chooses one of the alternatives,
arbitrarily the one declared first. Therefore the following correct input is not recognized:

type t = (a) .. b;

The parser can be turned into a GLR parser, while also telling Bison to be silent about the one
known reduce/reduce conflict, by adding these two declarations to the Bison input file (before
the first ‘%%’):

%glr-parser
%expect-rr 1

No change in the grammar itself is required. Now the parser recognizes all valid declarations,
according to the limited syntax above, transparently. In fact, the user does not even notice when
the parser splits.

So here we have a case where we can use the benefits of GLR, almost without disadvantages.
Even in simple cases like this, however, there are at least two potential problems to beware.
First, always analyze the conflicts reported by Bison to make sure that GLR splitting is only
done where it is intended. A GLR parser splitting inadvertently may cause problems less obvious
than an LALR parser statically choosing the wrong alternative in a conflict. Second, consider
interactions with the lexer (see Section 7.1 [Semantic Tokens], page 93) with great care. Since a
split parser consumes tokens without performing any actions during the split, the lexer cannot
obtain information via parser actions. Some cases of lexer interactions can be eliminated by using
GLR to shift the complications from the lexer to the parser. You must check the remaining cases
for correctness.

In our example, it would be safe for the lexer to return tokens based on their current meanings
in some symbol table, because no new symbols are defined in the middle of a type declaration.
Though it is possible for a parser to define the enumeration constants as they are parsed, before
the type declaration is completed, it actually makes no difference since they cannot be used
within the same enumerated type declaration.

1.5.2 Using GLR to Resolve Ambiguities

Let’s consider an example, vastly simplified from a C++ grammar.
%{
#include <stdio.h>
#define YYSTYPE char const *
int yylex (void);
void yyerror (char const *);

%}

%token TYPENAME ID

%right ’=’
%left ’+’

%glr-parser

%%

prog :
| prog stmt { printf ("\n"); }
;

Chapter 1: The Concepts of Bison 21

stmt : expr ’;’ %dprec 1
| decl %dprec 2
;

expr : ID { printf ("%s ", $$); }
| TYPENAME ’(’ expr ’)’

{ printf ("%s <cast> ", $1); }
| expr ’+’ expr { printf ("+ "); }
| expr ’=’ expr { printf ("= "); }
;

decl : TYPENAME declarator ’;’
{ printf ("%s <declare> ", $1); }

| TYPENAME declarator ’=’ expr ’;’
{ printf ("%s <init-declare> ", $1); }

;

declarator : ID { printf ("\"%s\" ", $1); }
| ’(’ declarator ’)’
;

This models a problematic part of the C++ grammar—the ambiguity between certain declara-
tions and statements. For example,

T (x) = y+z;

parses as either an expr or a stmt (assuming that ‘T’ is recognized as a TYPENAME and ‘x’ as an
ID). Bison detects this as a reduce/reduce conflict between the rules expr : ID and declarator
: ID, which it cannot resolve at the time it encounters x in the example above. Since this is
a GLR parser, it therefore splits the problem into two parses, one for each choice of resolving
the reduce/reduce conflict. Unlike the example from the previous section (see Section 1.5.1
[Simple GLR Parsers], page 18), however, neither of these parses “dies,” because the grammar
as it stands is ambiguous. One of the parsers eventually reduces stmt : expr ’;’ and the other
reduces stmt : decl, after which both parsers are in an identical state: they’ve seen ‘prog stmt’
and have the same unprocessed input remaining. We say that these parses have merged.

At this point, the GLR parser requires a specification in the grammar of how to choose
between the competing parses. In the example above, the two %dprec declarations specify that
Bison is to give precedence to the parse that interprets the example as a decl, which implies
that x is a declarator. The parser therefore prints

"x" y z + T <init-declare>

The %dprec declarations only come into play when more than one parse survives. Consider
a different input string for this parser:

T (x) + y;

This is another example of using GLR to parse an unambiguous construct, as shown in the
previous section (see Section 1.5.1 [Simple GLR Parsers], page 18). Here, there is no ambiguity
(this cannot be parsed as a declaration). However, at the time the Bison parser encounters x,
it does not have enough information to resolve the reduce/reduce conflict (again, between x as
an expr or a declarator). In this case, no precedence declaration is used. Again, the parser
splits into two, one assuming that x is an expr, and the other assuming x is a declarator. The
second of these parsers then vanishes when it sees +, and the parser prints

x T <cast> y +

22 Bison 2.4.1

Suppose that instead of resolving the ambiguity, you wanted to see all the possibilities. For
this purpose, you must merge the semantic actions of the two possible parsers, rather than
choosing one over the other. To do so, you could change the declaration of stmt as follows:

stmt : expr ’;’ %merge <stmtMerge>
| decl %merge <stmtMerge>
;

and define the stmtMerge function as:

static YYSTYPE
stmtMerge (YYSTYPE x0, YYSTYPE x1)
{
printf ("<OR> ");
return "";

}

with an accompanying forward declaration in the C declarations at the beginning of the file:

%{
#define YYSTYPE char const *
static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);

%}

With these declarations, the resulting parser parses the first example as both an expr and a
decl, and prints

"x" y z + T <init-declare> x T <cast> y z + = <OR>

Bison requires that all of the productions that participate in any particular merge have
identical ‘%merge’ clauses. Otherwise, the ambiguity would be unresolvable, and the parser will
report an error during any parse that results in the offending merge.

1.5.3 GLR Semantic Actions

By definition, a deferred semantic action is not performed at the same time as the associated
reduction. This raises caveats for several Bison features you might use in a semantic action in
a GLR parser.

In any semantic action, you can examine yychar to determine the type of the lookahead
token present at the time of the associated reduction. After checking that yychar is not set to
YYEMPTY or YYEOF, you can then examine yylval and yylloc to determine the lookahead token’s
semantic value and location, if any. In a nondeferred semantic action, you can also modify any
of these variables to influence syntax analysis. See Section 5.1 [Lookahead Tokens], page 81.

In a deferred semantic action, it’s too late to influence syntax analysis. In this case, yychar,
yylval, and yylloc are set to shallow copies of the values they had at the time of the associated
reduction. For this reason alone, modifying them is dangerous. Moreover, the result of modifying
them is undefined and subject to change with future versions of Bison. For example, if a semantic
action might be deferred, you should never write it to invoke yyclearin (see Section 4.8 [Action
Features], page 78) or to attempt to free memory referenced by yylval.

Another Bison feature requiring special consideration is YYERROR (see Section 4.8 [Action
Features], page 78), which you can invoke in a semantic action to initiate error recovery. During
deterministic GLR operation, the effect of YYERROR is the same as its effect in an LALR(1) parser.
In a deferred semantic action, its effect is undefined.

Also, see Section 3.6.3 [Default Action for Locations], page 57, which describes a special
usage of YYLLOC_DEFAULT in GLR parsers.

Chapter 1: The Concepts of Bison 23

1.5.4 Considerations when Compiling GLR Parsers

The GLR parsers require a compiler for ISO C89 or later. In addition, they use the inline
keyword, which is not C89, but is C99 and is a common extension in pre-C99 compilers. It is
up to the user of these parsers to handle portability issues. For instance, if using Autoconf and
the Autoconf macro AC_C_INLINE, a mere

%{
#include <config.h>

%}

will suffice. Otherwise, we suggest
%{
#if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
#define inline
#endif

%}

1.6 Locations

Many applications, like interpreters or compilers, have to produce verbose and useful error
messages. To achieve this, one must be able to keep track of the textual location, or location,
of each syntactic construct. Bison provides a mechanism for handling these locations.

Each token has a semantic value. In a similar fashion, each token has an associated location,
but the type of locations is the same for all tokens and groupings. Moreover, the output parser is
equipped with a default data structure for storing locations (see Section 3.6 [Locations], page 55,
for more details).

Like semantic values, locations can be reached in actions using a dedicated set of constructs.
In the example above, the location of the whole grouping is @$, while the locations of the
subexpressions are @1 and @3.

When a rule is matched, a default action is used to compute the semantic value of its left
hand side (see Section 3.5.3 [Actions], page 52). In the same way, another default action is used
for locations. However, the action for locations is general enough for most cases, meaning there
is usually no need to describe for each rule how @$ should be formed. When building a new
location for a given grouping, the default behavior of the output parser is to take the beginning
of the first symbol, and the end of the last symbol.

1.7 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C source file
that parses the language described by the grammar. This file is called a Bison parser. Keep in
mind that the Bison utility and the Bison parser are two distinct programs: the Bison utility is
a program whose output is the Bison parser that becomes part of your program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it runs
the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it
wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of text,
but Bison does not depend on this. See Section 4.6 [The Lexical Analyzer Function yylex],
page 74.

The Bison parser file is C code which defines a function named yyparse which implements
that grammar. This function does not make a complete C program: you must supply some

24 Bison 2.4.1

additional functions. One is the lexical analyzer. Another is an error-reporting function which
the parser calls to report an error. In addition, a complete C program must start with a function
called main; you have to provide this, and arrange for it to call yyparse or the parser will never
run. See Chapter 4 [Parser C-Language Interface], page 73.

Aside from the token type names and the symbols in the actions you write, all symbols defined
in the Bison parser file itself begin with ‘yy’ or ‘YY’. This includes interface functions such as the
lexical analyzer function yylex, the error reporting function yyerror and the parser function
yyparse itself. This also includes numerous identifiers used for internal purposes. Therefore,
you should avoid using C identifiers starting with ‘yy’ or ‘YY’ in the Bison grammar file except
for the ones defined in this manual. Also, you should avoid using the C identifiers ‘malloc’ and
‘free’ for anything other than their usual meanings.

In some cases the Bison parser file includes system headers, and in those cases your code
should respect the identifiers reserved by those headers. On some non-GNU hosts, <alloca.h>,
<malloc.h>, <stddef.h>, and <stdlib.h> are included as needed to declare memory allocators
and related types. <libintl.h> is included if message translation is in use (see Section 4.9
[Internationalization], page 80). Other system headers may be included if you define YYDEBUG
to a nonzero value (see Section 8.2 [Tracing Your Parser], page 102).

1.8 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working com-
piler or interpreter, has these parts:
1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison Grammar

Files], page 43). For each grammatical rule in the language, describe the action that is to
be taken when an instance of that rule is recognized. The action is described by a sequence
of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical analyzer
may be written by hand in C (see Section 4.6 [The Lexical Analyzer Function yylex],
page 74). It could also be produced using Lex, but the use of Lex is not discussed in this
manual.

3. Write a controlling function that calls the Bison-produced parser.
4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.
3. Link the object files to produce the finished product.

1.9 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison grammar
file is as follows:

%{
Prologue

%}

Bison declarations

%%
Grammar rules

%%

Chapter 1: The Concepts of Bison 25

Epilogue

The ‘%%’, ‘%{’ and ‘%}’ are punctuation that appears in every Bison grammar file to separate the
sections.

The prologue may define types and variables used in the actions. You can also use prepro-
cessor commands to define macros used there, and use #include to include header files that
do any of these things. You need to declare the lexical analyzer yylex and the error printer
yyerror here, along with any other global identifiers used by the actions in the grammar rules.

The Bison declarations declare the names of the terminal and nonterminal symbols, and may
also describe operator precedence and the data types of semantic values of various symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.
The epilogue can contain any code you want to use. Often the definitions of functions declared

in the prologue go here. In a simple program, all the rest of the program can go here.

Chapter 2: Examples 27

2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish notation
calculator, an algebraic (infix) notation calculator, and a multi-function calculator. All three
have been tested under BSD Unix 4.3; each produces a usable, though limited, interactive desk-
top calculator.

These examples are simple, but Bison grammars for real programming languages are written
the same way. You can copy these examples into a source file to try them.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calculator (a
calculator using postfix operators). This example provides a good starting point, since operator
precedence is not an issue. The second example will illustrate how operator precedence is
handled.

The source code for this calculator is named ‘rpcalc.y’. The ‘.y’ extension is a convention
used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in C,
comments are placed between ‘/*...*/’.

/* Reverse polish notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
int yylex (void);
void yyerror (char const *);

%}

%token NUM

%% /* Grammar rules and actions follow. */

The declarations section (see Section 3.1.1 [The prologue], page 43) contains two preprocessor
directives and two forward declarations.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for se-
mantic values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic Values],
page 51). The Bison parser will use whatever type YYSTYPE is defined as; if you don’t define it,
int is the default. Because we specify double, each token and each expression has an associated
value, which is a floating point number.

The #include directive is used to declare the exponentiation function pow.
The forward declarations for yylex and yyerror are needed because the C language requires

that functions be declared before they are used. These functions will be defined in the epilogue,
but the parser calls them so they must be declared in the prologue.

The second section, Bison declarations, provides information to Bison about the token types
(see Section 3.1.3 [The Bison Declarations Section], page 47). Each terminal symbol that is not
a single-character literal must be declared here. (Single-character literals normally don’t need
to be declared.) In this example, all the arithmetic operators are designated by single-character
literals, so the only terminal symbol that needs to be declared is NUM, the token type for numeric
constants.

28 Bison 2.4.1

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.

input: /* empty */
| input line

;

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
/* Exponentiation */
| exp exp ’^’ { $$ = pow ($1, $2); }
/* Unary minus */
| exp ’n’ { $$ = -$1; }

;
%%

The groupings of the rpcalc “language” defined here are the expression (given the name exp),
the line of input (line), and the complete input transcript (input). Each of these nonterminal
symbols has several alternate rules, joined by the vertical bar ‘|’ which is read as “or”. The
following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping is rec-
ognized. The actions are the C code that appears inside braces. See Section 3.5.3 [Actions],
page 52.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic value
for the grouping that the rule is going to construct. Assigning a value to $$ is the main job of
most actions. The semantic values of the components of the rule are referred to as $1, $2, and
so on.

2.1.2.1 Explanation of input

Consider the definition of input:

input: /* empty */
| input line

;

This definition reads as follows: “A complete input is either an empty string, or a complete
input followed by an input line”. Notice that “complete input” is defined in terms of itself. This
definition is said to be left recursive since input appears always as the leftmost symbol in the
sequence. See Section 3.4 [Recursive Rules], page 50.

The first alternative is empty because there are no symbols between the colon and the first
‘|’; this means that input can match an empty string of input (no tokens). We write the
rules this way because it is legitimate to type Ctrl-d right after you start the calculator. It’s
conventional to put an empty alternative first and write the comment ‘/* empty */’ in it.

The second alternate rule (input line) handles all nontrivial input. It means, “After reading
any number of lines, read one more line if possible.” The left recursion makes this rule into a

Chapter 2: Examples 29

loop. Since the first alternative matches empty input, the loop can be executed zero or more
times.

The parser function yyparse continues to process input until a grammatical error is seen or
the lexical analyzer says there are no more input tokens; we will arrange for the latter to happen
at end-of-input.

2.1.2.2 Explanation of line

Now consider the definition of line:

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

The first alternative is a token which is a newline character; this means that rpcalc accepts
a blank line (and ignores it, since there is no action). The second alternative is an expression
followed by a newline. This is the alternative that makes rpcalc useful. The semantic value
of the exp grouping is the value of $1 because the exp in question is the first symbol in the
alternative. The action prints this value, which is the result of the computation the user asked
for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable). This
would be a bug if that value were ever used, but we don’t use it: once rpcalc has printed the
value of the user’s input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule handles the
simplest expressions: those that are just numbers. The second handles an addition-expression,
which looks like two expressions followed by a plus-sign. The third handles subtraction, and so
on.

exp: NUM
| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
...
;

We have used ‘|’ to join all the rules for exp, but we could equally well have written them
separately:

exp: NUM ;
exp: exp exp ’+’ { $$ = $1 + $2; } ;
exp: exp exp ’-’ { $$ = $1 - $2; } ;

...

Most of the rules have actions that compute the value of the expression in terms of the value
of its parts. For example, in the rule for addition, $1 refers to the first component exp and
$2 refers to the second one. The third component, ’+’, has no meaningful associated semantic
value, but if it had one you could refer to it as $3. When yyparse recognizes a sum expression
using this rule, the sum of the two subexpressions’ values is produced as the value of the entire
expression. See Section 3.5.3 [Actions], page 52.

You don’t have to give an action for every rule. When a rule has no action, Bison by default
copies the value of $1 into $$. This is what happens in the first rule (the one that uses NUM).

The formatting shown here is the recommended convention, but Bison does not require it.
You can add or change white space as much as you wish. For example, this:

30 Bison 2.4.1

exp : NUM | exp exp ’+’ {$$ = $1 + $2; } | ... ;

means the same thing as this:

exp: NUM
| exp exp ’+’ { $$ = $1 + $2; }
| ...

;

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of characters
into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See Section 4.6
[The Lexical Analyzer Function yylex], page 74.

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer skips
blanks and tabs, then reads in numbers as double and returns them as NUM tokens. Any other
character that isn’t part of a number is a separate token. Note that the token-code for such a
single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents a token
type. The same text used in Bison rules to stand for this token type is also a C expression for the
numeric code for the type. This works in two ways. If the token type is a character literal, then
its numeric code is that of the character; you can use the same character literal in the lexical
analyzer to express the number. If the token type is an identifier, that identifier is defined by
Bison as a C macro whose definition is the appropriate number. In this example, therefore, NUM
becomes a macro for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval, which
is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE, which was
defined at the beginning of the grammar; see Section 2.1.1 [Declarations for rpcalc], page 27.)

A token type code of zero is returned if the end-of-input is encountered. (Bison recognizes
any nonpositive value as indicating end-of-input.)

Here is the code for the lexical analyzer:

/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns 0 for end-of-input. */

#include <ctype.h>

int
yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)
;

Chapter 2: Examples 31

/* Process numbers. */
if (c == ’.’ || isdigit (c))
{
ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;

}
/* Return end-of-input. */
if (c == EOF)
return 0;

/* Return a single char. */
return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare minimum.
The only requirement is that it call yyparse to start the process of parsing.

int
main (void)
{
return yyparse ();

}

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print an
error message (usually but not always "syntax error"). It is up to the programmer to supply
yyerror (see Chapter 4 [Parser C-Language Interface], page 73), so here is the definition we will
use:

#include <stdio.h>

/* Called by yyparse on error. */
void
yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);

}

After yyerror returns, the Bison parser may recover from the error and continue parsing if
the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 91). Otherwise,
yyparse returns nonzero. We have not written any error rules in this example, so any invalid
input will cause the calculator program to exit. This is not clean behavior for a real calculator,
but it is adequate for the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the source code
in one or more source files. For such a simple example, the easiest thing is to put everything in
one file. The definitions of yylex, yyerror and main go at the end, in the epilogue of the file
(see Section 1.9 [The Overall Layout of a Bison Grammar], page 24).

For a large project, you would probably have several source files, and use make to arrange to
recompile them.

With all the source in a single file, you use the following command to convert it into a parser
file:

32 Bison 2.4.1

bison file.y

In this example the file was called ‘rpcalc.y’ (for “Reverse Polish calculator”). Bison produces
a file named ‘file.tab.c’, removing the ‘.y’ from the original file name. The file output by
Bison contains the source code for yyparse. The additional functions in the input file (yylex,
yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File

Here is how to compile and run the parser file:
List files in current directory.
$ ls

rpcalc.tab.c rpcalc.y

Compile the Bison parser.
‘-lm’ tells compiler to search math library for pow.
$ cc -lm -o rpcalc rpcalc.tab.c

List files again.
$ ls

rpcalc rpcalc.tab.c rpcalc.y

The file ‘rpcalc’ now contains the executable code. Here is an example session using rpcalc.
$ rpcalc

4 9 +
13
3 7 + 3 4 5 *+-
-13
3 7 + 3 4 5 * + - n Note the unary minus, ‘n’
13
5 6 / 4 n +
-3.166666667
3 4 ^ Exponentiation
81
^D End-of-file indicator
$

2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves the
concept of operator precedence and the need for parentheses nested to arbitrary depth. Here is
the Bison code for ‘calc.y’, an infix desk-top calculator.

/* Infix notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

%}

/* Bison declarations. */
%token NUM

Chapter 2: Examples 33

%left ’-’ ’+’
%left ’*’ ’/’
%left NEG /* negation--unary minus */
%right ’^’ /* exponentiation */

%% /* The grammar follows. */
input: /* empty */

| input line
;

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

;
%%

The functions yylex, yyerror and main can be the same as before.
There are two important new features shown in this code.
In the second section (Bison declarations), %left declares token types and says they are left-

associative operators. The declarations %left and %right (right associativity) take the place
of %token which is used to declare a token type name without associativity. (These tokens are
single-character literals, which ordinarily don’t need to be declared. We declare them here to
specify the associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher the
line number of the declaration (lower on the page or screen), the higher the precedence. Hence,
exponentiation has the highest precedence, unary minus (NEG) is next, followed by ‘*’ and ‘/’,
and so on. See Section 5.3 [Operator Precedence], page 83.

The other important new feature is the %prec in the grammar section for the unary minus
operator. The %prec simply instructs Bison that the rule ‘| ’-’ exp’ has the same precedence as
NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent Precedence], page 84.

Here is a sample run of ‘calc.y’:
$ calc

4 + 4.5 - (34/(8*3+-3))
6.880952381
-56 + 2

-54
3 ^ 2

9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to continue
parsing after the parser detects a syntax error. All we have handled is error reporting with

34 Bison 2.4.1

yyerror. Recall that by default yyparse returns after calling yyerror. This means that an
erroneous input line causes the calculator program to exit. Now we show how to rectify this
deficiency.

The Bison language itself includes the reserved word error, which may be included in the
grammar rules. In the example below it has been added to one of the alternatives for line:

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

;

This addition to the grammar allows for simple error recovery in the event of a syntax error.
If an expression that cannot be evaluated is read, the error will be recognized by the third
rule for line, and parsing will continue. (The yyerror function is still called upon to print its
message as well.) The action executes the statement yyerrok, a macro defined automatically by
Bison; its meaning is that error recovery is complete (see Chapter 6 [Error Recovery], page 91).
Note the difference between yyerrok and yyerror; neither one is a misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for ex-
ample, division by zero, which raises an exception signal that is normally fatal. A real calculator
program must handle this signal and use longjmp to return to main and resume parsing input
lines; it would also have to discard the rest of the current line of input. We won’t discuss this
issue further because it is not specific to Bison programs.

2.4 Location Tracking Calculator: ltcalc

This example extends the infix notation calculator with location tracking. This feature will be
used to improve the error messages. For the sake of clarity, this example is a simple integer
calculator, since most of the work needed to use locations will be done in the lexical analyzer.

2.4.1 Declarations for ltcalc

The C and Bison declarations for the location tracking calculator are the same as the declarations
for the infix notation calculator.

/* Location tracking calculator. */

%{
#define YYSTYPE int
#include <math.h>
int yylex (void);
void yyerror (char const *);

%}

/* Bison declarations. */
%token NUM

%left ’-’ ’+’
%left ’*’ ’/’
%left NEG
%right ’^’

%% /* The grammar follows. */

Note there are no declarations specific to locations. Defining a data type for storing locations
is not needed: we will use the type provided by default (see Section 3.6.1 [Data Types of

Chapter 2: Examples 35

Locations], page 55), which is a four member structure with the following integer fields: first_
line, first_column, last_line and last_column. By conventions, and in accordance with
the GNU Coding Standards and common practice, the line and column count both start at 1.

2.4.2 Grammar Rules for ltcalc

Whether handling locations or not has no effect on the syntax of your language. Therefore,
grammar rules for this example will be very close to those of the previous example: we will only
modify them to benefit from the new information.

Here, we will use locations to report divisions by zero, and locate the wrong expressions or
subexpressions.

input : /* empty */
| input line

;

line : ’\n’
| exp ’\n’ { printf ("%d\n", $1); }

;

exp : NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp

{
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",

@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

This code shows how to reach locations inside of semantic actions, by using the pseudo-
variables @n for rule components, and the pseudo-variable @$ for groupings.

We don’t need to assign a value to @$: the output parser does it automatically. By default,
before executing the C code of each action, @$ is set to range from the beginning of @1 to the end
of @n , for a rule with n components. This behavior can be redefined (see Section 3.6.3 [Default
Action for Locations], page 57), and for very specific rules, @$ can be computed by hand.

2.4.3 The ltcalc Lexical Analyzer.

Until now, we relied on Bison’s defaults to enable location tracking. The next step is to rewrite
the lexical analyzer, and make it able to feed the parser with the token locations, as it already
does for semantic values.

To this end, we must take into account every single character of the input text, to avoid the
computed locations of being fuzzy or wrong:

36 Bison 2.4.1

int
yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)
++yylloc.last_column;

/* Step. */
yylloc.first_line = yylloc.last_line;
yylloc.first_column = yylloc.last_column;

/* Process numbers. */
if (isdigit (c))
{

yylval = c - ’0’;
++yylloc.last_column;
while (isdigit (c = getchar ()))
{

++yylloc.last_column;
yylval = yylval * 10 + c - ’0’;

}
ungetc (c, stdin);
return NUM;

}

/* Return end-of-input. */
if (c == EOF)
return 0;

/* Return a single char, and update location. */
if (c == ’\n’)
{

++yylloc.last_line;
yylloc.last_column = 0;

}
else
++yylloc.last_column;

return c;
}

Basically, the lexical analyzer performs the same processing as before: it skips blanks and
tabs, and reads numbers or single-character tokens. In addition, it updates yylloc, the global
variable (of type YYLTYPE) containing the token’s location.

Now, each time this function returns a token, the parser has its number as well as its semantic
value, and its location in the text. The last needed change is to initialize yylloc, for example
in the controlling function:

Chapter 2: Examples 37

int
main (void)
{
yylloc.first_line = yylloc.last_line = 1;
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();

}

Remember that computing locations is not a matter of syntax. Every character must be
associated to a location update, whether it is in valid input, in comments, in literal strings, and
so on.

2.5 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more advanced
problem. The above calculators provided only five functions, ‘+’, ‘-’, ‘*’, ‘/’ and ‘^’. It would
be nice to have a calculator that provides other mathematical functions such as sin, cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-character
literals. The lexical analyzer yylex passes back all nonnumeric characters as tokens, so new
grammar rules suffice for adding a new operator. But we want something more flexible: built-in
functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named
variables, store values in them, and use them later. Here is a sample session with the multi-
function calculator:

$ mfcalc

pi = 3.141592653589

3.1415926536
sin(pi)

0.0000000000
alpha = beta1 = 2.3

2.3000000000
alpha

2.3000000000
ln(alpha)

0.8329091229
exp(ln(beta1))

2.3000000000
$

Note that multiple assignment and nested function calls are permitted.

2.5.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.
%{

#include <math.h> /* For math functions, cos(), sin(), etc. */

#include "calc.h" /* Contains definition of ‘symrec’. */

int yylex (void);

void yyerror (char const *);

%}

%union {

double val; /* For returning numbers. */

symrec *tptr; /* For returning symbol-table pointers. */

}

%token <val> NUM /* Simple double precision number. */

38 Bison 2.4.1

%token <tptr> VAR FNCT /* Variable and Function. */

%type <val> exp

%right ’=’

%left ’-’ ’+’

%left ’*’ ’/’

%left NEG /* negation--unary minus */

%right ’^’ /* exponentiation */

%% /* The grammar follows. */

The above grammar introduces only two new features of the Bison language. These features
allow semantic values to have various data types (see Section 3.5.2 [More Than One Value Type],
page 51).

The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM) and pointers to entries
in the symbol table. See Section 3.7.4 [The Collection of Value Types], page 59.

Since values can now have various types, it is necessary to associate a type with each grammar
symbol whose semantic value is used. These symbols are NUM, VAR, FNCT, and exp. Their decla-
rations are augmented with information about their data type (placed between angle brackets).

The Bison construct %type is used for declaring nonterminal symbols, just as %token is used
for declaring token types. We have not used %type before because nonterminal symbols are
normally declared implicitly by the rules that define them. But exp must be declared explicitly
so we can specify its value type. See Section 3.7.5 [Nonterminal Symbols], page 60.

2.5.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied directly
from calc; three rules, those which mention VAR or FNCT, are new.

input: /* empty */

| input line

;

line:

’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

| error ’\n’ { yyerrok; }

;

exp: NUM { $$ = $1; }

| VAR { $$ = $1->value.var; }

| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }

| FNCT ’(’ exp ’)’ { $$ = (*($1->value.fnctptr))($3); }

| exp ’+’ exp { $$ = $1 + $3; }

| exp ’-’ exp { $$ = $1 - $3; }

| exp ’*’ exp { $$ = $1 * $3; }

| exp ’/’ exp { $$ = $1 / $3; }

| ’-’ exp %prec NEG { $$ = -$2; }

| exp ’^’ exp { $$ = pow ($1, $3); }

| ’(’ exp ’)’ { $$ = $2; }

;

/* End of grammar. */

%%

2.5.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and meanings
of variables and functions. This doesn’t affect the grammar rules (except for the actions) or the
Bison declarations, but it requires some additional C functions for support.

Chapter 2: Examples 39

The symbol table itself consists of a linked list of records. Its definition, which is kept in the
header ‘calc.h’, is as follows. It provides for either functions or variables to be placed in the
table.

/* Function type. */

typedef double (*func_t) (double);

/* Data type for links in the chain of symbols. */

struct symrec

{

char *name; /* name of symbol */

int type; /* type of symbol: either VAR or FNCT */

union

{

double var; /* value of a VAR */

func_t fnctptr; /* value of a FNCT */

} value;

struct symrec *next; /* link field */

};

typedef struct symrec symrec;

/* The symbol table: a chain of ‘struct symrec’. */

extern symrec *sym_table;

symrec *putsym (char const *, int);

symrec *getsym (char const *);

The new version of main includes a call to init_table, a function that initializes the symbol
table. Here it is, and init_table as well:

#include <stdio.h>

/* Called by yyparse on error. */

void

yyerror (char const *s)

{

printf ("%s\n", s);

}

struct init

{

char const *fname;

double (*fnct) (double);

};

struct init const arith_fncts[] =

{

"sin", sin,

"cos", cos,

"atan", atan,

"ln", log,

"exp", exp,

"sqrt", sqrt,

0, 0

};

/* The symbol table: a chain of ‘struct symrec’. */

symrec *sym_table;

40 Bison 2.4.1

/* Put arithmetic functions in table. */

void

init_table (void)

{

int i;

symrec *ptr;

for (i = 0; arith_fncts[i].fname != 0; i++)

{

ptr = putsym (arith_fncts[i].fname, FNCT);

ptr->value.fnctptr = arith_fncts[i].fnct;

}

}

int

main (void)

{

init_table ();

return yyparse ();

}

By simply editing the initialization list and adding the necessary include files, you can add
additional functions to the calculator.

Two important functions allow look-up and installation of symbols in the symbol table. The
function putsym is passed a name and the type (VAR or FNCT) of the object to be installed. The
object is linked to the front of the list, and a pointer to the object is returned. The function
getsym is passed the name of the symbol to look up. If found, a pointer to that symbol is
returned; otherwise zero is returned.

symrec *

putsym (char const *sym_name, int sym_type)

{

symrec *ptr;

ptr = (symrec *) malloc (sizeof (symrec));

ptr->name = (char *) malloc (strlen (sym_name) + 1);

strcpy (ptr->name,sym_name);

ptr->type = sym_type;

ptr->value.var = 0; /* Set value to 0 even if fctn. */

ptr->next = (struct symrec *)sym_table;

sym_table = ptr;

return ptr;

}

symrec *

getsym (char const *sym_name)

{

symrec *ptr;

for (ptr = sym_table; ptr != (symrec *) 0;

ptr = (symrec *)ptr->next)

if (strcmp (ptr->name,sym_name) == 0)

return ptr;

return 0;

}

The function yylex must now recognize variables, numeric values, and the single-character
arithmetic operators. Strings of alphanumeric characters with a leading letter are recognized as
either variables or functions depending on what the symbol table says about them.

The string is passed to getsym for look up in the symbol table. If the name appears in the
table, a pointer to its location and its type (VAR or FNCT) is returned to yyparse. If it is not
already in the table, then it is installed as a VAR using putsym. Again, a pointer and its type
(which must be VAR) is returned to yyparse.

No change is needed in the handling of numeric values and arithmetic operators in yylex.
#include <ctype.h>

Chapter 2: Examples 41

int

yylex (void)

{

int c;

/* Ignore white space, get first nonwhite character. */

while ((c = getchar ()) == ’ ’ || c == ’\t’);

if (c == EOF)

return 0;

/* Char starts a number => parse the number. */

if (c == ’.’ || isdigit (c))

{

ungetc (c, stdin);

scanf ("%lf", &yylval.val);

return NUM;

}

/* Char starts an identifier => read the name. */

if (isalpha (c))

{

symrec *s;

static char *symbuf = 0;

static int length = 0;

int i;

/* Initially make the buffer long enough

for a 40-character symbol name. */

if (length == 0)

length = 40, symbuf = (char *)malloc (length + 1);

i = 0;

do

{

/* If buffer is full, make it bigger. */

if (i == length)

{

length *= 2;

symbuf = (char *) realloc (symbuf, length + 1);

}

/* Add this character to the buffer. */

symbuf[i++] = c;

/* Get another character. */

c = getchar ();

}

while (isalnum (c));

ungetc (c, stdin);

symbuf[i] = ’\0’;

s = getsym (symbuf);

if (s == 0)

s = putsym (symbuf, VAR);

yylval.tptr = s;

return s->type;

}

/* Any other character is a token by itself. */

return c;

}

This program is both powerful and flexible. You may easily add new functions, and it is a
simple job to modify this code to install predefined variables such as pi or e as well.

42 Bison 2.4.1

2.6 Exercises

1. Add some new functions from ‘math.h’ to the initialization list.
2. Add another array that contains constants and their values. Then modify init_table to

add these constants to the symbol table. It will be easiest to give the constants type VAR.
3. Make the program report an error if the user refers to an uninitialized variable in any way

except to store a value in it.

Chapter 3: Bison Grammar Files 43

3 Bison Grammar Files

Bison takes as input a context-free grammar specification and produces a C-language function
that recognizes correct instances of the grammar.

The Bison grammar input file conventionally has a name ending in ‘.y’. See Chapter 9
[Invoking Bison], page 105.

3.1 Outline of a Bison Grammar

A Bison grammar file has four main sections, shown here with the appropriate delimiters:
%{
Prologue

%}

Bison declarations

%%
Grammar rules

%%

Epilogue

Comments enclosed in ‘/* ... */’ may appear in any of the sections. As a GNU extension,
‘//’ introduces a comment that continues until end of line.

3.1.1 The prologue

The Prologue section contains macro definitions and declarations of functions and variables
that are used in the actions in the grammar rules. These are copied to the beginning of the
parser file so that they precede the definition of yyparse. You can use ‘#include’ to get the
declarations from a header file. If you don’t need any C declarations, you may omit the ‘%{’ and
‘%}’ delimiters that bracket this section.

The Prologue section is terminated by the first occurrence of ‘%}’ that is outside a comment,
a string literal, or a character constant.

You may have more than one Prologue section, intermixed with the Bison declarations. This
allows you to have C and Bison declarations that refer to each other. For example, the %union
declaration may use types defined in a header file, and you may wish to prototype functions
that take arguments of type YYSTYPE. This can be done with two Prologue blocks, one before
and one after the %union declaration.

%{

#define _GNU_SOURCE

#include <stdio.h>

#include "ptypes.h"

%}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%{

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

%}

...

44 Bison 2.4.1

When in doubt, it is usually safer to put prologue code before all Bison declarations, rather
than after. For example, any definitions of feature test macros like _GNU_SOURCE or _POSIX_
C_SOURCE should appear before all Bison declarations, as feature test macros can affect the
behavior of Bison-generated #include directives.

3.1.2 Prologue Alternatives

(The prologue alternatives described here are experimental. More user feedback will help to
determine whether they should become permanent features.)

The functionality of Prologue sections can often be subtle and inflexible. As an alternative,
Bison provides a %code directive with an explicit qualifier field, which identifies the purpose
of the code and thus the location(s) where Bison should generate it. For C/C++, the qualifier
can be omitted for the default location, or it can be one of requires, provides, top. See
Section 3.7.12 [%code], page 65.

Look again at the example of the previous section:
%{

#define _GNU_SOURCE

#include <stdio.h>

#include "ptypes.h"

%}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%{

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

%}

...

Notice that there are two Prologue sections here, but there’s a subtle distinction between their
functionality. For example, if you decide to override Bison’s default definition for YYLTYPE, in
which Prologue section should you write your new definition? You should write it in the first
since Bison will insert that code into the parser source code file before the default YYLTYPE
definition. In which Prologue section should you prototype an internal function, trace_token,
that accepts YYLTYPE and yytokentype as arguments? You should prototype it in the second
since Bison will insert that code after the YYLTYPE and yytokentype definitions.

This distinction in functionality between the two Prologue sections is established by the
appearance of the %union between them. This behavior raises a few questions. First, why
should the position of a %union affect definitions related to YYLTYPE and yytokentype? Second,
what if there is no %union? In that case, the second kind of Prologue section is not available.
This behavior is not intuitive.

To avoid this subtle %union dependency, rewrite the example using a %code top and an
unqualified %code. Let’s go ahead and add the new YYLTYPE definition and the trace_token
prototype at the same time:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

/* WARNING: The following code really belongs

* in a ‘%code requires’; see below. */

#include "ptypes.h"

#define YYLTYPE YYLTYPE

typedef struct YYLTYPE

Chapter 3: Bison Grammar Files 45

{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;

}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%code {

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

static void trace_token (enum yytokentype token, YYLTYPE loc);

}

...

In this way, %code top and the unqualified %code achieve the same functionality as the two
kinds of Prologue sections, but it’s always explicit which kind you intend. Moreover, both kinds
are always available even in the absence of %union.

The %code top block above logically contains two parts. The first two lines before the warning
need to appear near the top of the parser source code file. The first line after the warning is
required by YYSTYPE and thus also needs to appear in the parser source code file. However, if
you’ve instructed Bison to generate a parser header file (see Section 3.7.12 [%defines], page 65),
you probably want that line to appear before the YYSTYPE definition in that header file as well.
The YYLTYPE definition should also appear in the parser header file to override the default
YYLTYPE definition there.

In other words, in the %code top block above, all but the first two lines are dependency code
required by the YYSTYPE and YYLTYPE definitions. Thus, they belong in one or more %code
requires:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

}

%code requires {

#include "ptypes.h"

}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%code requires {

#define YYLTYPE YYLTYPE

typedef struct YYLTYPE

{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;

}

%code {

46 Bison 2.4.1

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

static void trace_token (enum yytokentype token, YYLTYPE loc);

}

...

Now Bison will insert #include "ptypes.h" and the new YYLTYPE definition before the Bison-
generated YYSTYPE and YYLTYPE definitions in both the parser source code file and the parser
header file. (By the same reasoning, %code requires would also be the appropriate place to
write your own definition for YYSTYPE.)

When you are writing dependency code for YYSTYPE and YYLTYPE, you should prefer %code
requires over %code top regardless of whether you instruct Bison to generate a parser header
file. When you are writing code that you need Bison to insert only into the parser source
code file and that has no special need to appear at the top of that file, you should prefer the
unqualified %code over %code top. These practices will make the purpose of each block of
your code explicit to Bison and to other developers reading your grammar file. Following these
practices, we expect the unqualified %code and %code requires to be the most important of
the four Prologue alternatives.

At some point while developing your parser, you might decide to provide trace_token to
modules that are external to your parser. Thus, you might wish for Bison to insert the prototype
into both the parser header file and the parser source code file. Since this function is not a
dependency required by YYSTYPE or YYLTYPE, it doesn’t make sense to move its prototype to a
%code requires. More importantly, since it depends upon YYLTYPE and yytokentype, %code
requires is not sufficient. Instead, move its prototype from the unqualified %code to a %code
provides:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

}

%code requires {

#include "ptypes.h"

}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%code requires {

#define YYLTYPE YYLTYPE

typedef struct YYLTYPE

{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;

}

%code provides {

void trace_token (enum yytokentype token, YYLTYPE loc);

}

%code {

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

}

Chapter 3: Bison Grammar Files 47

...

Bison will insert the trace_token prototype into both the parser header file and the parser
source code file after the definitions for yytokentype, YYLTYPE, and YYSTYPE.

The above examples are careful to write directives in an order that reflects the layout of the
generated parser source code and header files: %code top, %code requires, %code provides,
and then %code. While your grammar files may generally be easier to read if you also follow
this order, Bison does not require it. Instead, Bison lets you choose an organization that makes
sense to you.

You may declare any of these directives multiple times in the grammar file. In that case,
Bison concatenates the contained code in declaration order. This is the only way in which the
position of one of these directives within the grammar file affects its functionality.

The result of the previous two properties is greater flexibility in how you may organize your
grammar file. For example, you may organize semantic-type-related directives by semantic type:

%code requires { #include "type1.h" }

%union { type1 field1; }

%destructor { type1_free ($$); } <field1>

%printer { type1_print ($$); } <field1>

%code requires { #include "type2.h" }

%union { type2 field2; }

%destructor { type2_free ($$); } <field2>

%printer { type2_print ($$); } <field2>

You could even place each of the above directive groups in the rules section of the grammar file
next to the set of rules that uses the associated semantic type. (In the rules section, you must
terminate each of those directives with a semicolon.) And you don’t have to worry that some
directive (like a %union) in the definitions section is going to adversely affect their functionality
in some counter-intuitive manner just because it comes first. Such an organization is not possible
using Prologue sections.

This section has been concerned with explaining the advantages of the four Prologue alter-
natives over the original Yacc Prologue. However, in most cases when using these directives,
you shouldn’t need to think about all the low-level ordering issues discussed here. Instead, you
should simply use these directives to label each block of your code according to its purpose and
let Bison handle the ordering. %code is the most generic label. Move code to %code requires,
%code provides, or %code top as needed.

3.1.3 The Bison Declarations Section

The Bison declarations section contains declarations that define terminal and nonterminal sym-
bols, specify precedence, and so on. In some simple grammars you may not need any declarations.
See Section 3.7 [Bison Declarations], page 58.

3.1.4 The Grammar Rules Section

The grammar rules section contains one or more Bison grammar rules, and nothing else. See
Section 3.3 [Syntax of Grammar Rules], page 49.

There must always be at least one grammar rule, and the first ‘%%’ (which precedes the
grammar rules) may never be omitted even if it is the first thing in the file.

3.1.5 The epilogue

The Epilogue is copied verbatim to the end of the parser file, just as the Prologue is copied
to the beginning. This is the most convenient place to put anything that you want to have
in the parser file but which need not come before the definition of yyparse. For example, the
definitions of yylex and yyerror often go here. Because C requires functions to be declared

48 Bison 2.4.1

before being used, you often need to declare functions like yylex and yyerror in the Prologue,
even if you define them in the Epilogue. See Chapter 4 [Parser C-Language Interface], page 73.

If the last section is empty, you may omit the ‘%%’ that separates it from the grammar rules.
The Bison parser itself contains many macros and identifiers whose names start with ‘yy’

or ‘YY’, so it is a good idea to avoid using any such names (except those documented in this
manual) in the epilogue of the grammar file.

3.2 Symbols, Terminal and Nonterminal

Symbols in Bison grammars represent the grammatical classifications of the language.
A terminal symbol (also known as a token type) represents a class of syntactically equivalent

tokens. You use the symbol in grammar rules to mean that a token in that class is allowed. The
symbol is represented in the Bison parser by a numeric code, and the yylex function returns a
token type code to indicate what kind of token has been read. You don’t need to know what
the code value is; you can use the symbol to stand for it.

A nonterminal symbol stands for a class of syntactically equivalent groupings. The symbol
name is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, digits (not at the beginning), underscores and periods.
Periods make sense only in nonterminals.

There are three ways of writing terminal symbols in the grammar:
• A named token type is written with an identifier, like an identifier in C. By convention, it

should be all upper case. Each such name must be defined with a Bison declaration such
as %token. See Section 3.7.2 [Token Type Names], page 58.

• A character token type (or literal character token) is written in the grammar using the
same syntax used in C for character constants; for example, ’+’ is a character token type.
A character token type doesn’t need to be declared unless you need to specify its semantic
value data type (see Section 3.5.1 [Data Types of Semantic Values], page 51), associativity,
or precedence (see Section 5.3 [Operator Precedence], page 83).
By convention, a character token type is used only to represent a token that consists of
that particular character. Thus, the token type ’+’ is used to represent the character ‘+’
as a token. Nothing enforces this convention, but if you depart from it, your program will
confuse other readers.
All the usual escape sequences used in character literals in C can be used in Bison as well,
but you must not use the null character as a character literal because its numeric code,
zero, signifies end-of-input (see Section 4.6.1 [Calling Convention for yylex], page 75).
Also, unlike standard C, trigraphs have no special meaning in Bison character literals, nor
is backslash-newline allowed.

• A literal string token is written like a C string constant; for example, "<=" is a literal
string token. A literal string token doesn’t need to be declared unless you need to specify
its semantic value data type (see Section 3.5.1 [Value Type], page 51), associativity, or
precedence (see Section 5.3 [Precedence], page 83).
You can associate the literal string token with a symbolic name as an alias, using the
%token declaration (see Section 3.7.2 [Token Declarations], page 58). If you don’t do that,
the lexical analyzer has to retrieve the token number for the literal string token from the
yytname table (see Section 4.6.1 [Calling Convention], page 75).
Warning: literal string tokens do not work in Yacc.
By convention, a literal string token is used only to represent a token that consists of that
particular string. Thus, you should use the token type "<=" to represent the string ‘<=’ as
a token. Bison does not enforce this convention, but if you depart from it, people who read
your program will be confused.

Chapter 3: Bison Grammar Files 49

All the escape sequences used in string literals in C can be used in Bison as well, except
that you must not use a null character within a string literal. Also, unlike Standard C,
trigraphs have no special meaning in Bison string literals, nor is backslash-newline allowed.
A literal string token must contain two or more characters; for a token containing just one
character, use a character token (see above).

How you choose to write a terminal symbol has no effect on its grammatical meaning. That
depends only on where it appears in rules and on when the parser function returns that symbol.

The value returned by yylex is always one of the terminal symbols, except that a zero or
negative value signifies end-of-input. Whichever way you write the token type in the grammar
rules, you write it the same way in the definition of yylex. The numeric code for a character
token type is simply the positive numeric code of the character, so yylex can use the identical
value to generate the requisite code, though you may need to convert it to unsigned char to
avoid sign-extension on hosts where char is signed. Each named token type becomes a C macro
in the parser file, so yylex can use the name to stand for the code. (This is why periods don’t
make sense in terminal symbols.) See Section 4.6.1 [Calling Convention for yylex], page 75.

If yylex is defined in a separate file, you need to arrange for the token-type macro definitions
to be available there. Use the ‘-d’ option when you run Bison, so that it will write these macro
definitions into a separate header file ‘name.tab.h’ which you can include in the other source
files that need it. See Chapter 9 [Invoking Bison], page 105.

If you want to write a grammar that is portable to any Standard C host, you must use only
nonnull character tokens taken from the basic execution character set of Standard C. This set
consists of the ten digits, the 52 lower- and upper-case English letters, and the characters in the
following C-language string:

"\a\b\t\n\v\f\r !\"#%&’()*+,-./:;<=>?[\\]^_{|}~"

The yylex function and Bison must use a consistent character set and encoding for character
tokens. For example, if you run Bison in an ASCII environment, but then compile and run
the resulting program in an environment that uses an incompatible character set like EBCDIC,
the resulting program may not work because the tables generated by Bison will assume ASCII
numeric values for character tokens. It is standard practice for software distributions to contain
C source files that were generated by Bison in an ASCII environment, so installers on platforms
that are incompatible with ASCII must rebuild those files before compiling them.

The symbol error is a terminal symbol reserved for error recovery (see Chapter 6 [Error
Recovery], page 91); you shouldn’t use it for any other purpose. In particular, yylex should
never return this value. The default value of the error token is 256, unless you explicitly assigned
256 to one of your tokens with a %token declaration.

3.3 Syntax of Grammar Rules

A Bison grammar rule has the following general form:
result: components...

;

where result is the nonterminal symbol that this rule describes, and components are various
terminal and nonterminal symbols that are put together by this rule (see Section 3.2 [Symbols],
page 48).

For example,
exp: exp ’+’ exp

;

says that two groupings of type exp, with a ‘+’ token in between, can be combined into a larger
grouping of type exp.

50 Bison 2.4.1

White space in rules is significant only to separate symbols. You can add extra white space
as you wish.

Scattered among the components can be actions that determine the semantics of the rule.
An action looks like this:

{C statements}

This is an example of braced code, that is, C code surrounded by braces, much like a compound
statement in C. Braced code can contain any sequence of C tokens, so long as its braces are
balanced. Bison does not check the braced code for correctness directly; it merely copies the
code to the output file, where the C compiler can check it.

Within braced code, the balanced-brace count is not affected by braces within comments,
string literals, or character constants, but it is affected by the C digraphs ‘<%’ and ‘%>’ that
represent braces. At the top level braced code must be terminated by ‘}’ and not by a digraph.
Bison does not look for trigraphs, so if braced code uses trigraphs you should ensure that they
do not affect the nesting of braces or the boundaries of comments, string literals, or character
constants.

Usually there is only one action and it follows the components. See Section 3.5.3 [Actions],
page 52.

Multiple rules for the same result can be written separately or can be joined with the vertical-
bar character ‘|’ as follows:

result: rule1-components...
| rule2-components...
...
;

They are still considered distinct rules even when joined in this way.
If components in a rule is empty, it means that result can match the empty string. For

example, here is how to define a comma-separated sequence of zero or more exp groupings:
expseq: /* empty */

| expseq1
;

expseq1: exp
| expseq1 ’,’ exp
;

It is customary to write a comment ‘/* empty */’ in each rule with no components.

3.4 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand side. Nearly
all Bison grammars need to use recursion, because that is the only way to define a sequence
of any number of a particular thing. Consider this recursive definition of a comma-separated
sequence of one or more expressions:

expseq1: exp
| expseq1 ’,’ exp
;

Since the recursive use of expseq1 is the leftmost symbol in the right hand side, we call this left
recursion. By contrast, here the same construct is defined using right recursion:

expseq1: exp
| exp ’,’ expseq1
;

Chapter 3: Bison Grammar Files 51

Any kind of sequence can be defined using either left recursion or right recursion, but you
should always use left recursion, because it can parse a sequence of any number of elements
with bounded stack space. Right recursion uses up space on the Bison stack in proportion to
the number of elements in the sequence, because all the elements must be shifted onto the stack
before the rule can be applied even once. See Chapter 5 [The Bison Parser Algorithm], page 81,
for further explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly on
its right hand side, but does appear in rules for other nonterminals which do appear on its right
hand side.

For example:

expr: primary
| primary ’+’ primary
;

primary: constant
| ’(’ expr ’)’
;

defines two mutually-recursive nonterminals, since each refers to the other.

3.5 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are determined
by the semantic values associated with various tokens and groupings, and by the actions taken
when various groupings are recognized.

For example, the calculator calculates properly because the value associated with each ex-
pression is the proper number; it adds properly because the action for the grouping ‘x + y ’ is
to add the numbers associated with x and y .

3.5.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic values of all
language constructs. This was true in the RPN and infix calculator examples (see Section 2.1
[Reverse Polish Notation Calculator], page 27).

Bison normally uses the type int for semantic values if your program uses the same data
type for all language constructs. To specify some other type, define YYSTYPE as a macro, like
this:

#define YYSTYPE double

YYSTYPE’s replacement list should be a type name that does not contain parentheses or square
brackets. This macro definition must go in the prologue of the grammar file (see Section 3.1
[Outline of a Bison Grammar], page 43).

3.5.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and groupings.
For example, a numeric constant may need type int or long int, while a string constant needs
type char *, and an identifier might need a pointer to an entry in the symbol table.

To use more than one data type for semantic values in one parser, Bison requires you to do
two things:

• Specify the entire collection of possible data types, either by using the %union Bison decla-
ration (see Section 3.7.4 [The Collection of Value Types], page 59), or by using a typedef
or a #define to define YYSTYPE to be a union type whose member names are the type tags.

52 Bison 2.4.1

• Choose one of those types for each symbol (terminal or nonterminal) for which semantic
values are used. This is done for tokens with the %token Bison declaration (see Section 3.7.2
[Token Type Names], page 58) and for groupings with the %type Bison declaration (see
Section 3.7.5 [Nonterminal Symbols], page 60).

3.5.3 Actions

An action accompanies a syntactic rule and contains C code to be executed each time an instance
of that rule is recognized. The task of most actions is to compute a semantic value for the
grouping built by the rule from the semantic values associated with tokens or smaller groupings.

An action consists of braced code containing C statements, and can be placed at any position
in the rule; it is executed at that position. Most rules have just one action at the end of the
rule, following all the components. Actions in the middle of a rule are tricky and used only for
special purposes (see Section 3.5.5 [Actions in Mid-Rule], page 53).

The C code in an action can refer to the semantic values of the components matched by the
rule with the construct $n , which stands for the value of the nth component. The semantic
value for the grouping being constructed is $$. Bison translates both of these constructs into
expressions of the appropriate type when it copies the actions into the parser file. $$ is translated
to a modifiable lvalue, so it can be assigned to.

Here is a typical example:
exp: ...

| exp ’+’ exp
{ $$ = $1 + $3; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token. In
the action, $1 and $3 refer to the semantic values of the two component exp groupings, which
are the first and third symbols on the right hand side of the rule. The sum is stored into $$
so that it becomes the semantic value of the addition-expression just recognized by the rule. If
there were a useful semantic value associated with the ‘+’ token, it could be referred to as $2.

Note that the vertical-bar character ‘|’ is really a rule separator, and actions are attached
to a single rule. This is a difference with tools like Flex, for which ‘|’ stands for either “or”,
or “the same action as that of the next rule”. In the following example, the action is triggered
only when ‘b’ is found:

a-or-b: ’a’|’b’ { a_or_b_found = 1; };

If you don’t specify an action for a rule, Bison supplies a default: $$ = $1. Thus, the value
of the first symbol in the rule becomes the value of the whole rule. Of course, the default action
is valid only if the two data types match. There is no meaningful default action for an empty
rule; every empty rule must have an explicit action unless the rule’s value does not matter.

$n with n zero or negative is allowed for reference to tokens and groupings on the stack before
those that match the current rule. This is a very risky practice, and to use it reliably you must
be certain of the context in which the rule is applied. Here is a case in which you can use this
reliably:

foo: expr bar ’+’ expr { ... }
| expr bar ’-’ expr { ... }
;

bar: /* empty */
{ previous_expr = $0; }
;

As long as bar is used only in the fashion shown here, $0 always refers to the expr which
precedes bar in the definition of foo.

Chapter 3: Bison Grammar Files 53

It is also possible to access the semantic value of the lookahead token, if any, from a semantic
action. This semantic value is stored in yylval. See Section 4.8 [Special Features for Use in
Actions], page 78.

3.5.4 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs always have
that data type.

If you have used %union to specify a variety of data types, then you must declare a choice
among these types for each terminal or nonterminal symbol that can have a semantic value.
Then each time you use $$ or $n , its data type is determined by which symbol it refers to in
the rule. In this example,

exp: ...
| exp ’+’ exp

{ $$ = $1 + $3; }

$1 and $3 refer to instances of exp, so they all have the data type declared for the nonterminal
symbol exp. If $2 were used, it would have the data type declared for the terminal symbol ’+’,
whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting ‘<type>’
after the ‘$’ at the beginning of the reference. For example, if you have defined types as shown
here:

%union {
int itype;
double dtype;

}

then you can write $<itype>1 to refer to the first subunit of the rule as an integer, or $<dtype>1
to refer to it as a double.

3.5.5 Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions are written
just like usual end-of-rule actions, but they are executed before the parser even recognizes the
following components.

A mid-rule action may refer to the components preceding it using $n , but it may not refer
to subsequent components because it is run before they are parsed.

The mid-rule action itself counts as one of the components of the rule. This makes a difference
when there is another action later in the same rule (and usually there is another at the end):
you have to count the actions along with the symbols when working out which number n to use
in $n .

The mid-rule action can also have a semantic value. The action can set its value with an
assignment to $$, and actions later in the rule can refer to the value using $n . Since there is no
symbol to name the action, there is no way to declare a data type for the value in advance, so
you must use the ‘$<...>n ’ construct to specify a data type each time you refer to this value.

There is no way to set the value of the entire rule with a mid-rule action, because assignments
to $$ do not have that effect. The only way to set the value for the entire rule is with an ordinary
action at the end of the rule.

Here is an example from a hypothetical compiler, handling a let statement that looks like
‘let (variable) statement ’ and serves to create a variable named variable temporarily for
the duration of statement. To parse this construct, we must put variable into the symbol table
while statement is parsed, then remove it afterward. Here is how it is done:

54 Bison 2.4.1

stmt: LET ’(’ var ’)’
{ $<context>$ = push_context ();
declare_variable ($3); }

stmt { $$ = $6;
pop_context ($<context>5); }

As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy of the
current semantic context (the list of accessible variables) as its semantic value, using alternative
context in the data-type union. Then it calls declare_variable to add the new variable to
that list. Once the first action is finished, the embedded statement stmt can be parsed. Note
that the mid-rule action is component number 5, so the ‘stmt’ is component number 6.

After the embedded statement is parsed, its semantic value becomes the value of the entire
let-statement. Then the semantic value from the earlier action is used to restore the prior list
of variables. This removes the temporary let-variable from the list so that it won’t appear to
exist while the rest of the program is parsed.

In the above example, if the parser initiates error recovery (see Chapter 6 [Error Recovery],
page 91) while parsing the tokens in the embedded statement stmt, it might discard the previous
semantic context $<context>5 without restoring it. Thus, $<context>5 needs a destructor (see
Section 3.7.7 [Freeing Discarded Symbols], page 61). However, Bison currently provides no
means to declare a destructor specific to a particular mid-rule action’s semantic value.

One solution is to bury the mid-rule action inside a nonterminal symbol and to declare a
destructor for that symbol:

%type <context> let
%destructor { pop_context ($$); } let

%%

stmt: let stmt
{ $$ = $2;
pop_context ($1); }

;

let: LET ’(’ var ’)’
{ $$ = push_context ();
declare_variable ($3); }

;

Note that the action is now at the end of its rule. Any mid-rule action can be converted to
an end-of-rule action in this way, and this is what Bison actually does to implement mid-rule
actions.

Taking action before a rule is completely recognized often leads to conflicts since the parser
must commit to a parse in order to execute the action. For example, the following two rules,
without mid-rule actions, can coexist in a working parser because the parser can shift the open-
brace token and look at what follows before deciding whether there is a declaration or not:

compound: ’{’ declarations statements ’}’
| ’{’ statements ’}’
;

But when we add a mid-rule action as follows, the rules become nonfunctional:

compound: { prepare_for_local_variables (); }
’{’ declarations statements ’}’

Chapter 3: Bison Grammar Files 55

| ’{’ statements ’}’
;

Now the parser is forced to decide whether to run the mid-rule action when it has read no
farther than the open-brace. In other words, it must commit to using one rule or the other,
without sufficient information to do it correctly. (The open-brace token is what is called the
lookahead token at this time, since the parser is still deciding what to do about it. See Section 5.1
[Lookahead Tokens], page 81.)

You might think that you could correct the problem by putting identical actions into the two
rules, like this:

compound: { prepare_for_local_variables (); }
’{’ declarations statements ’}’

| { prepare_for_local_variables (); }
’{’ statements ’}’

;

But this does not help, because Bison does not realize that the two actions are identical. (Bison
never tries to understand the C code in an action.)

If the grammar is such that a declaration can be distinguished from a statement by the first
token (which is true in C), then one solution which does work is to put the action after the
open-brace, like this:

compound: ’{’ { prepare_for_local_variables (); }
declarations statements ’}’

| ’{’ statements ’}’
;

Now the first token of the following declaration or statement, which would in any case tell Bison
which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which serves as a sub-
routine:

subroutine: /* empty */
{ prepare_for_local_variables (); }

;

compound: subroutine
’{’ declarations statements ’}’

| subroutine
’{’ statements ’}’

;

Now Bison can execute the action in the rule for subroutine without deciding which rule for
compound it will eventually use.

3.6 Tracking Locations

Though grammar rules and semantic actions are enough to write a fully functional parser, it
can be useful to process some additional information, especially symbol locations.

The way locations are handled is defined by providing a data type, and actions to take when
rules are matched.

3.6.1 Data Type of Locations

Defining a data type for locations is much simpler than for semantic values, since all tokens and
groupings always use the same type.

56 Bison 2.4.1

You can specify the type of locations by defining a macro called YYLTYPE, just as you can
specify the semantic value type by defining a YYSTYPE macro (see Section 3.5.1 [Value Type],
page 51). When YYLTYPE is not defined, Bison uses a default structure type with four members:

typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;

} YYLTYPE;

At the beginning of the parsing, Bison initializes all these fields to 1 for yylloc.

3.6.2 Actions and Locations

Actions are not only useful for defining language semantics, but also for describing the behavior
of the output parser with locations.

The most obvious way for building locations of syntactic groupings is very similar to the way
semantic values are computed. In a given rule, several constructs can be used to access the
locations of the elements being matched. The location of the nth component of the right hand
side is @n , while the location of the left hand side grouping is @$.

Here is a basic example using the default data type for locations:

exp: ...
| exp ’/’ exp

{
@$.first_column = @1.first_column;
@$.first_line = @1.first_line;
@$.last_column = @3.last_column;
@$.last_line = @3.last_line;
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
fprintf (stderr,

"Division by zero, l%d,c%d-l%d,c%d",
@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

As for semantic values, there is a default action for locations that is run each time a rule is
matched. It sets the beginning of @$ to the beginning of the first symbol, and the end of @$ to
the end of the last symbol.

With this default action, the location tracking can be fully automatic. The example above
simply rewrites this way:

Chapter 3: Bison Grammar Files 57

exp: ...
| exp ’/’ exp

{
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
fprintf (stderr,

"Division by zero, l%d,c%d-l%d,c%d",
@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

It is also possible to access the location of the lookahead token, if any, from a semantic action.
This location is stored in yylloc. See Section 4.8 [Special Features for Use in Actions], page 78.

3.6.3 Default Action for Locations

Actually, actions are not the best place to compute locations. Since locations are much more
general than semantic values, there is room in the output parser to redefine the default action
to take for each rule. The YYLLOC_DEFAULT macro is invoked each time a rule is matched, before
the associated action is run. It is also invoked while processing a syntax error, to compute the
error’s location. Before reporting an unresolvable syntactic ambiguity, a GLR parser invokes
YYLLOC_DEFAULT recursively to compute the location of that ambiguity.

Most of the time, this macro is general enough to suppress location dedicated code from
semantic actions.

The YYLLOC_DEFAULT macro takes three parameters. The first one is the location of the
grouping (the result of the computation). When a rule is matched, the second parameter identi-
fies locations of all right hand side elements of the rule being matched, and the third parameter
is the size of the rule’s right hand side. When a GLR parser reports an ambiguity, which of
multiple candidate right hand sides it passes to YYLLOC_DEFAULT is undefined. When processing
a syntax error, the second parameter identifies locations of the symbols that were discarded
during error processing, and the third parameter is the number of discarded symbols.

By default, YYLLOC_DEFAULT is defined this way:
define YYLLOC_DEFAULT(Current, Rhs, N) \

do \

if (N) \

{ \

(Current).first_line = YYRHSLOC(Rhs, 1).first_line; \

(Current).first_column = YYRHSLOC(Rhs, 1).first_column; \

(Current).last_line = YYRHSLOC(Rhs, N).last_line; \

(Current).last_column = YYRHSLOC(Rhs, N).last_column; \

} \

else \

{ \

(Current).first_line = (Current).last_line = \

YYRHSLOC(Rhs, 0).last_line; \

(Current).first_column = (Current).last_column = \

YYRHSLOC(Rhs, 0).last_column; \

} \

while (0)

where YYRHSLOC (rhs, k) is the location of the kth symbol in rhs when k is positive, and
the location of the symbol just before the reduction when k and n are both zero.

When defining YYLLOC_DEFAULT, you should consider that:

58 Bison 2.4.1

• All arguments are free of side-effects. However, only the first one (the result) should be
modified by YYLLOC_DEFAULT.

• For consistency with semantic actions, valid indexes within the right hand side range from
1 to n. When n is zero, only 0 is a valid index, and it refers to the symbol just before the
reduction. During error processing n is always positive.

• Your macro should parenthesize its arguments, if need be, since the actual arguments may
not be surrounded by parentheses. Also, your macro should expand to something that can
be used as a single statement when it is followed by a semicolon.

3.7 Bison Declarations

The Bison declarations section of a Bison grammar defines the symbols used in formulating the
grammar and the data types of semantic values. See Section 3.2 [Symbols], page 48.

All token type names (but not single-character literal tokens such as ’+’ and ’*’) must be
declared. Nonterminal symbols must be declared if you need to specify which data type to use
for the semantic value (see Section 3.5.2 [More Than One Value Type], page 51).

The first rule in the file also specifies the start symbol, by default. If you want some other
symbol to be the start symbol, you must declare it explicitly (see Section 1.1 [Languages and
Context-Free Grammars], page 15).

3.7.1 Require a Version of Bison

You may require the minimum version of Bison to process the grammar. If the requirement is
not met, bison exits with an error (exit status 63).

%require "version"

3.7.2 Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:
%token name

Bison will convert this into a #define directive in the parser, so that the function yylex (if
it is in this file) can use the name name to stand for this token type’s code.

Alternatively, you can use %left, %right, or %nonassoc instead of %token, if you wish to
specify associativity and precedence. See Section 3.7.3 [Operator Precedence], page 59.

You can explicitly specify the numeric code for a token type by appending a nonnegative
decimal or hexadecimal integer value in the field immediately following the token name:

%token NUM 300
%token XNUM 0x12d // a GNU extension

It is generally best, however, to let Bison choose the numeric codes for all token types. Bison
will automatically select codes that don’t conflict with each other or with normal characters.

In the event that the stack type is a union, you must augment the %token or other token
declaration to include the data type alternative delimited by angle-brackets (see Section 3.5.2
[More Than One Value Type], page 51).

For example:
%union { /* define stack type */
double val;
symrec *tptr;

}
%token <val> NUM /* define token NUM and its type */

You can associate a literal string token with a token type name by writing the literal string
at the end of a %token declaration which declares the name. For example:

Chapter 3: Bison Grammar Files 59

%token arrow "=>"

For example, a grammar for the C language might specify these names with equivalent literal
string tokens:

%token <operator> OR "||"
%token <operator> LE 134 "<="
%left OR "<="

Once you equate the literal string and the token name, you can use them interchangeably in
further declarations or the grammar rules. The yylex function can use the token name or
the literal string to obtain the token type code number (see Section 4.6.1 [Calling Convention],
page 75). Syntax error messages passed to yyerror from the parser will reference the literal
string instead of the token name.

The token numbered as 0 corresponds to end of file; the following line allows for nicer error
messages referring to “end of file” instead of “$end”:

%token END 0 "end of file"

3.7.3 Operator Precedence

Use the %left, %right or %nonassoc declaration to declare a token and specify its precedence
and associativity, all at once. These are called precedence declarations. See Section 5.3 [Operator
Precedence], page 83, for general information on operator precedence.

The syntax of a precedence declaration is nearly the same as that of %token: either

%left symbols...

or

%left <type> symbols...

And indeed any of these declarations serves the purposes of %token. But in addition, they
specify the associativity and relative precedence for all the symbols:

• The associativity of an operator op determines how repeated uses of the operator nest:
whether ‘x op y op z ’ is parsed by grouping x with y first or by grouping y with z
first. %left specifies left-associativity (grouping x with y first) and %right specifies right-
associativity (grouping y with z first). %nonassoc specifies no associativity, which means
that ‘x op y op z ’ is considered a syntax error.

• The precedence of an operator determines how it nests with other operators. All the tokens
declared in a single precedence declaration have equal precedence and nest together accord-
ing to their associativity. When two tokens declared in different precedence declarations
associate, the one declared later has the higher precedence and is grouped first.

For backward compatibility, there is a confusing difference between the argument lists of
%token and precedence declarations. Only a %token can associate a literal string with a token
type name. A precedence declaration always interprets a literal string as a reference to a separate
token. For example:

%left OR "<=" // Does not declare an alias.
%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".

3.7.4 The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for semantic values.
The keyword %union is followed by braced code containing the same thing that goes inside a
union in C.

For example:

60 Bison 2.4.1

%union {
double val;
symrec *tptr;

}

This says that the two alternative types are double and symrec *. They are given names val
and tptr; these names are used in the %token and %type declarations to pick one of the types
for a terminal or nonterminal symbol (see Section 3.7.5 [Nonterminal Symbols], page 60).

As an extension to POSIX, a tag is allowed after the union. For example:

%union value {
double val;
symrec *tptr;

}

specifies the union tag value, so the corresponding C type is union value. If you do not specify
a tag, it defaults to YYSTYPE.

As another extension to POSIX, you may specify multiple %union declarations; their contents
are concatenated. However, only the first %union declaration can specify a tag.

Note that, unlike making a union declaration in C, you need not write a semicolon after the
closing brace.

Instead of %union, you can define and use your own union type YYSTYPE if your grammar
contains at least one ‘<type>’ tag. For example, you can put the following into a header file
‘parser.h’:

union YYSTYPE {
double val;
symrec *tptr;

};
typedef union YYSTYPE YYSTYPE;

and then your grammar can use the following instead of %union:

%{
#include "parser.h"
%}
%type <val> expr
%token <tptr> ID

3.7.5 Nonterminal Symbols

When you use %union to specify multiple value types, you must declare the value type of each
nonterminal symbol for which values are used. This is done with a %type declaration, like this:

%type <type> nonterminal...

Here nonterminal is the name of a nonterminal symbol, and type is the name given in the %union
to the alternative that you want (see Section 3.7.4 [The Collection of Value Types], page 59).
You can give any number of nonterminal symbols in the same %type declaration, if they have
the same value type. Use spaces to separate the symbol names.

You can also declare the value type of a terminal symbol. To do this, use the same <type>
construction in a declaration for the terminal symbol. All kinds of token declarations allow
<type>.

3.7.6 Performing Actions before Parsing

Sometimes your parser needs to perform some initializations before parsing. The %initial-
action directive allows for such arbitrary code.

Chapter 3: Bison Grammar Files 61

[Directive]%initial-action { code }
Declare that the braced code must be invoked before parsing each time yyparse is called.
The code may use $$ and @$ — initial value and location of the lookahead — and the
%parse-param.

For instance, if your locations use a file name, you may use
%parse-param { char const *file_name };
%initial-action
{
@$.initialize (file_name);

};

3.7.7 Freeing Discarded Symbols

During error recovery (see Chapter 6 [Error Recovery], page 91), symbols already pushed on the
stack and tokens coming from the rest of the file are discarded until the parser falls on its feet.
If the parser runs out of memory, or if it returns via YYABORT or YYACCEPT, all the symbols on
the stack must be discarded. Even if the parser succeeds, it must discard the start symbol.

When discarded symbols convey heap based information, this memory is lost. While this
behavior can be tolerable for batch parsers, such as in traditional compilers, it is unacceptable
for programs like shells or protocol implementations that may parse and execute indefinitely.

The %destructor directive defines code that is called when a symbol is automatically dis-
carded.

[Directive]%destructor { code } symbols
Invoke the braced code whenever the parser discards one of the symbols. Within code, $$
designates the semantic value associated with the discarded symbol, and @$ designates its
location. The additional parser parameters are also available (see Section 4.1 [The Parser
Function yyparse], page 73).
When a symbol is listed among symbols, its %destructor is called a per-symbol %destructor.
You may also define a per-type %destructor by listing a semantic type tag among symbols.
In that case, the parser will invoke this code whenever it discards any grammar symbol that
has that semantic type tag unless that symbol has its own per-symbol %destructor.
Finally, you can define two different kinds of default %destructors. (These default forms
are experimental. More user feedback will help to determine whether they should become
permanent features.) You can place each of <*> and <> in the symbols list of exactly one
%destructor declaration in your grammar file. The parser will invoke the code associated
with one of these whenever it discards any user-defined grammar symbol that has no per-
symbol and no per-type %destructor. The parser uses the code for <*> in the case of such
a grammar symbol for which you have formally declared a semantic type tag (%type counts
as such a declaration, but $<tag>$ does not). The parser uses the code for <> in the case of
such a grammar symbol that has no declared semantic type tag.

For example:
%union { char *string; }

%token <string> STRING1

%token <string> STRING2

%type <string> string1

%type <string> string2

%union { char character; }

%token <character> CHR

%type <character> chr

%token TAGLESS

%destructor { } <character>

62 Bison 2.4.1

%destructor { free ($$); } <*>

%destructor { free ($$); printf ("%d", @$.first_line); } STRING1 string1

%destructor { printf ("Discarding tagless symbol.\n"); } <>

guarantees that, when the parser discards any user-defined symbol that has a semantic type tag
other than <character>, it passes its semantic value to free by default. However, when the
parser discards a STRING1 or a string1, it also prints its line number to stdout. It performs only
the second %destructor in this case, so it invokes free only once. Finally, the parser merely
prints a message whenever it discards any symbol, such as TAGLESS, that has no semantic type
tag.

A Bison-generated parser invokes the default %destructors only for user-defined as op-
posed to Bison-defined symbols. For example, the parser will not invoke either kind of de-
fault %destructor for the special Bison-defined symbols $accept, $undefined, or $end (see
Appendix A [Bison Symbols], page 131), none of which you can reference in your grammar.
It also will not invoke either for the error token (see Appendix A [error], page 131), which is
always defined by Bison regardless of whether you reference it in your grammar. However, it
may invoke one of them for the end token (token 0) if you redefine it from $end to, for example,
END:

%token END 0

Finally, Bison will never invoke a %destructor for an unreferenced mid-rule semantic value
(see Section 3.5.5 [Actions in Mid-Rule], page 53). That is, Bison does not consider a mid-rule
to have a semantic value if you do not reference $$ in the mid-rule’s action or $n (where n is
the RHS symbol position of the mid-rule) in any later action in that rule. However, if you do
reference either, the Bison-generated parser will invoke the <> %destructor whenever it discards
the mid-rule symbol.

Discarded symbols are the following:

• stacked symbols popped during the first phase of error recovery,

• incoming terminals during the second phase of error recovery,

• the current lookahead and the entire stack (except the current right-hand side symbols)
when the parser returns immediately, and

• the start symbol, when the parser succeeds.

The parser can return immediately because of an explicit call to YYABORT or YYACCEPT, or
failed error recovery, or memory exhaustion.

Right-hand side symbols of a rule that explicitly triggers a syntax error via YYERROR are not
discarded automatically. As a rule of thumb, destructors are invoked only when user actions
cannot manage the memory.

3.7.8 Suppressing Conflict Warnings

Bison normally warns if there are any conflicts in the grammar (see Section 5.2 [Shift/Reduce
Conflicts], page 82), but most real grammars have harmless shift/reduce conflicts which are
resolved in a predictable way and would be difficult to eliminate. It is desirable to suppress the
warning about these conflicts unless the number of conflicts changes. You can do this with the
%expect declaration.

The declaration looks like this:

%expect n

Here n is a decimal integer. The declaration says there should be n shift/reduce conflicts and
no reduce/reduce conflicts. Bison reports an error if the number of shift/reduce conflicts differs
from n, or if there are any reduce/reduce conflicts.

Chapter 3: Bison Grammar Files 63

For normal LALR(1) parsers, reduce/reduce conflicts are more serious, and should be elim-
inated entirely. Bison will always report reduce/reduce conflicts for these parsers. With GLR
parsers, however, both kinds of conflicts are routine; otherwise, there would be no need to use
GLR parsing. Therefore, it is also possible to specify an expected number of reduce/reduce
conflicts in GLR parsers, using the declaration:

%expect-rr n

In general, using %expect involves these steps:
• Compile your grammar without %expect. Use the ‘-v’ option to get a verbose list of where

the conflicts occur. Bison will also print the number of conflicts.
• Check each of the conflicts to make sure that Bison’s default resolution is what you really

want. If not, rewrite the grammar and go back to the beginning.
• Add an %expect declaration, copying the number n from the number which Bison printed.

With GLR parsers, add an %expect-rr declaration as well.

Now Bison will warn you if you introduce an unexpected conflict, but will keep silent other-
wise.

3.7.9 The Start-Symbol

Bison assumes by default that the start symbol for the grammar is the first nonterminal specified
in the grammar specification section. The programmer may override this restriction with the
%start declaration as follows:

%start symbol

3.7.10 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other words,
it consists entirely of pure (read-only) code. Reentrancy is important whenever asynchronous
execution is possible; for example, a nonreentrant program may not be safe to call from a signal
handler. In systems with multiple threads of control, a nonreentrant program must be called
only within interlocks.

Normally, Bison generates a parser which is not reentrant. This is suitable for most uses, and
it permits compatibility with Yacc. (The standard Yacc interfaces are inherently nonreentrant,
because they use statically allocated variables for communication with yylex, including yylval
and yylloc.)

Alternatively, you can generate a pure, reentrant parser. The Bison declaration %define
api.pure says that you want the parser to be reentrant. It looks like this:

%define api.pure

The result is that the communication variables yylval and yylloc become local variables in
yyparse, and a different calling convention is used for the lexical analyzer function yylex. See
Section 4.6.4 [Calling Conventions for Pure Parsers], page 76, for the details of this. The variable
yynerrs becomes local in yyparse in pull mode but it becomes a member of yypstate in push
mode. (see Section 4.7 [The Error Reporting Function yyerror], page 77). The convention for
calling yyparse itself is unchanged.

Whether the parser is pure has nothing to do with the grammar rules. You can generate
either a pure parser or a nonreentrant parser from any valid grammar.

3.7.11 A Push Parser

(The current push parsing interface is experimental and may evolve. More user feedback will
help to stabilize it.)

A pull parser is called once and it takes control until all its input is completely parsed. A
push parser, on the other hand, is called each time a new token is made available.

64 Bison 2.4.1

A push parser is typically useful when the parser is part of a main event loop in the client’s
application. This is typically a requirement of a GUI, when the main event loop needs to be
triggered within a certain time period.

Normally, Bison generates a pull parser. The following Bison declaration says that you want
the parser to be a push parser (see Section 3.7.12 [%define api.push pull], page 65):

%define api.push_pull "push"

In almost all cases, you want to ensure that your push parser is also a pure parser (see
Section 3.7.10 [A Pure (Reentrant) Parser], page 63). The only time you should create an impure
push parser is to have backwards compatibility with the impure Yacc pull mode interface. Unless
you know what you are doing, your declarations should look like this:

%define api.pure
%define api.push_pull "push"

There is a major notable functional difference between the pure push parser and the impure
push parser. It is acceptable for a pure push parser to have many parser instances, of the same
type of parser, in memory at the same time. An impure push parser should only use one parser
at a time.

When a push parser is selected, Bison will generate some new symbols in the generated parser.
yypstate is a structure that the generated parser uses to store the parser’s state. yypstate_new
is the function that will create a new parser instance. yypstate_delete will free the resources
associated with the corresponding parser instance. Finally, yypush_parse is the function that
should be called whenever a token is available to provide the parser. A trivial example of using
a pure push parser would look like this:

int status;
yypstate *ps = yypstate_new ();
do {
status = yypush_parse (ps, yylex (), NULL);

} while (status == YYPUSH_MORE);
yypstate_delete (ps);

If the user decided to use an impure push parser, a few things about the generated parser
will change. The yychar variable becomes a global variable instead of a variable in the yypush_
parse function. For this reason, the signature of the yypush_parse function is changed to
remove the token as a parameter. A nonreentrant push parser example would thus look like
this:

extern int yychar;
int status;
yypstate *ps = yypstate_new ();
do {
yychar = yylex ();
status = yypush_parse (ps);

} while (status == YYPUSH_MORE);
yypstate_delete (ps);

That’s it. Notice the next token is put into the global variable yychar for use by the next
invocation of the yypush_parse function.

Bison also supports both the push parser interface along with the pull parser interface in
the same generated parser. In order to get this functionality, you should replace the %define
api.push_pull "push" declaration with the %define api.push_pull "both" declaration. Do-
ing this will create all of the symbols mentioned earlier along with the two extra symbols,
yyparse and yypull_parse. yyparse can be used exactly as it normally would be used. How-
ever, the user should note that it is implemented in the generated parser by calling yypull_
parse. This makes the yyparse function that is generated with the %define api.push_pull

Chapter 3: Bison Grammar Files 65

"both" declaration slower than the normal yyparse function. If the user calls the yypull_parse
function it will parse the rest of the input stream. It is possible to yypush_parse tokens to select
a subgrammar and then yypull_parse the rest of the input stream. If you would like to switch
back and forth between between parsing styles, you would have to write your own yypull_parse
function that knows when to quit looking for input. An example of using the yypull_parse
function would look like this:

yypstate *ps = yypstate_new ();
yypull_parse (ps); /* Will call the lexer */
yypstate_delete (ps);

Adding the %define api.pure declaration does exactly the same thing to the generated
parser with %define api.push_pull "both" as it did for %define api.push_pull "push".

3.7.12 Bison Declaration Summary

Here is a summary of the declarations used to define a grammar:

[Directive]%union
Declare the collection of data types that semantic values may have (see Section 3.7.4 [The
Collection of Value Types], page 59).

[Directive]%token
Declare a terminal symbol (token type name) with no precedence or associativity specified
(see Section 3.7.2 [Token Type Names], page 58).

[Directive]%right
Declare a terminal symbol (token type name) that is right-associative (see Section 3.7.3
[Operator Precedence], page 59).

[Directive]%left
Declare a terminal symbol (token type name) that is left-associative (see Section 3.7.3 [Op-
erator Precedence], page 59).

[Directive]%nonassoc
Declare a terminal symbol (token type name) that is nonassociative (see Section 3.7.3 [Op-
erator Precedence], page 59). Using it in a way that would be associative is a syntax error.

[Directive]%type
Declare the type of semantic values for a nonterminal symbol (see Section 3.7.5 [Nonterminal
Symbols], page 60).

[Directive]%start
Specify the grammar’s start symbol (see Section 3.7.9 [The Start-Symbol], page 63).

[Directive]%expect
Declare the expected number of shift-reduce conflicts (see Section 3.7.8 [Suppressing Conflict
Warnings], page 62).

In order to change the behavior of bison, use the following directives:

[Directive]%code {code}
This is the unqualified form of the %code directive. It inserts code verbatim at a language-
dependent default location in the output1.

1 The default location is actually skeleton-dependent; writers of non-standard skeletons however should choose
the default location consistently with the behavior of the standard Bison skeletons.

66 Bison 2.4.1

For C/C++, the default location is the parser source code file after the usual contents of the
parser header file. Thus, %code replaces the traditional Yacc prologue, %{code%}, for most
purposes. For a detailed discussion, see Section 3.1.2 [Prologue Alternatives], page 44.

For Java, the default location is inside the parser class.

(Like all the Yacc prologue alternatives, this directive is experimental. More user feedback
will help to determine whether it should become a permanent feature.)

[Directive]%code qualifier {code}
This is the qualified form of the %code directive. If you need to specify location-sensitive
verbatim code that does not belong at the default location selected by the unqualified %code
form, use this form instead.

qualifier identifies the purpose of code and thus the location(s) where Bison should generate
it. Not all values of qualifier are available for all target languages:

• requires

• Language(s): C, C++

• Purpose: This is the best place to write dependency code required for YYSTYPE and
YYLTYPE. In other words, it’s the best place to define types referenced in %union
directives, and it’s the best place to override Bison’s default YYSTYPE and YYLTYPE
definitions.

• Location(s): The parser header file and the parser source code file before the Bison-
generated YYSTYPE and YYLTYPE definitions.

• provides

• Language(s): C, C++

• Purpose: This is the best place to write additional definitions and declarations that
should be provided to other modules.

• Location(s): The parser header file and the parser source code file after the Bison-
generated YYSTYPE, YYLTYPE, and token definitions.

• top

• Language(s): C, C++

• Purpose: The unqualified %code or %code requires should usually be more appro-
priate than %code top. However, occasionally it is necessary to insert code much
nearer the top of the parser source code file. For example:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

}

• Location(s): Near the top of the parser source code file.

• imports

• Language(s): Java

• Purpose: This is the best place to write Java import directives.

• Location(s): The parser Java file after any Java package directive and before any
class definitions.

(Like all the Yacc prologue alternatives, this directive is experimental. More user feedback
will help to determine whether it should become a permanent feature.)

For a detailed discussion of how to use %code in place of the traditional Yacc prologue for
C/C++, see Section 3.1.2 [Prologue Alternatives], page 44.

Chapter 3: Bison Grammar Files 67

[Directive]%debug
In the parser file, define the macro YYDEBUG to 1 if it is not already defined, so that the
debugging facilities are compiled.

See Section 8.2 [Tracing Your Parser], page 102.

[Directive]%define variable
[Directive]%define variable "value"

Define a variable to adjust Bison’s behavior. The possible choices for variable, as well as
their meanings, depend on the selected target language and/or the parser skeleton (see
Section 3.7.12 [%language], page 65, see Section 3.7.12 [%skeleton], page 65).

Bison will warn if a variable is defined multiple times.

Omitting "value" is always equivalent to specifying it as "".

Some variables may be used as Booleans. In this case, Bison will complain if the variable
definition does not meet one of the following four conditions:

1. "value" is "true"

2. "value" is omitted (or is ""). This is equivalent to "true".

3. "value" is "false".

4. variable is never defined. In this case, Bison selects a default value, which may depend
on the selected target language and/or parser skeleton.

Some of the accepted variables are:

• api.pure

• Language(s): C

• Purpose: Request a pure (reentrant) parser program. See Section 3.7.10 [A Pure
(Reentrant) Parser], page 63.

• Accepted Values: Boolean

• Default Value: "false"

• api.push pull

• Language(s): C (LALR(1) only)

• Purpose: Requests a pull parser, a push parser, or both. See Section 3.7.11 [A
Push Parser], page 63. (The current push parsing interface is experimental and may
evolve. More user feedback will help to stabilize it.)

• Accepted Values: "pull", "push", "both"

• Default Value: "pull"

• lr.keep unreachable states

• Language(s): all

• Purpose: Requests that Bison allow unreachable parser states to remain in the
parser tables. Bison considers a state to be unreachable if there exists no sequence of
transitions from the start state to that state. A state can become unreachable during
conflict resolution if Bison disables a shift action leading to it from a predecessor
state. Keeping unreachable states is sometimes useful for analysis purposes, but
they are useless in the generated parser.

• Accepted Values: Boolean

• Default Value: "false"

• Caveats:

68 Bison 2.4.1

• Unreachable states may contain conflicts and may use rules not used in any
other state. Thus, keeping unreachable states may induce warnings that are
irrelevant to your parser’s behavior, and it may eliminate warnings that are
relevant. Of course, the change in warnings may actually be relevant to a
parser table analysis that wants to keep unreachable states, so this behavior
will likely remain in future Bison releases.

• While Bison is able to remove unreachable states, it is not guaranteed to remove
other kinds of useless states. Specifically, when Bison disables reduce actions
during conflict resolution, some goto actions may become useless, and thus
some additional states may become useless. If Bison were to compute which
goto actions were useless and then disable those actions, it could identify such
states as unreachable and then remove those states. However, Bison does not
compute which goto actions are useless.

• namespace
• Languages(s): C++
• Purpose: Specifies the namespace for the parser class. For example, if you specify:

%define namespace "foo::bar"

Bison uses foo::bar verbatim in references such as:
foo::bar::parser::semantic_type

However, to open a namespace, Bison removes any leading :: and then splits on
any remaining occurrences:

namespace foo { namespace bar {

class position;

class location;

} }

• Accepted Values: Any absolute or relative C++ namespace reference without a trail-
ing "::". For example, "foo" or "::foo::bar".

• Default Value: The value specified by %name-prefix, which defaults to yy. This
usage of %name-prefix is for backward compatibility and can be confusing since
%name-prefix also specifies the textual prefix for the lexical analyzer function.
Thus, if you specify %name-prefix, it is best to also specify %define namespace
so that %name-prefix only affects the lexical analyzer function. For example, if you
specify:

%define namespace "foo"

%name-prefix "bar::"

The parser namespace is foo and yylex is referenced as bar::lex.

[Directive]%defines
Write a header file containing macro definitions for the token type names defined in the
grammar as well as a few other declarations. If the parser output file is named ‘name.c’ then
this file is named ‘name.h’.

For C parsers, the output header declares YYSTYPE unless YYSTYPE is already defined as a
macro or you have used a <type> tag without using %union. Therefore, if you are using
a %union (see Section 3.5.2 [More Than One Value Type], page 51) with components that
require other definitions, or if you have defined a YYSTYPE macro or type definition (see
Section 3.5.1 [Data Types of Semantic Values], page 51), you need to arrange for these
definitions to be propagated to all modules, e.g., by putting them in a prerequisite header
that is included both by your parser and by any other module that needs YYSTYPE.

Unless your parser is pure, the output header declares yylval as an external variable. See
Section 3.7.10 [A Pure (Reentrant) Parser], page 63.

Chapter 3: Bison Grammar Files 69

If you have also used locations, the output header declares YYLTYPE and yylloc using a pro-
tocol similar to that of the YYSTYPE macro and yylval. See Section 3.6 [Tracking Locations],
page 55.

This output file is normally essential if you wish to put the definition of yylex in a sepa-
rate source file, because yylex typically needs to be able to refer to the above-mentioned
declarations and to the token type codes. See Section 4.6.2 [Semantic Values of Tokens],
page 76.

If you have declared %code requires or %code provides, the output header also contains
their code. See Section 3.7.12 [%code], page 65.

[Directive]%defines defines-file
Same as above, but save in the file defines-file.

[Directive]%destructor
Specify how the parser should reclaim the memory associated to discarded symbols. See
Section 3.7.7 [Freeing Discarded Symbols], page 61.

[Directive]%file-prefix "prefix"
Specify a prefix to use for all Bison output file names. The names are chosen as if the input
file were named ‘prefix.y’.

[Directive]%language "language"
Specify the programming language for the generated parser. Currently supported languages
include C, C++, and Java. language is case-insensitive.

This directive is experimental and its effect may be modified in future releases.

[Directive]%locations
Generate the code processing the locations (see Section 4.8 [Special Features for Use in
Actions], page 78). This mode is enabled as soon as the grammar uses the special ‘@n ’
tokens, but if your grammar does not use it, using ‘%locations’ allows for more accurate
syntax error messages.

[Directive]%name-prefix "prefix"
Rename the external symbols used in the parser so that they start with prefix instead of
‘yy’. The precise list of symbols renamed in C parsers is yyparse, yylex, yyerror, yynerrs,
yylval, yychar, yydebug, and (if locations are used) yylloc. If you use a push parser,
yypush_parse, yypull_parse, yypstate, yypstate_new and yypstate_delete will also be
renamed. For example, if you use ‘%name-prefix "c_"’, the names become c_parse, c_lex,
and so on. For C++ parsers, see the %define namespace documentation in this section. See
Section 3.8 [Multiple Parsers in the Same Program], page 70.

[Directive]%no-lines
Don’t generate any #line preprocessor commands in the parser file. Ordinarily Bison writes
these commands in the parser file so that the C compiler and debuggers will associate errors
and object code with your source file (the grammar file). This directive causes them to
associate errors with the parser file, treating it an independent source file in its own right.

[Directive]%output "file"
Specify file for the parser file.

[Directive]%pure-parser
Deprecated version of %define api.pure (see Section 3.7.12 [%define], page 65), for which
Bison is more careful to warn about unreasonable usage.

70 Bison 2.4.1

[Directive]%require "version"
Require version version or higher of Bison. See Section 3.7.1 [Require a Version of Bison],
page 58.

[Directive]%skeleton "file"
Specify the skeleton to use.

If file does not contain a /, file is the name of a skeleton file in the Bison installation directory.
If it does, file is an absolute file name or a file name relative to the directory of the grammar
file. This is similar to how most shells resolve commands.

[Directive]%token-table
Generate an array of token names in the parser file. The name of the array is yytname;
yytname[i] is the name of the token whose internal Bison token code number is i. The
first three elements of yytname correspond to the predefined tokens "$end", "error", and
"$undefined"; after these come the symbols defined in the grammar file.

The name in the table includes all the characters needed to represent the token in Bison. For
single-character literals and literal strings, this includes the surrounding quoting characters
and any escape sequences. For example, the Bison single-character literal ’+’ corresponds to
a three-character name, represented in C as "’+’"; and the Bison two-character literal string
"\\/" corresponds to a five-character name, represented in C as "\"\\\\/\"".

When you specify %token-table, Bison also generates macro definitions for macros
YYNTOKENS, YYNNTS, and YYNRULES, and YYNSTATES:

YYNTOKENS
The highest token number, plus one.

YYNNTS The number of nonterminal symbols.

YYNRULES The number of grammar rules,

YYNSTATES
The number of parser states (see Section 5.5 [Parser States], page 85).

[Directive]%verbose
Write an extra output file containing verbose descriptions of the parser states and what is
done for each type of lookahead token in that state. See Section 8.1 [Understanding Your
Parser], page 97, for more information.

[Directive]%yacc
Pretend the option ‘--yacc’ was given, i.e., imitate Yacc, including its naming conventions.
See Section 9.1 [Bison Options], page 105, for more.

3.8 Multiple Parsers in the Same Program

Most programs that use Bison parse only one language and therefore contain only one Bison
parser. But what if you want to parse more than one language with the same program? Then
you need to avoid a name conflict between different definitions of yyparse, yylval, and so on.

The easy way to do this is to use the option ‘-p prefix ’ (see Chapter 9 [Invoking Bison],
page 105). This renames the interface functions and variables of the Bison parser to start with
prefix instead of ‘yy’. You can use this to give each parser distinct names that do not conflict.

The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs, yylval, yylloc,
yychar and yydebug. If you use a push parser, yypush_parse, yypull_parse, yypstate,
yypstate_new and yypstate_delete will also be renamed. For example, if you use ‘-p c’,
the names become cparse, clex, and so on.

Chapter 3: Bison Grammar Files 71

All the other variables and macros associated with Bison are not renamed. These others
are not global; there is no conflict if the same name is used in different parsers. For example,
YYSTYPE is not renamed, but defining this in different ways in different parsers causes no trouble
(see Section 3.5.1 [Data Types of Semantic Values], page 51).

The ‘-p’ option works by adding macro definitions to the beginning of the parser source file,
defining yyparse as prefixparse, and so on. This effectively substitutes one name for the other
in the entire parser file.

Chapter 4: Parser C-Language Interface 73

4 Parser C-Language Interface

The Bison parser is actually a C function named yyparse. Here we describe the interface
conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for internal
purposes. If you use such an identifier (aside from those in this manual) in an action or in
epilogue in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens, executes
actions, and ultimately returns when it encounters end-of-input or an unrecoverable syntax
error. You can also write an action which directs yyparse to return immediately without
reading further.

[Function]int yyparse (void)
The value returned by yyparse is 0 if parsing was successful (return is due to end-of-input).

The value is 1 if parsing failed because of invalid input, i.e., input that contains a syntax
error or that causes YYABORT to be invoked.

The value is 2 if parsing failed due to memory exhaustion.

In an action, you can cause immediate return from yyparse by using these macros:

[Macro]YYACCEPT
Return immediately with value 0 (to report success).

[Macro]YYABORT
Return immediately with value 1 (to report failure).

If you use a reentrant parser, you can optionally pass additional parameter information to it
in a reentrant way. To do so, use the declaration %parse-param:

[Directive]%parse-param {argument-declaration}
Declare that an argument declared by the braced-code argument-declaration is an additional
yyparse argument. The argument-declaration is used when declaring functions or prototypes.
The last identifier in argument-declaration must be the argument name.

Here’s an example. Write this in the parser:

%parse-param {int *nastiness}
%parse-param {int *randomness}

Then call the parser like this:

{
int nastiness, randomness;
... /* Store proper data in nastiness and randomness. */
value = yyparse (&nastiness, &randomness);
...

}

In the grammar actions, use expressions like this to refer to the data:

exp: ... { ...; *randomness += 1; ... }

74 Bison 2.4.1

4.2 The Push Parser Function yypush_parse

(The current push parsing interface is experimental and may evolve. More user feedback will
help to stabilize it.)

You call the function yypush_parse to parse a single token. This function is available if
either the %define api.push_pull "push" or %define api.push_pull "both" declaration is
used. See Section 3.7.11 [A Push Parser], page 63.

[Function]int yypush_parse (yypstate *yyps)
The value returned by yypush_parse is the same as for yyparse with the following exception.
yypush_parse will return YYPUSH MORE if more input is required to finish parsing the
grammar.

4.3 The Pull Parser Function yypull_parse

(The current push parsing interface is experimental and may evolve. More user feedback will
help to stabilize it.)

You call the function yypull_parse to parse the rest of the input stream. This function is
available if the %define api.push_pull "both" declaration is used. See Section 3.7.11 [A Push
Parser], page 63.

[Function]int yypull_parse (yypstate *yyps)
The value returned by yypull_parse is the same as for yyparse.

4.4 The Parser Create Function yystate_new

(The current push parsing interface is experimental and may evolve. More user feedback will
help to stabilize it.)

You call the function yypstate_new to create a new parser instance. This function is available
if either the %define api.push_pull "push" or %define api.push_pull "both" declaration is
used. See Section 3.7.11 [A Push Parser], page 63.

[Function]yypstate *yypstate_new (void)
The fuction will return a valid parser instance if there was memory available or 0 if no memory
was available. In impure mode, it will also return 0 if a parser instance is currently allocated.

4.5 The Parser Delete Function yystate_delete

(The current push parsing interface is experimental and may evolve. More user feedback will
help to stabilize it.)

You call the function yypstate_delete to delete a parser instance. function is available if
either the %define api.push_pull "push" or %define api.push_pull "both" declaration is
used. See Section 3.7.11 [A Push Parser], page 63.

[Function]void yypstate_delete (yypstate *yyps)
This function will reclaim the memory associated with a parser instance. After this call, you
should no longer attempt to use the parser instance.

4.6 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and returns them
to the parser. Bison does not create this function automatically; you must write it so that
yyparse can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Bison grammar file. If yylex is
defined in a separate source file, you need to arrange for the token-type macro definitions to be

Chapter 4: Parser C-Language Interface 75

available there. To do this, use the ‘-d’ option when you run Bison, so that it will write these
macro definitions into a separate header file ‘name.tab.h’ which you can include in the other
source files that need it. See Chapter 9 [Invoking Bison], page 105.

4.6.1 Calling Convention for yylex

The value that yylex returns must be the positive numeric code for the type of token it has just
found; a zero or negative value signifies end-of-input.

When a token is referred to in the grammar rules by a name, that name in the parser file
becomes a C macro whose definition is the proper numeric code for that token type. So yylex
can use the name to indicate that type. See Section 3.2 [Symbols], page 48.

When a token is referred to in the grammar rules by a character literal, the numeric code for
that character is also the code for the token type. So yylex can simply return that character
code, possibly converted to unsigned char to avoid sign-extension. The null character must not
be used this way, because its code is zero and that signifies end-of-input.

Here is an example showing these things:

int
yylex (void)
{
...
if (c == EOF) /* Detect end-of-input. */
return 0;

...
if (c == ’+’ || c == ’-’)
return c; /* Assume token type for ‘+’ is ’+’. */

...
return INT; /* Return the type of the token. */
...

}

This interface has been designed so that the output from the lex utility can be used without
change as the definition of yylex.

If the grammar uses literal string tokens, there are two ways that yylex can determine the
token type codes for them:

• If the grammar defines symbolic token names as aliases for the literal string tokens, yylex
can use these symbolic names like all others. In this case, the use of the literal string tokens
in the grammar file has no effect on yylex.

• yylex can find the multicharacter token in the yytname table. The index of the token
in the table is the token type’s code. The name of a multicharacter token is recorded
in yytname with a double-quote, the token’s characters, and another double-quote. The
token’s characters are escaped as necessary to be suitable as input to Bison.
Here’s code for looking up a multicharacter token in yytname, assuming that the characters
of the token are stored in token_buffer, and assuming that the token does not contain any
characters like ‘"’ that require escaping.

for (i = 0; i < YYNTOKENS; i++)

{

if (yytname[i] != 0

&& yytname[i][0] == ’"’

&& ! strncmp (yytname[i] + 1, token_buffer,

strlen (token_buffer))

&& yytname[i][strlen (token_buffer) + 1] == ’"’

&& yytname[i][strlen (token_buffer) + 2] == 0)

break;

76 Bison 2.4.1

}

The yytname table is generated only if you use the %token-table declaration. See
Section 3.7.12 [Decl Summary], page 65.

4.6.2 Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be stored into the
global variable yylval. When you are using just one data type for semantic values, yylval has
that type. Thus, if the type is int (the default), you might write this in yylex:

...
yylval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

When you are using multiple data types, yylval’s type is a union made from the %union
declaration (see Section 3.7.4 [The Collection of Value Types], page 59). So when you store a
token’s value, you must use the proper member of the union. If the %union declaration looks
like this:

%union {
int intval;
double val;
symrec *tptr;

}

then the code in yylex might look like this:

...
yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

4.6.3 Textual Locations of Tokens

If you are using the ‘@n ’-feature (see Section 3.6 [Tracking Locations], page 55) in actions to keep
track of the textual locations of tokens and groupings, then you must provide this information
in yylex. The function yyparse expects to find the textual location of a token just parsed in
the global variable yylloc. So yylex must store the proper data in that variable.

By default, the value of yylloc is a structure and you need only initialize the members that
are going to be used by the actions. The four members are called first_line, first_column,
last_line and last_column. Note that the use of this feature makes the parser noticeably
slower.

The data type of yylloc has the name YYLTYPE.

4.6.4 Calling Conventions for Pure Parsers

When you use the Bison declaration %define api.pure to request a pure, reentrant parser, the
global communication variables yylval and yylloc cannot be used. (See Section 3.7.10 [A Pure
(Reentrant) Parser], page 63.) In such parsers the two global variables are replaced by pointers
passed as arguments to yylex. You must declare them as shown here, and pass the information
back by storing it through those pointers.

int
yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
{
...
lvalp = value; / Put value onto Bison stack. */

Chapter 4: Parser C-Language Interface 77

return INT; /* Return the type of the token. */
...

}

If the grammar file does not use the ‘@’ constructs to refer to textual locations, then the type
YYLTYPE will not be defined. In this case, omit the second argument; yylex will be called with
only one argument.

If you wish to pass the additional parameter data to yylex, use %lex-param just like %parse-
param (see Section 4.1 [Parser Function], page 73).

[Directive]lex-param {argument-declaration}
Declare that the braced-code argument-declaration is an additional yylex argument decla-
ration.

For instance:
%parse-param {int *nastiness}
%lex-param {int *nastiness}
%parse-param {int *randomness}

results in the following signature:
int yylex (int *nastiness);
int yyparse (int *nastiness, int *randomness);

If %define api.pure is added:
int yylex (YYSTYPE *lvalp, int *nastiness);
int yyparse (int *nastiness, int *randomness);

and finally, if both %define api.pure and %locations are used:
int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
int yyparse (int *nastiness, int *randomness);

4.7 The Error Reporting Function yyerror

The Bison parser detects a syntax error or parse error whenever it reads a token which cannot
satisfy any syntax rule. An action in the grammar can also explicitly proclaim an error, using
the macro YYERROR (see Section 4.8 [Special Features for Use in Actions], page 78).

The Bison parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found, and
it receives one argument. For a syntax error, the string is normally "syntax error".

If you invoke the directive %error-verbose in the Bison declarations section (see Section 3.1.3
[The Bison Declarations Section], page 47), then Bison provides a more verbose and specific error
message string instead of just plain "syntax error".

The parser can detect one other kind of error: memory exhaustion. This can happen when
the input contains constructions that are very deeply nested. It isn’t likely you will encounter
this, since the Bison parser normally extends its stack automatically up to a very large limit. But
if memory is exhausted, yyparse calls yyerror in the usual fashion, except that the argument
string is "memory exhausted".

In some cases diagnostics like "syntax error" are translated automatically from English to
some other language before they are passed to yyerror. See Section 4.9 [Internationalization],
page 80.

The following definition suffices in simple programs:
void
yyerror (char const *s)
{

78 Bison 2.4.1

fprintf (stderr, "%s\n", s);
}

After yyerror returns to yyparse, the latter will attempt error recovery if you have written
suitable error recovery grammar rules (see Chapter 6 [Error Recovery], page 91). If recovery is
impossible, yyparse will immediately return 1.

Obviously, in location tracking pure parsers, yyerror should have an access to the current
location. This is indeed the case for the GLR parsers, but not for the Yacc parser, for historical
reasons. I.e., if ‘%locations %define api.pure’ is passed then the prototypes for yyerror are:

void yyerror (char const *msg); /* Yacc parsers. */
void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */

If ‘%parse-param {int *nastiness}’ is used, then:
void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
void yyerror (int *nastiness, char const *msg); /* GLR parsers. */

Finally, GLR and Yacc parsers share the same yyerror calling convention for absolutely
pure parsers, i.e., when the calling convention of yylex and the calling convention of %define
api.pure are pure. I.e.:

/* Location tracking. */
%locations
/* Pure yylex. */
%define api.pure
%lex-param {int *nastiness}
/* Pure yyparse. */
%parse-param {int *nastiness}
%parse-param {int *randomness}

results in the following signatures for all the parser kinds:
int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
int yyparse (int *nastiness, int *randomness);
void yyerror (YYLTYPE *locp,

int *nastiness, int *randomness,
char const *msg);

The prototypes are only indications of how the code produced by Bison uses yyerror. Bison-
generated code always ignores the returned value, so yyerror can return any type, including
void. Also, yyerror can be a variadic function; that is why the message is always passed last.

Traditionally yyerror returns an int that is always ignored, but this is purely for historical
reasons, and void is preferable since it more accurately describes the return type for yyerror.

The variable yynerrs contains the number of syntax errors reported so far. Normally this
variable is global; but if you request a pure parser (see Section 3.7.10 [A Pure (Reentrant)
Parser], page 63) then it is a local variable which only the actions can access.

4.8 Special Features for Use in Actions

Here is a table of Bison constructs, variables and macros that are useful in actions.

[Variable]$$
Acts like a variable that contains the semantic value for the grouping made by the current
rule. See Section 3.5.3 [Actions], page 52.

[Variable]$n
Acts like a variable that contains the semantic value for the nth component of the current
rule. See Section 3.5.3 [Actions], page 52.

Chapter 4: Parser C-Language Interface 79

[Variable]$<typealt>$
Like $$ but specifies alternative typealt in the union specified by the %union declaration. See
Section 3.5.4 [Data Types of Values in Actions], page 53.

[Variable]$<typealt>n
Like $n but specifies alternative typealt in the union specified by the %union declaration.
See Section 3.5.4 [Data Types of Values in Actions], page 53.

[Macro]YYABORT;
Return immediately from yyparse, indicating failure. See Section 4.1 [The Parser Function
yyparse], page 73.

[Macro]YYACCEPT;
Return immediately from yyparse, indicating success. See Section 4.1 [The Parser Function
yyparse], page 73.

[Macro]YYBACKUP (token , value);
Unshift a token. This macro is allowed only for rules that reduce a single value, and only
when there is no lookahead token. It is also disallowed in GLR parsers. It installs a lookahead
token with token type token and semantic value value; then it discards the value that was
going to be reduced by this rule.
If the macro is used when it is not valid, such as when there is a lookahead token already,
then it reports a syntax error with a message ‘cannot back up’ and performs ordinary error
recovery.
In either case, the rest of the action is not executed.

[Macro]YYEMPTY
Value stored in yychar when there is no lookahead token.

[Macro]YYEOF
Value stored in yychar when the lookahead is the end of the input stream.

[Macro]YYERROR;
Cause an immediate syntax error. This statement initiates error recovery just as if the
parser itself had detected an error; however, it does not call yyerror, and does not print any
message. If you want to print an error message, call yyerror explicitly before the ‘YYERROR;’
statement. See Chapter 6 [Error Recovery], page 91.

[Macro]YYRECOVERING
The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax error,
and 0 otherwise. See Chapter 6 [Error Recovery], page 91.

[Variable]yychar
Variable containing either the lookahead token, or YYEOF when the lookahead is the end of
the input stream, or YYEMPTY when no lookahead has been performed so the next token is
not yet known. Do not modify yychar in a deferred semantic action (see Section 1.5.3 [GLR
Semantic Actions], page 22). See Section 5.1 [Lookahead Tokens], page 81.

[Macro]yyclearin;
Discard the current lookahead token. This is useful primarily in error rules. Do not invoke
yyclearin in a deferred semantic action (see Section 1.5.3 [GLR Semantic Actions], page 22).
See Chapter 6 [Error Recovery], page 91.

[Macro]yyerrok;
Resume generating error messages immediately for subsequent syntax errors. This is useful
primarily in error rules. See Chapter 6 [Error Recovery], page 91.

80 Bison 2.4.1

[Variable]yylloc
Variable containing the lookahead token location when yychar is not set to YYEMPTY or
YYEOF. Do not modify yylloc in a deferred semantic action (see Section 1.5.3 [GLR Semantic
Actions], page 22). See Section 3.6.2 [Actions and Locations], page 56.

[Variable]yylval
Variable containing the lookahead token semantic value when yychar is not set to YYEMPTY or
YYEOF. Do not modify yylval in a deferred semantic action (see Section 1.5.3 [GLR Semantic
Actions], page 22). See Section 3.5.3 [Actions], page 52.

[Value]@$
Acts like a structure variable containing information on the textual location of the grouping
made by the current rule. See Section 3.6 [Tracking Locations], page 55.

[Value]@n
Acts like a structure variable containing information on the textual location of the nth com-
ponent of the current rule. See Section 3.6 [Tracking Locations], page 55.

4.9 Parser Internationalization

A Bison-generated parser can print diagnostics, including error and tracing messages. By default,
they appear in English. However, Bison also supports outputting diagnostics in the user’s
native language. To make this work, the user should set the usual environment variables. See
Section “The User’s View” in GNU gettext utilities. For example, the shell command ‘export
LC_ALL=fr_CA.UTF-8’ might set the user’s locale to French Canadian using the UTF-8 encoding.
The exact set of available locales depends on the user’s installation.

The maintainer of a package that uses a Bison-generated parser enables the international-
ization of the parser’s output through the following steps. Here we assume a package that uses
GNU Autoconf and GNU Automake.
1. Into the directory containing the GNU Autoconf macros used by the package—

often called ‘m4’—copy the ‘bison-i18n.m4’ file installed by Bison under
‘share/aclocal/bison-i18n.m4’ in Bison’s installation directory. For example:

cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4

2. In the top-level ‘configure.ac’, after the AM_GNU_GETTEXT invocation, add an invocation
of BISON_I18N. This macro is defined in the file ‘bison-i18n.m4’ that you copied earlier.
It causes ‘configure’ to find the value of the BISON_LOCALEDIR variable, and it defines the
source-language symbol YYENABLE_NLS to enable translations in the Bison-generated parser.

3. In the main function of your program, designate the directory containing Bison’s runtime
message catalog, through a call to ‘bindtextdomain’ with domain name ‘bison-runtime’.
For example:

bindtextdomain ("bison-runtime", BISON_LOCALEDIR);

Typically this appears after any other call bindtextdomain (PACKAGE, LOCALEDIR) that
your package already has. Here we rely on ‘BISON_LOCALEDIR’ to be defined as a string
through the ‘Makefile’.

4. In the ‘Makefile.am’ that controls the compilation of the main function, make
‘BISON_LOCALEDIR’ available as a C preprocessor macro, either in ‘DEFS’ or in
‘AM_CPPFLAGS’. For example:

DEFS = @DEFS@ -DBISON_LOCALEDIR=’"$(BISON_LOCALEDIR)"’

or:
AM_CPPFLAGS = -DBISON_LOCALEDIR=’"$(BISON_LOCALEDIR)"’

5. Finally, invoke the command autoreconf to generate the build infrastructure.

Chapter 5: The Bison Parser Algorithm 81

5 The Bison Parser Algorithm

As Bison reads tokens, it pushes them onto a stack along with their semantic values. The stack
is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 *’, with a ‘3’ to come. The stack
will have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last n tokens
and groupings shifted match the components of a grammar rule, they can be combined according
to that rule. This is called reduction. Those tokens and groupings are replaced on the stack by
a single grouping whose symbol is the result (left hand side) of that rule. Running the rule’s
action is part of the process of reduction, because this is what computes the semantic value of
the resulting grouping.

For example, if the infix calculator’s parser stack contains this:
1 + 5 * 3

and the next input token is a newline character, then the last three elements can be reduced to
15 via the rule:

expr: expr ’*’ expr;

Then the stack contains just these three elements:
1 + 15

At this point, another reduction can be made, resulting in the single value 16. Then the newline
token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single grouping
whose symbol is the grammar’s start-symbol (see Section 1.1 [Languages and Context-Free
Grammars], page 15).

This kind of parser is known in the literature as a bottom-up parser.

5.1 Lookahead Tokens

The Bison parser does not always reduce immediately as soon as the last n tokens and groupings
match a rule. This is because such a simple strategy is inadequate to handle most languages.
Instead, when a reduction is possible, the parser sometimes “looks ahead” at the next token in
order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the lookahead token,
which is not on the stack. Now the parser can perform one or more reductions of tokens and
groupings on the stack, while the lookahead token remains off to the side. When no more
reductions should take place, the lookahead token is shifted onto the stack. This does not mean
that all possible reductions have been done; depending on the token type of the lookahead token,
some rules may choose to delay their application.

Here is a simple case where lookahead is needed. These three rules define expressions which
contain binary addition operators and postfix unary factorial operators (‘!’), and allow paren-
theses for grouping.

expr: term ’+’ expr
| term
;

term: ’(’ expr ’)’
| term ’!’
| NUMBER
;

82 Bison 2.4.1

Suppose that the tokens ‘1 + 2’ have been read and shifted; what should be done? If the
following token is ‘)’, then the first three tokens must be reduced to form an expr. This is the
only valid course, because shifting the ‘)’ would produce a sequence of symbols term ’)’, and
no rule allows this.

If the following token is ‘!’, then it must be shifted immediately so that ‘2 !’ can be reduced
to make a term. If instead the parser were to reduce before shifting, ‘1 + 2’ would become an
expr. It would then be impossible to shift the ‘!’ because doing so would produce on the stack
the sequence of symbols expr ’!’. No rule allows that sequence.

The lookahead token is stored in the variable yychar. Its semantic value and location, if
any, are stored in the variables yylval and yylloc. See Section 4.8 [Special Features for Use in
Actions], page 78.

5.2 Shift/Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a pair of
rules like this:

if_stmt:
IF expr THEN stmt

| IF expr THEN stmt ELSE stmt
;

Here we assume that IF, THEN and ELSE are terminal symbols for specific keyword tokens.
When the ELSE token is read and becomes the lookahead token, the contents of the stack

(assuming the input is valid) are just right for reduction by the first rule. But it is also legitimate
to shift the ELSE, because that would lead to eventual reduction by the second rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce
conflict. Bison is designed to resolve these conflicts by choosing to shift, unless otherwise directed
by operator precedence declarations. To see the reason for this, let’s contrast it with the other
alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-clause to the
innermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to
attach the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); end; else lose;

The conflict exists because the grammar as written is ambiguous: either parsing of the
simple nested if-statement is legitimate. The established convention is that these ambiguities
are resolved by attaching the else-clause to the innermost if-statement; this is what Bison ac-
complishes by choosing to shift rather than reduce. (It would ideally be cleaner to write an
unambiguous grammar, but that is very hard to do in this case.) This particular ambiguity was
first encountered in the specifications of Algol 60 and is called the “dangling else” ambiguity.

To avoid warnings from Bison about predictable, legitimate shift/reduce conflicts, use the
%expect n declaration. There will be no warning as long as the number of shift/reduce conflicts
is exactly n. See Section 3.7.8 [Suppressing Conflict Warnings], page 62.

The definition of if_stmt above is solely to blame for the conflict, but the conflict does
not actually appear without additional rules. Here is a complete Bison input file that actually
manifests the conflict:

Chapter 5: The Bison Parser Algorithm 83

%token IF THEN ELSE variable
%%
stmt: expr

| if_stmt
;

if_stmt:
IF expr THEN stmt

| IF expr THEN stmt ELSE stmt
;

expr: variable
;

5.3 Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expressions. Here shifting
is not always the preferred resolution; the Bison declarations for operator precedence allow you
to specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input ‘1 - 2 * 3’
can be parsed in two different ways):

expr: expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
| ’(’ expr ’)’
...
;

Suppose the parser has seen the tokens ‘1’, ‘-’ and ‘2’; should it reduce them via the rule for
the subtraction operator? It depends on the next token. Of course, if the next token is ‘)’, we
must reduce; shifting is invalid because no single rule can reduce the token sequence ‘- 2)’ or
anything starting with that. But if the next token is ‘*’ or ‘<’, we have a choice: either shifting
or reduction would allow the parse to complete, but with different results.

To decide which one Bison should do, we must consider the results. If the next operator token
op is shifted, then it must be reduced first in order to permit another opportunity to reduce
the difference. The result is (in effect) ‘1 - (2 op 3)’. On the other hand, if the subtraction
is reduced before shifting op, the result is ‘(1 - 2) op 3’. Clearly, then, the choice of shift or
reduce should depend on the relative precedence of the operators ‘-’ and op: ‘*’ should be
shifted first, but not ‘<’.

What about input such as ‘1 - 2 - 5’; should this be ‘(1 - 2) - 5’ or should it be
‘1 - (2 - 5)’? For most operators we prefer the former, which is called left association. The
latter alternative, right association, is desirable for assignment operators. The choice of left or
right association is a matter of whether the parser chooses to shift or reduce when the stack
contains ‘1 - 2’ and the lookahead token is ‘-’: shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Bison allows you to specify these choices with the operator precedence declarations %left and
%right. Each such declaration contains a list of tokens, which are operators whose prece-
dence and associativity is being declared. The %left declaration makes all those operators

84 Bison 2.4.1

left-associative and the %right declaration makes them right-associative. A third alternative is
%nonassoc, which declares that it is a syntax error to find the same operator twice “in a row”.

The relative precedence of different operators is controlled by the order in which they are
declared. The first %left or %right declaration in the file declares the operators whose prece-
dence is lowest, the next such declaration declares the operators whose precedence is a little
higher, and so on.

5.3.3 Precedence Examples

In our example, we would want the following declarations:
%left ’<’
%left ’-’
%left ’*’

In a more complete example, which supports other operators as well, we would declare them
in groups of equal precedence. For example, ’+’ is declared with ’-’:

%left ’<’ ’>’ ’=’ NE LE GE
%left ’+’ ’-’
%left ’*’ ’/’

(Here NE and so on stand for the operators for “not equal” and so on. We assume that these
tokens are more than one character long and therefore are represented by names, not character
literals.)

5.3.4 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each rule
gets its precedence from the last terminal symbol mentioned in the components. (You can also
specify explicitly the precedence of a rule. See Section 5.4 [Context-Dependent Precedence],
page 84.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being
considered with that of the lookahead token. If the token’s precedence is higher, the choice is to
shift. If the rule’s precedence is higher, the choice is to reduce. If they have equal precedence,
the choice is made based on the associativity of that precedence level. The verbose output file
made by ‘-v’ (see Chapter 9 [Invoking Bison], page 105) says how each conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the lookahead token
has no precedence, then the default is to shift.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at first,
but it is really very common. For example, a minus sign typically has a very high precedence
as a unary operator, and a somewhat lower precedence (lower than multiplication) as a binary
operator.

The Bison precedence declarations, %left, %right and %nonassoc, can only be used once for
a given token; so a token has only one precedence declared in this way. For context-dependent
precedence, you need to use an additional mechanism: the %prec modifier for rules.

The %prec modifier declares the precedence of a particular rule by specifying a terminal
symbol whose precedence should be used for that rule. It’s not necessary for that symbol to
appear otherwise in the rule. The modifier’s syntax is:

%prec terminal-symbol

and it is written after the components of the rule. Its effect is to assign the rule the precedence
of terminal-symbol, overriding the precedence that would be deduced for it in the ordinary

Chapter 5: The Bison Parser Algorithm 85

way. The altered rule precedence then affects how conflicts involving that rule are resolved (see
Section 5.3 [Operator Precedence], page 83).

Here is how %prec solves the problem of unary minus. First, declare a precedence for a
fictitious terminal symbol named UMINUS. There are no tokens of this type, but the symbol
serves to stand for its precedence:

...
%left ’+’ ’-’
%left ’*’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:
exp: ...

| exp ’-’ exp
...
| ’-’ exp %prec UMINUS

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed on the
parser stack are not simply token type codes; they represent the entire sequence of terminal
and nonterminal symbols at or near the top of the stack. The current state collects all the
information about previous input which is relevant to deciding what to do next.

Each time a lookahead token is read, the current parser state together with the type of
lookahead token are looked up in a table. This table entry can say, “Shift the lookahead token.”
In this case, it also specifies the new parser state, which is pushed onto the top of the parser
stack. Or it can say, “Reduce using rule number n.” This means that a certain number of tokens
or groupings are taken off the top of the stack, and replaced by one grouping. In other words,
that number of states are popped from the stack, and one new state is pushed.

There is one other alternative: the table can say that the lookahead token is erroneous in the
current state. This causes error processing to begin (see Chapter 6 [Error Recovery], page 91).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same sequence
of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word groupings.
sequence: /* empty */

{ printf ("empty sequence\n"); }
| maybeword
| sequence word

{ printf ("added word %s\n", $2); }
;

maybeword: /* empty */
{ printf ("empty maybeword\n"); }

| word
{ printf ("single word %s\n", $1); }

;

The error is an ambiguity: there is more than one way to parse a single word into a sequence.
It could be reduced to a maybeword and then into a sequence via the second rule. Alternatively,
nothing-at-all could be reduced into a sequence via the first rule, and this could be combined
with the word using the third rule for sequence.

86 Bison 2.4.1

There is also more than one way to reduce nothing-at-all into a sequence. This can be done
directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One
parsing order runs the second rule’s action; the other runs the first rule’s action and the third
rule’s action. In this example, the output of the program changes.

Bison resolves a reduce/reduce conflict by choosing to use the rule that appears first in the
grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be studied and
usually eliminated. Here is the proper way to define sequence:

sequence: /* empty */
{ printf ("empty sequence\n"); }

| sequence word
{ printf ("added word %s\n", $2); }

;

Here is another common error that yields a reduce/reduce conflict:

sequence: /* empty */
| sequence words
| sequence redirects
;

words: /* empty */
| words word
;

redirects:/* empty */
| redirects redirect
;

The intention here is to define a sequence which can contain either word or redirect groupings.
The individual definitions of sequence, words and redirects are error-free, but the three
together make a subtle ambiguity: even an empty input can be parsed in infinitely many ways!

Consider: nothing-at-all could be a words. Or it could be two words in a row, or three, or
any number. It could equally well be a redirects, or two, or any number. Or it could be a
words followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:

sequence: /* empty */
| sequence word
| sequence redirect
;

Second, to prevent either a words or a redirects from being empty:

sequence: /* empty */
| sequence words
| sequence redirects
;

words: word
| words word
;

redirects:redirect

Chapter 5: The Bison Parser Algorithm 87

| redirects redirect
;

5.7 Mysterious Reduce/Reduce Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an example:

%token ID

%%
def: param_spec return_spec ’,’

;
param_spec:

type
| name_list ’:’ type
;

return_spec:
type

| name ’:’ type
;

type: ID
;

name: ID
;

name_list:
name

| name ’,’ name_list
;

It would seem that this grammar can be parsed with only a single token of lookahead: when
a param_spec is being read, an ID is a name if a comma or colon follows, or a type if another
ID follows. In other words, this grammar is LR(1).

However, Bison, like most parser generators, cannot actually handle all LR(1) grammars. In
this grammar, two contexts, that after an ID at the beginning of a param_spec and likewise at
the beginning of a return_spec, are similar enough that Bison assumes they are the same. They
appear similar because the same set of rules would be active—the rule for reducing to a name
and that for reducing to a type. Bison is unable to determine at that stage of processing that
the rules would require different lookahead tokens in the two contexts, so it makes a single parser
state for them both. Combining the two contexts causes a conflict later. In parser terminology,
this occurrence means that the grammar is not LALR(1).

In general, it is better to fix deficiencies than to document them. But this particular deficiency
is intrinsically hard to fix; parser generators that can handle LR(1) grammars are hard to write
and tend to produce parsers that are very large. In practice, Bison is more useful as it is now.

When the problem arises, you can often fix it by identifying the two parser states that are
being confused, and adding something to make them look distinct. In the above example, adding
one rule to return_spec as follows makes the problem go away:

88 Bison 2.4.1

%token BOGUS
...
%%
...
return_spec:

type
| name ’:’ type
/* This rule is never used. */
| ID BOGUS
;

This corrects the problem because it introduces the possibility of an additional active rule
in the context after the ID at the beginning of return_spec. This rule is not active in the
corresponding context in a param_spec, so the two contexts receive distinct parser states. As
long as the token BOGUS is never generated by yylex, the added rule cannot alter the way actual
input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule for
return_spec to use ID directly instead of via name. This also causes the two confusing contexts
to have different sets of active rules, because the one for return_spec activates the altered rule
for return_spec rather than the one for name.

param_spec:
type

| name_list ’:’ type
;

return_spec:
type

| ID ’:’ type
;

For a more detailed exposition of LALR(1) parsers and parser generators, please see: Frank
DeRemer and Thomas Pennello, Efficient Computation of LALR(1) Look-Ahead Sets, ACM

Transactions on Programming Languages and Systems, Vol. 4, No. 4 (October 1982), pp. 615–
649 http://doi.acm.org/10.1145/69622.357187.

5.8 Generalized LR (GLR) Parsing

Bison produces deterministic parsers that choose uniquely when to reduce and which reduction
to apply based on a summary of the preceding input and on one extra token of lookahead. As a
result, normal Bison handles a proper subset of the family of context-free languages. Ambiguous
grammars, since they have strings with more than one possible sequence of reductions cannot
have deterministic parsers in this sense. The same is true of languages that require more than
one symbol of lookahead, since the parser lacks the information necessary to make a decision
at the point it must be made in a shift-reduce parser. Finally, as previously mentioned (see
Section 5.7 [Mystery Conflicts], page 87), there are languages where Bison’s particular choice of
how to summarize the input seen so far loses necessary information.

When you use the ‘%glr-parser’ declaration in your grammar file, Bison generates a parser
that uses a different algorithm, called Generalized LR (or GLR). A Bison GLR parser uses
the same basic algorithm for parsing as an ordinary Bison parser, but behaves differently in
cases where there is a shift-reduce conflict that has not been resolved by precedence rules (see
Section 5.3 [Precedence], page 83) or a reduce-reduce conflict. When a GLR parser encounters
such a situation, it effectively splits into a several parsers, one for each possible shift or reduction.
These parsers then proceed as usual, consuming tokens in lock-step. Some of the stacks may

http://doi.acm.org/10.1145/69622.357187

Chapter 5: The Bison Parser Algorithm 89

encounter other conflicts and split further, with the result that instead of a sequence of states,
a Bison GLR parsing stack is what is in effect a tree of states.

In effect, each stack represents a guess as to what the proper parse is. Additional input
may indicate that a guess was wrong, in which case the appropriate stack silently disappears.
Otherwise, the semantics actions generated in each stack are saved, rather than being executed
immediately. When a stack disappears, its saved semantic actions never get executed. When a
reduction causes two stacks to become equivalent, their sets of semantic actions are both saved
with the state that results from the reduction. We say that two stacks are equivalent when they
both represent the same sequence of states, and each pair of corresponding states represents a
grammar symbol that produces the same segment of the input token stream.

Whenever the parser makes a transition from having multiple states to having one, it reverts
to the normal LALR(1) parsing algorithm, after resolving and executing the saved-up actions. At
this transition, some of the states on the stack will have semantic values that are sets (actually
multisets) of possible actions. The parser tries to pick one of the actions by first finding one
whose rule has the highest dynamic precedence, as set by the ‘%dprec’ declaration. Otherwise,
if the alternative actions are not ordered by precedence, but there the same merging function is
declared for both rules by the ‘%merge’ declaration, Bison resolves and evaluates both and then
calls the merge function on the result. Otherwise, it reports an ambiguity.

It is possible to use a data structure for the GLR parsing tree that permits the processing of
any LALR(1) grammar in linear time (in the size of the input), any unambiguous (not necessarily
LALR(1)) grammar in quadratic worst-case time, and any general (possibly ambiguous) context-
free grammar in cubic worst-case time. However, Bison currently uses a simpler data structure
that requires time proportional to the length of the input times the maximum number of stacks
required for any prefix of the input. Thus, really ambiguous or nondeterministic grammars can
require exponential time and space to process. Such badly behaving examples, however, are not
generally of practical interest. Usually, nondeterminism in a grammar is local—the parser is “in
doubt” only for a few tokens at a time. Therefore, the current data structure should generally
be adequate. On LALR(1) portions of a grammar, in particular, it is only slightly slower than
with the default Bison parser.

For a more detailed exposition of GLR parsers, please see: Elizabeth Scott,
Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style Generalised LR Parsers,
Royal Holloway, University of London, Department of Computer Science, TR-00-12,
http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps,
(2000-12-24).

5.9 Memory Management, and How to Avoid Memory
Exhaustion

The Bison parser stack can run out of memory if too many tokens are shifted and not reduced.
When this happens, the parser function yyparse calls yyerror and then returns 2.

Because Bison parsers have growing stacks, hitting the upper limit usually results from using
a right recursion instead of a left recursion, See Section 3.4 [Recursive Rules], page 50.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can become
before memory is exhausted. Define the macro with a value that is an integer. This value is the
maximum number of tokens that can be shifted (and not reduced) before overflow.

The stack space allowed is not necessarily allocated. If you specify a large value for
YYMAXDEPTH, the parser normally allocates a small stack at first, and then makes it bigger
by stages as needed. This increasing allocation happens automatically and silently. Therefore,
you do not need to make YYMAXDEPTH painfully small merely to save space for ordinary inputs
that do not need much stack.

http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps

90 Bison 2.4.1

However, do not allow YYMAXDEPTH to be a value so large that arithmetic overflow could occur
when calculating the size of the stack space. Also, do not allow YYMAXDEPTH to be less than
YYINITDEPTH.

The default value of YYMAXDEPTH, if you do not define it, is 10000.
You can control how much stack is allocated initially by defining the macro YYINITDEPTH to

a positive integer. For the C LALR(1) parser, this value must be a compile-time constant unless
you are assuming C99 or some other target language or compiler that allows variable-length
arrays. The default is 200.

Do not allow YYINITDEPTH to be greater than YYMAXDEPTH.
Because of semantical differences between C and C++, the LALR(1) parsers in C produced

by Bison cannot grow when compiled by C++ compilers. In this precise case (compiling a C
parser as C++) you are suggested to grow YYINITDEPTH. The Bison maintainers hope to fix this
deficiency in a future release.

Chapter 6: Error Recovery 91

6 Error Recovery

It is not usually acceptable to have a program terminate on a syntax error. For example, a
compiler should recover sufficiently to parse the rest of the input file and check it for errors; a
calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient to
allow yyparse to return 1 on error and have the caller ignore the rest of the input line when
that happens (and then call yyparse again). But this is inadequate for a compiler, because it
forgets all the syntactic context leading up to the error. A syntax error deep within a function
in the compiler input should not cause the compiler to treat the following line like the beginning
of a source file.

You can define how to recover from a syntax error by writing rules to recognize the special
token error. This is a terminal symbol that is always defined (you need not declare it) and
reserved for error handling. The Bison parser generates an error token whenever a syntax error
happens; if you have provided a rule to recognize this token in the current context, the parse
can continue.

For example:

stmnts: /* empty string */
| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid addition
to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmnts, an error and a newline. If
an error occurs in the middle of an exp, there will probably be some additional tokens and
subexpressions on the stack after the last stmnts, and there will be tokens to read before the
next newline. So the rule is not applicable in the ordinary way.

But Bison can force the situation to fit the rule, by discarding part of the semantic context
and part of the input. First it discards states and objects from the stack until it gets back to
a state in which the error token is acceptable. (This means that the subexpressions already
parsed are discarded, back to the last complete stmnts.) At this point the error token can be
shifted. Then, if the old lookahead token is not acceptable to be shifted next, the parser reads
tokens and discards them until it finds a token which is acceptable. In this example, Bison reads
and discards input until the next newline so that the fourth rule can apply. Note that discarded
symbols are possible sources of memory leaks, see Section 3.7.7 [Freeing Discarded Symbols],
page 61, for a means to reclaim this memory.

The choice of error rules in the grammar is a choice of strategies for error recovery. A simple
and useful strategy is simply to skip the rest of the current input line or current statement if an
error is detected:

stmnt: error ’;’ /* On error, skip until ’;’ is read. */

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched, and
generate another, spurious error message:

primary: ’(’ expr ’)’
| ’(’ error ’)’
...
;

92 Bison 2.4.1

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax error
often leads to another. In the above example, the error recovery rule guesses that an error is
due to bad input within one stmnt. Suppose that instead a spurious semicolon is inserted in
the middle of a valid stmnt. After the error recovery rule recovers from the first error, another
syntax error will be found straightaway, since the text following the spurious semicolon is also
an invalid stmnt.

To prevent an outpouring of error messages, the parser will output no error message for
another syntax error that happens shortly after the first; only after three consecutive input
tokens have been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules can.
You can make error messages resume immediately by using the macro yyerrok in an action.

If you do this in the error rule’s action, no error messages will be suppressed. This macro
requires no arguments; ‘yyerrok;’ is a valid C statement.

The previous lookahead token is reanalyzed immediately after an error. If this is unac-
ceptable, then the macro yyclearin may be used to clear this token. Write the statement
‘yyclearin;’ in the error rule’s action. See Section 4.8 [Special Features for Use in Actions],
page 78.

For example, suppose that on a syntax error, an error handling routine is called that advances
the input stream to some point where parsing should once again commence. The next symbol
returned by the lexical scanner is probably correct. The previous lookahead token ought to be
discarded with ‘yyclearin;’.

The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax error,
and 0 otherwise. Syntax error diagnostics are suppressed while recovering from a syntax error.

Chapter 7: Handling Context Dependencies 93

7 Handling Context Dependencies

The Bison paradigm is to parse tokens first, then group them into larger syntactic units. In
many languages, the meaning of a token is affected by its context. Although this violates the
Bison paradigm, certain techniques (known as kludges) may enable you to write Bison parsers
for such languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor
robust.)

7.1 Semantic Info in Token Types

The C language has a context dependency: the way an identifier is used depends on what its
current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is actually
a declaration of x. How can a Bison parser for C decide how to parse this input?

The method used in GNU C is to have two different token types, IDENTIFIER and TYPENAME.
When yylex finds an identifier, it looks up the current declaration of the identifier in order to
decide which token type to return: TYPENAME if the identifier is declared as a typedef, IDENTIFIER
otherwise.

The grammar rules can then express the context dependency by the choice of token type
to recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can
start a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier
is not significant, such as in declarations that can shadow a typedef name, either TYPENAME or
IDENTIFIER is accepted—there is one rule for each of the two token types.

This technique is simple to use if the decision of which kinds of identifiers to allow is made
at a place close to where the identifier is parsed. But in C this is not always so: C allows a
declaration to redeclare a typedef name provided an explicit type has been specified earlier:

typedef int foo, bar;
int baz (void)
{
static bar (bar); /* redeclare bar as static variable */
extern foo foo (foo); /* redeclare foo as function */
return foo (bar);

}

Unfortunately, the name being declared is separated from the declaration construct itself by
a complicated syntactic structure—the “declarator”.

As a result, part of the Bison parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined, and
once for parsing a declaration in which that can’t be done. Here is a part of the duplication,
with actions omitted for brevity:

initdcl:
declarator maybeasm ’=’
init

| declarator maybeasm
;

notype_initdcl:
notype_declarator maybeasm ’=’
init

94 Bison 2.4.1

| notype_declarator maybeasm
;

Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction
between declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in that
information which alters the lexical analysis is changed during parsing by other parts of the
program. The difference is here the information is global, and is used for other purposes in the
program. A true lexical tie-in has a special-purpose flag controlled by the syntactic context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Bison actions,
whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct ‘hex
(hex-expr)’. After the keyword hex comes an expression in parentheses in which all integers
are hexadecimal. In particular, the token ‘a1b’ must be treated as an integer rather than as an
identifier if it appears in that context. Here is how you can do it:

%{
int hexflag;
int yylex (void);
void yyerror (char const *);

%}
%%
...
expr: IDENTIFIER

| constant
| HEX ’(’

{ hexflag = 1; }
expr ’)’

{ hexflag = 0;
$$ = $4; }

| expr ’+’ expr
{ $$ = make_sum ($1, $3); }

...
;

constant:
INTEGER

| STRING
;

Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers are
parsed in hexadecimal, and tokens starting with letters are parsed as integers if possible.

The declaration of hexflag shown in the prologue of the parser file is needed to make it
accessible to the actions (see Section 3.1.1 [The Prologue], page 43). You must also write the
code in yylex to obey the flag.

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See Chapter 6 [Error
Recovery], page 91.

The reason for this is that the purpose of an error recovery rule is to abort the parsing of
one construct and resume in some larger construct. For example, in C-like languages, a typical

Chapter 7: Handling Context Dependencies 95

error recovery rule is to skip tokens until the next semicolon, and then start a new statement,
like this:

stmt: expr ’;’
| IF ’(’ expr ’)’ stmt { ... }
...
error ’;’

{ hexflag = 0; }
;

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will apply,
and then the action for the completed ‘hex (expr)’ will never run. So hexflag would remain
set for the entire rest of the input, or until the next hex keyword, causing identifiers to be
misinterpreted as integers.

To avoid this problem the error recovery rule itself clears hexflag.
There may also be an error recovery rule that works within expressions. For example, there

could be a rule which applies within parentheses and skips to the close-parenthesis:
expr: ...

| ’(’ expr ’)’
{ $$ = $2; }

| ’(’ error ’)’
...

If this rule acts within the hex construct, it is not going to abort that construct (since it
applies to an inner level of parentheses within the construct). Therefore, it should not clear the
flag: the rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or might
not, depending on circumstances? There is no way you can write the action to determine whether
a hex construct is being aborted or not. So if you are using a lexical tie-in, you had better make
sure your error recovery rules are not of this kind. Each rule must be such that you can be sure
that it always will, or always won’t, have to clear the flag.

Chapter 8: Debugging Your Parser 97

8 Debugging Your Parser

Developing a parser can be a challenge, especially if you don’t understand the algorithm (see
Chapter 5 [The Bison Parser Algorithm], page 81). Even so, sometimes a detailed description
of the automaton can help (see Section 8.1 [Understanding Your Parser], page 97), or tracing
the execution of the parser can give some insight on why it behaves improperly (see Section 8.2
[Tracing Your Parser], page 102).

8.1 Understanding Your Parser

As documented elsewhere (see Chapter 5 [The Bison Parser Algorithm], page 81) Bison parsers
are shift/reduce automata. In some cases (much more frequent than one would hope), looking
at this automaton is required to tune or simply fix a parser. Bison provides two different
representation of it, either textually or graphically (as a DOT file).

The textual file is generated when the options ‘--report’ or ‘--verbose’ are specified, see
See Chapter 9 [Invoking Bison], page 105. Its name is made by removing ‘.tab.c’ or ‘.c’ from
the parser output file name, and adding ‘.output’ instead. Therefore, if the input file is ‘foo.y’,
then the parser file is called ‘foo.tab.c’ by default. As a consequence, the verbose output file
is called ‘foo.output’.

The following grammar file, ‘calc.y’, will be used in the sequel:
%token NUM STR
%left ’+’ ’-’
%left ’*’
%%
exp: exp ’+’ exp

| exp ’-’ exp
| exp ’*’ exp
| exp ’/’ exp
| NUM
;

useless: STR;
%%

bison reports:
calc.y: warning: 1 nonterminal and 1 rule useless in grammar
calc.y:11.1-7: warning: nonterminal useless in grammar: useless
calc.y:11.10-12: warning: rule useless in grammar: useless: STR
calc.y: conflicts: 7 shift/reduce

When given ‘--report=state’, in addition to ‘calc.tab.c’, it creates a file ‘calc.output’
with contents detailed below. The order of the output and the exact presentation might vary,
but the interpretation is the same.

The first section includes details on conflicts that were solved thanks to precedence and/or
associativity:

Conflict in state 8 between rule 2 and token ’+’ resolved as reduce.
Conflict in state 8 between rule 2 and token ’-’ resolved as reduce.
Conflict in state 8 between rule 2 and token ’*’ resolved as shift.

. . .
The next section lists states that still have conflicts.

State 8 conflicts: 1 shift/reduce
State 9 conflicts: 1 shift/reduce
State 10 conflicts: 1 shift/reduce

98 Bison 2.4.1

State 11 conflicts: 4 shift/reduce

The next section reports useless tokens, nonterminal and rules. Useless nonterminals and rules
are removed in order to produce a smaller parser, but useless tokens are preserved, since they
might be used by the scanner (note the difference between “useless” and “unused” below):

Nonterminals useless in grammar:
useless

Terminals unused in grammar:
STR

Rules useless in grammar:
#6 useless: STR;

The next section reproduces the exact grammar that Bison used:

Grammar

Number, Line, Rule
0 5 $accept -> exp $end
1 5 exp -> exp ’+’ exp
2 6 exp -> exp ’-’ exp
3 7 exp -> exp ’*’ exp
4 8 exp -> exp ’/’ exp
5 9 exp -> NUM

and reports the uses of the symbols:

Terminals, with rules where they appear

$end (0) 0
’*’ (42) 3
’+’ (43) 1
’-’ (45) 2
’/’ (47) 4
error (256)
NUM (258) 5

Nonterminals, with rules where they appear

$accept (8)
on left: 0

exp (9)
on left: 1 2 3 4 5, on right: 0 1 2 3 4

Bison then proceeds onto the automaton itself, describing each state with it set of items, also
known as pointed rules. Each item is a production rule together with a point (marked by ‘.’)
that the input cursor.

state 0

$accept -> . exp $ (rule 0)

NUM shift, and go to state 1

exp go to state 2

Chapter 8: Debugging Your Parser 99

This reads as follows: “state 0 corresponds to being at the very beginning of the parsing,
in the initial rule, right before the start symbol (here, exp). When the parser returns to this
state right after having reduced a rule that produced an exp, the control flow jumps to state
2. If there is no such transition on a nonterminal symbol, and the lookahead is a NUM, then this
token is shifted on the parse stack, and the control flow jumps to state 1. Any other lookahead
triggers a syntax error.”

Even though the only active rule in state 0 seems to be rule 0, the report lists NUM as a
lookahead token because NUM can be at the beginning of any rule deriving an exp. By default
Bison reports the so-called core or kernel of the item set, but if you want to see more detail
you can invoke bison with ‘--report=itemset’ to list all the items, include those that can be
derived:

state 0

$accept -> . exp $ (rule 0)
exp -> . exp ’+’ exp (rule 1)
exp -> . exp ’-’ exp (rule 2)
exp -> . exp ’*’ exp (rule 3)
exp -> . exp ’/’ exp (rule 4)
exp -> . NUM (rule 5)

NUM shift, and go to state 1

exp go to state 2

In the state 1...
state 1

exp -> NUM . (rule 5)

$default reduce using rule 5 (exp)

the rule 5, ‘exp: NUM;’, is completed. Whatever the lookahead token (‘$default’), the parser
will reduce it. If it was coming from state 0, then, after this reduction it will return to state 0,
and will jump to state 2 (‘exp: go to state 2’).

state 2

$accept -> exp . $ (rule 0)
exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

$ shift, and go to state 3
’+’ shift, and go to state 4
’-’ shift, and go to state 5
’*’ shift, and go to state 6
’/’ shift, and go to state 7

In state 2, the automaton can only shift a symbol. For instance, because of the item ‘exp ->
exp . ’+’ exp’, if the lookahead if ‘+’, it will be shifted on the parse stack, and the automaton
control will jump to state 4, corresponding to the item ‘exp -> exp ’+’ . exp’. Since there is
no default action, any other token than those listed above will trigger a syntax error.

The state 3 is named the final state, or the accepting state:

100 Bison 2.4.1

state 3

$accept -> exp $. (rule 0)

$default accept

the initial rule is completed (the start symbol and the end of input were read), the parsing exits
successfully.

The interpretation of states 4 to 7 is straightforward, and is left to the reader.
state 4

exp -> exp ’+’ . exp (rule 1)

NUM shift, and go to state 1

exp go to state 8

state 5

exp -> exp ’-’ . exp (rule 2)

NUM shift, and go to state 1

exp go to state 9

state 6

exp -> exp ’*’ . exp (rule 3)

NUM shift, and go to state 1

exp go to state 10

state 7

exp -> exp ’/’ . exp (rule 4)

NUM shift, and go to state 1

exp go to state 11

As was announced in beginning of the report, ‘State 8 conflicts: 1 shift/reduce’:
state 8

exp -> exp . ’+’ exp (rule 1)
exp -> exp ’+’ exp . (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

Chapter 8: Debugging Your Parser 101

’/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

Indeed, there are two actions associated to the lookahead ‘/’: either shifting (and going to
state 7), or reducing rule 1. The conflict means that either the grammar is ambiguous, or the
parser lacks information to make the right decision. Indeed the grammar is ambiguous, as, since
we did not specify the precedence of ‘/’, the sentence ‘NUM + NUM / NUM’ can be parsed as ‘NUM
+ (NUM / NUM)’, which corresponds to shifting ‘/’, or as ‘(NUM + NUM) / NUM’, which corresponds
to reducing rule 1.

Because in LALR(1) parsing a single decision can be made, Bison arbitrarily chose to disable
the reduction, see Section 5.2 [Shift/Reduce Conflicts], page 82. Discarded actions are reported
in between square brackets.

Note that all the previous states had a single possible action: either shifting the next token
and going to the corresponding state, or reducing a single rule. In the other cases, i.e., when
shifting and reducing is possible or when several reductions are possible, the lookahead is re-
quired to select the action. State 8 is one such state: if the lookahead is ‘*’ or ‘/’ then the
action is shifting, otherwise the action is reducing rule 1. In other words, the first two items,
corresponding to rule 1, are not eligible when the lookahead token is ‘*’, since we specified
that ‘*’ has higher precedence than ‘+’. More generally, some items are eligible only with some
set of possible lookahead tokens. When run with ‘--report=lookahead’, Bison specifies these
lookahead tokens:

state 8

exp -> exp . ’+’ exp (rule 1)
exp -> exp ’+’ exp . [$, ’+’, ’-’, ’/’] (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

The remaining states are similar:

state 9

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp ’-’ exp . (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 2 (exp)]
$default reduce using rule 2 (exp)

state 10

102 Bison 2.4.1

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp ’*’ exp . (rule 3)
exp -> exp . ’/’ exp (rule 4)

’/’ shift, and go to state 7

’/’ [reduce using rule 3 (exp)]
$default reduce using rule 3 (exp)

state 11

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)
exp -> exp ’/’ exp . (rule 4)

’+’ shift, and go to state 4
’-’ shift, and go to state 5
’*’ shift, and go to state 6
’/’ shift, and go to state 7

’+’ [reduce using rule 4 (exp)]
’-’ [reduce using rule 4 (exp)]
’*’ [reduce using rule 4 (exp)]
’/’ [reduce using rule 4 (exp)]
$default reduce using rule 4 (exp)

Observe that state 11 contains conflicts not only due to the lack of precedence of ‘/’ with respect
to ‘+’, ‘-’, and ‘*’, but also because the associativity of ‘/’ is not specified.

8.2 Tracing Your Parser

If a Bison grammar compiles properly but doesn’t do what you want when it runs, the yydebug
parser-trace feature can help you figure out why.

There are several means to enable compilation of trace facilities:

the macro YYDEBUG
Define the macro YYDEBUG to a nonzero value when you compile the parser. This
is compliant with POSIX Yacc. You could use ‘-DYYDEBUG=1’ as a compiler option
or you could put ‘#define YYDEBUG 1’ in the prologue of the grammar file (see
Section 3.1.1 [The Prologue], page 43).

the option ‘-t’, ‘--debug’
Use the ‘-t’ option when you run Bison (see Chapter 9 [Invoking Bison], page 105).
This is POSIX compliant too.

the directive ‘%debug’
Add the %debug directive (see Section 3.7.12 [Bison Declaration Summary], page 65).
This is a Bison extension, which will prove useful when Bison will output parsers for
languages that don’t use a preprocessor. Unless POSIX and Yacc portability matter
to you, this is the preferred solution.

Chapter 8: Debugging Your Parser 103

We suggest that you always enable the debug option so that debugging is always possible.
The trace facility outputs messages with macro calls of the form YYFPRINTF (stderr, for-

mat, args) where format and args are the usual printf format and variadic arguments. If you
define YYDEBUG to a nonzero value but do not define YYFPRINTF, <stdio.h> is automatically
included and YYFPRINTF is defined to fprintf.

Once you have compiled the program with trace facilities, the way to request a trace is to
store a nonzero value in the variable yydebug. You can do this by making the C code do it (in
main, perhaps), or you can alter the value with a C debugger.

Each step taken by the parser when yydebug is nonzero produces a line or two of trace
information, written on stderr. The trace messages tell you these things:
• Each time the parser calls yylex, what kind of token was read.
• Each time a token is shifted, the depth and complete contents of the state stack (see

Section 5.5 [Parser States], page 85).
• Each time a rule is reduced, which rule it is, and the complete contents of the state stack

afterward.

To make sense of this information, it helps to refer to the listing file produced by the Bison
‘-v’ option (see Chapter 9 [Invoking Bison], page 105). This file shows the meaning of each state
in terms of positions in various rules, and also what each state will do with each possible input
token. As you read the successive trace messages, you can see that the parser is functioning
according to its specification in the listing file. Eventually you will arrive at the place where
something undesirable happens, and you will see which parts of the grammar are to blame.

The parser file is a C program and you can use C debuggers on it, but it’s not easy to interpret
what it is doing. The parser function is a finite-state machine interpreter, and aside from the
actions it executes the same code over and over. Only the values of variables show where in the
grammar it is working.

The debugging information normally gives the token type of each token read, but not its
semantic value. You can optionally define a macro named YYPRINT to provide a way to print the
value. If you define YYPRINT, it should take three arguments. The parser will pass a standard
I/O stream, the numeric code for the token type, and the token value (from yylval).

Here is an example of YYPRINT suitable for the multi-function calculator (see Section 2.5.1
[Declarations for mfcalc], page 37):

%{

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(file, type, value) print_token_value (file, type, value)

%}

... %% ... %% ...

static void

print_token_value (FILE *file, int type, YYSTYPE value)

{

if (type == VAR)

fprintf (file, "%s", value.tptr->name);

else if (type == NUM)

fprintf (file, "%d", value.val);

}

Chapter 9: Invoking Bison 105

9 Invoking Bison

The usual way to invoke Bison is as follows:

bison infile

Here infile is the grammar file name, which usually ends in ‘.y’. The parser file’s name is
made by replacing the ‘.y’ with ‘.tab.c’ and removing any leading directory. Thus, the ‘bison
foo.y’ file name yields ‘foo.tab.c’, and the ‘bison hack/foo.y’ file name yields ‘foo.tab.c’.
It’s also possible, in case you are writing C++ code instead of C in your grammar file, to name it
‘foo.ypp’ or ‘foo.y++’. Then, the output files will take an extension like the given one as input
(respectively ‘foo.tab.cpp’ and ‘foo.tab.c++’). This feature takes effect with all options that
manipulate file names like ‘-o’ or ‘-d’.

For example :

bison -d infile.yxx

will produce ‘infile.tab.cxx’ and ‘infile.tab.hxx’, and

bison -d -o output.c++ infile.y

will produce ‘output.c++’ and ‘outfile.h++’.

For compatibility with POSIX, the standard Bison distribution also contains a shell script
called yacc that invokes Bison with the ‘-y’ option.

9.1 Bison Options

Bison supports both traditional single-letter options and mnemonic long option names. Long
option names are indicated with ‘--’ instead of ‘-’. Abbreviations for option names are allowed
as long as they are unique. When a long option takes an argument, like ‘--file-prefix’,
connect the option name and the argument with ‘=’.

Here is a list of options that can be used with Bison, alphabetized by short option. It is
followed by a cross key alphabetized by long option.

Operations modes:

‘-h’
‘--help’ Print a summary of the command-line options to Bison and exit.

‘-V’
‘--version’

Print the version number of Bison and exit.

‘--print-localedir’
Print the name of the directory containing locale-dependent data.

‘--print-datadir’
Print the name of the directory containing skeletons and XSLT.

‘-y’
‘--yacc’ Act more like the traditional Yacc command. This can cause different diagnostics

to be generated, and may change behavior in other minor ways. Most importantly,
imitate Yacc’s output file name conventions, so that the parser output file is called
‘y.tab.c’, and the other outputs are called ‘y.output’ and ‘y.tab.h’. Also, if
generating an LALR(1) parser in C, generate #define statements in addition to
an enum to associate token numbers with token names. Thus, the following shell
script can substitute for Yacc, and the Bison distribution contains such a script for
compatibility with POSIX:

106 Bison 2.4.1

#! /bin/sh
bison -y "$@"

The ‘-y’/‘--yacc’ option is intended for use with traditional Yacc grammars. If
your grammar uses a Bison extension like ‘%glr-parser’, Bison might not be Yacc-
compatible even if this option is specified.

‘-W’
‘--warnings’

Output warnings falling in category . category can be one of:

midrule-values
Warn about mid-rule values that are set but not used within any of the
actions of the parent rule. For example, warn about unused $2 in:

exp: ’1’ { $$ = 1; } ’+’ exp { $$ = $1 + $4; };

Also warn about mid-rule values that are used but not set. For example,
warn about unset $$ in the mid-rule action in:

exp: ’1’ { $1 = 1; } ’+’ exp { $$ = $2 + $4; };

These warnings are not enabled by default since they sometimes prove
to be false alarms in existing grammars employing the Yacc constructs
$0 or $-n (where n is some positive integer).

yacc Incompatibilities with POSIX Yacc.

all All the warnings.

none Turn off all the warnings.

error Treat warnings as errors.

A category can be turned off by prefixing its name with ‘no-’. For instance,
‘-Wno-syntax’ will hide the warnings about unused variables.

Tuning the parser:

‘-t’
‘--debug’ In the parser file, define the macro YYDEBUG to 1 if it is not already defined, so

that the debugging facilities are compiled. See Section 8.2 [Tracing Your Parser],
page 102.

‘-L language ’
‘--language=language ’

Specify the programming language for the generated parser, as if %language was
specified (see Section 3.7.12 [Bison Declaration Summary], page 65). Currently
supported languages include C, C++, and Java. language is case-insensitive.
This option is experimental and its effect may be modified in future releases.

‘--locations’
Pretend that %locations was specified. See Section 3.7.12 [Decl Summary], page 65.

‘-p prefix ’
‘--name-prefix=prefix ’

Pretend that %name-prefix "prefix" was specified. See Section 3.7.12 [Decl Sum-
mary], page 65.

‘-l’
‘--no-lines’

Don’t put any #line preprocessor commands in the parser file. Ordinarily Bison
puts them in the parser file so that the C compiler and debuggers will associate

Chapter 9: Invoking Bison 107

errors with your source file, the grammar file. This option causes them to associate
errors with the parser file, treating it as an independent source file in its own right.

‘-S file ’
‘--skeleton=file ’

Specify the skeleton to use, similar to %skeleton (see Section 3.7.12 [Bison Decla-
ration Summary], page 65).
If file does not contain a /, file is the name of a skeleton file in the Bison installation
directory. If it does, file is an absolute file name or a file name relative to the current
working directory. This is similar to how most shells resolve commands.

‘-k’
‘--token-table’

Pretend that %token-table was specified. See Section 3.7.12 [Decl Summary],
page 65.

Adjust the output:

‘--defines[=file]’
Pretend that %defines was specified, i.e., write an extra output file containing
macro definitions for the token type names defined in the grammar, as well as a few
other declarations. See Section 3.7.12 [Decl Summary], page 65.

‘-d’ This is the same as --defines except -d does not accept a file argument since
POSIX Yacc requires that -d can be bundled with other short options.

‘-b file-prefix ’
‘--file-prefix=prefix ’

Pretend that %file-prefix was specified, i.e., specify prefix to use for all Bison
output file names. See Section 3.7.12 [Decl Summary], page 65.

‘-r things ’
‘--report=things ’

Write an extra output file containing verbose description of the comma separated
list of things among:

state Description of the grammar, conflicts (resolved and unresolved), and
LALR automaton.

lookahead
Implies state and augments the description of the automaton with each
rule’s lookahead set.

itemset Implies state and augments the description of the automaton with the
full set of items for each state, instead of its core only.

‘--report-file=file ’
Specify the file for the verbose description.

‘-v’
‘--verbose’

Pretend that %verbose was specified, i.e., write an extra output file containing
verbose descriptions of the grammar and parser. See Section 3.7.12 [Decl Summary],
page 65.

‘-o file ’
‘--output=file ’

Specify the file for the parser file.
The other output files’ names are constructed from file as described under the ‘-v’
and ‘-d’ options.

108 Bison 2.4.1

‘-g[file]’
‘--graph[=file]’

Output a graphical representation of the LALR(1) grammar automaton computed
by Bison, in Graphviz DOT format. file is optional. If omitted and the grammar
file is ‘foo.y’, the output file will be ‘foo.dot’.

‘-x[file]’
‘--xml[=file]’

Output an XML report of the LALR(1) automaton computed by Bison. file is
optional. If omitted and the grammar file is ‘foo.y’, the output file will be ‘foo.xml’.
(The current XML schema is experimental and may evolve. More user feedback will
help to stabilize it.)

9.2 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding short
option.

Long Option Short Option
‘--debug’ ‘-t’
‘--defines=[file]’
‘--file-prefix=prefix ’ ‘-b’ prefix
‘--graph=[file]’ ‘-g’ [file]
‘--help’ ‘-h’
‘--language=language ’ ‘-L’ language
‘--locations’
‘--name-prefix=prefix ’ ‘-p’ prefix
‘--no-lines’ ‘-l’
‘--output=file ’ ‘-o’ file
‘--print-datadir’
‘--print-localedir’
‘--report-file=file ’
‘--report=things ’ ‘-r’ things
‘--skeleton=file ’ ‘-S’ file
‘--token-table’ ‘-k’
‘--verbose’ ‘-v’
‘--version’ ‘-V’
‘--warnings’ ‘-W’
‘--xml=[file]’ ‘-x’ [file]
‘--yacc’ ‘-y’

9.3 Yacc Library

The Yacc library contains default implementations of the yyerror and main functions. These
default implementations are normally not useful, but POSIX requires them. To use the Yacc
library, link your program with the ‘-ly’ option. Note that Bison’s implementation of the Yacc
library is distributed under the terms of the GNU General Public License (see [Copying], page 5).

If you use the Yacc library’s yyerror function, you should declare yyerror as follows:
int yyerror (char const *);

Bison ignores the int value returned by this yyerror. If you use the Yacc library’s main
function, your yyparse function should have the following type signature:

int yyparse (void);

http://www.graphviz.org/
http://www.graphviz.org/doc/info/lang.html

Chapter 10: Parsers Written In Other Languages 109

10 Parsers Written In Other Languages

10.1 C++ Parsers

10.1.1 C++ Bison Interface

The C++ LALR(1) parser is selected using the skeleton directive, ‘%skeleton "lalr1.c"’, or the
synonymous command-line option ‘--skeleton=lalr1.c’. See Section 3.7.12 [Decl Summary],
page 65.

When run, bison will create several entities in the ‘yy’ namespace. Use the ‘%define
namespace’ directive to change the namespace name, see Section 3.7.12 [Decl Summary], page 65.
The various classes are generated in the following files:

‘position.hh’
‘location.hh’

The definition of the classes position and location, used for location tracking.
See Section 10.1.3 [C++ Location Values], page 109.

‘stack.hh’
An auxiliary class stack used by the parser.

‘file.hh’
‘file.cc’ (Assuming the extension of the input file was ‘.yy’.) The declaration and implemen-

tation of the C++ parser class. The basename and extension of these two files follow
the same rules as with regular C parsers (see Chapter 9 [Invocation], page 105).
The header is mandatory ; you must either pass ‘-d’/‘--defines’ to bison, or use
the ‘%defines’ directive.

All these files are documented using Doxygen; run doxygen for a complete and accurate
documentation.

10.1.2 C++ Semantic Values

The %union directive works as for C, see Section 3.7.4 [The Collection of Value Types], page 59.
In particular it produces a genuine union1, which have a few specific features in C++.
− The type YYSTYPE is defined but its use is discouraged: rather you should refer to the

parser’s encapsulated type yy::parser::semantic_type.
− Non POD (Plain Old Data) types cannot be used. C++ forbids any instance of classes with

constructors in unions: only pointers to such objects are allowed.

Because objects have to be stored via pointers, memory is not reclaimed automatically: using
the %destructor directive is the only means to avoid leaks. See Section 3.7.7 [Freeing Discarded
Symbols], page 61.

10.1.3 C++ Location Values

When the directive %locations is used, the C++ parser supports location tracking, see
Section 3.6 [Locations Overview], page 55. Two auxiliary classes define a position, a sin-
gle point in a file, and a location, a range composed of a pair of positions (possibly spanning
several files).

[Method on position]std::string* file
The name of the file. It will always be handled as a pointer, the parser will never duplicate
nor deallocate it. As an experimental feature you may change it to ‘type*’ using ‘%define
filename_type "type"’.

1 In the future techniques to allow complex types within pseudo-unions (similar to Boost variants) might be
implemented to alleviate these issues.

110 Bison 2.4.1

[Method on position]unsigned int line
The line, starting at 1.

[Method on position]unsigned int lines (int height = 1)
Advance by height lines, resetting the column number.

[Method on position]unsigned int column
The column, starting at 0.

[Method on position]unsigned int columns (int width = 1)
Advance by width columns, without changing the line number.

[Method on position]position& operator+= (position& pos , int width)
[Method on position]position operator+ (const position& pos , int width)
[Method on position]position& operator-= (const position& pos , int width)
[Method on position]position operator- (position& pos , int width)

Various forms of syntactic sugar for columns.

[Method on position]position operator<< (std::ostream o , const position& p)
Report p on o like this: ‘file:line.column ’, or ‘line.column ’ if file is null.

[Method on location]position begin
[Method on location]position end

The first, inclusive, position of the range, and the first beyond.

[Method on location]unsigned int columns (int width = 1)
[Method on location]unsigned int lines (int height = 1)

Advance the end position.

[Method on location]location operator+ (const location& begin , const location&
end)

[Method on location]location operator+ (const location& begin , int width)
[Method on location]location operator+= (const location& loc , int width)

Various forms of syntactic sugar.

[Method on location]void step ()
Move begin onto end.

10.1.4 C++ Parser Interface

The output files ‘output.hh’ and ‘output.cc’ declare and define the parser class in the
namespace yy. The class name defaults to parser, but may be changed using ‘%define
parser_class_name "name"’. The interface of this class is detailed below. It can be extended
using the %parse-param feature: its semantics is slightly changed since it describes an additional
member of the parser class, and an additional argument for its constructor.

[Type of parser]semantic_value_type
[Type of parser]location_value_type

The types for semantics value and locations.

[Method on parser]parser (type1 arg1 , ...)
Build a new parser object. There are no arguments by default, unless ‘%parse-param {type1
arg1}’ was used.

[Method on parser]int parse ()
Run the syntactic analysis, and return 0 on success, 1 otherwise.

Chapter 10: Parsers Written In Other Languages 111

[Method on parser]std::ostream& debug_stream ()
[Method on parser]void set_debug_stream (std::ostream& o)

Get or set the stream used for tracing the parsing. It defaults to std::cerr.

[Method on parser]debug_level_type debug_level ()
[Method on parser]void set_debug_level (debug level l)

Get or set the tracing level. Currently its value is either 0, no trace, or nonzero, full tracing.

[Method on parser]void error (const location type& l , const std::string& m)
The definition for this member function must be supplied by the user: the parser uses it to
report a parser error occurring at l, described by m.

10.1.5 C++ Scanner Interface

The parser invokes the scanner by calling yylex. Contrary to C parsers, C++ parsers are always
pure: there is no point in using the %define api.pure directive. Therefore the interface is as
follows.

[Method on parser]int yylex (semantic value type& yylval , location type& yylloc ,
type1 arg1 , ...)

Return the next token. Its type is the return value, its semantic value and location being
yylval and yylloc. Invocations of ‘%lex-param {type1 arg1}’ yield additional arguments.

10.1.6 A Complete C++ Example

This section demonstrates the use of a C++ parser with a simple but complete example.
This example should be available on your system, ready to compile, in the directory ../bi-
son/examples/calc++. It focuses on the use of Bison, therefore the design of the various C++
classes is very naive: no accessors, no encapsulation of members etc. We will use a Lex scanner,
and more precisely, a Flex scanner, to demonstrate the various interaction. A hand written
scanner is actually easier to interface with.

10.1.6.1 Calc++ — C++ Calculator

Of course the grammar is dedicated to arithmetics, a single expression, possibly preceded by
variable assignments. An environment containing possibly predefined variables such as one and
two, is exchanged with the parser. An example of valid input follows.

three := 3
seven := one + two * three
seven * seven

10.1.6.2 Calc++ Parsing Driver

To support a pure interface with the parser (and the scanner) the technique of the “parsing
context” is convenient: a structure containing all the data to exchange. Since, in addition to
simply launch the parsing, there are several auxiliary tasks to execute (open the file for parsing,
instantiate the parser etc.), we recommend transforming the simple parsing context structure
into a fully blown parsing driver class.

The declaration of this driver class, ‘calc++-driver.hh’, is as follows. The first part includes
the CPP guard and imports the required standard library components, and the declaration of
the parser class.

#ifndef CALCXX_DRIVER_HH
define CALCXX_DRIVER_HH
include <string>
include <map>
include "calc++-parser.hh"

112 Bison 2.4.1

Then comes the declaration of the scanning function. Flex expects the signature of yylex to
be defined in the macro YY_DECL, and the C++ parser expects it to be declared. We can factor
both as follows.

// Tell Flex the lexer’s prototype ...
define YY_DECL \
yy::calcxx_parser::token_type \
yylex (yy::calcxx_parser::semantic_type* yylval, \

yy::calcxx_parser::location_type* yylloc, \
calcxx_driver& driver)

// ... and declare it for the parser’s sake.
YY_DECL;

The calcxx_driver class is then declared with its most obvious members.

// Conducting the whole scanning and parsing of Calc++.
class calcxx_driver
{
public:
calcxx_driver ();
virtual ~calcxx_driver ();

std::map<std::string, int> variables;

int result;

To encapsulate the coordination with the Flex scanner, it is useful to have two members function
to open and close the scanning phase.

// Handling the scanner.
void scan_begin ();
void scan_end ();
bool trace_scanning;

Similarly for the parser itself.

// Run the parser. Return 0 on success.
int parse (const std::string& f);
std::string file;
bool trace_parsing;

To demonstrate pure handling of parse errors, instead of simply dumping them on the standard
error output, we will pass them to the compiler driver using the following two member functions.
Finally, we close the class declaration and CPP guard.

// Error handling.
void error (const yy::location& l, const std::string& m);
void error (const std::string& m);

};
#endif // ! CALCXX_DRIVER_HH

The implementation of the driver is straightforward. The parse member function deserves
some attention. The error functions are simple stubs, they should actually register the located
error messages and set error state.

#include "calc++-driver.hh"
#include "calc++-parser.hh"

calcxx_driver::calcxx_driver ()
: trace_scanning (false), trace_parsing (false)

Chapter 10: Parsers Written In Other Languages 113

{
variables["one"] = 1;
variables["two"] = 2;

}

calcxx_driver::~calcxx_driver ()
{
}

int
calcxx_driver::parse (const std::string &f)
{
file = f;
scan_begin ();
yy::calcxx_parser parser (*this);
parser.set_debug_level (trace_parsing);
int res = parser.parse ();
scan_end ();
return res;

}

void
calcxx_driver::error (const yy::location& l, const std::string& m)
{
std::cerr << l << ": " << m << std::endl;

}

void
calcxx_driver::error (const std::string& m)
{
std::cerr << m << std::endl;

}

10.1.6.3 Calc++ Parser

The parser definition file ‘calc++-parser.yy’ starts by asking for the C++ LALR(1) skeleton,
the creation of the parser header file, and specifies the name of the parser class. Because the
C++ skeleton changed several times, it is safer to require the version you designed the grammar
for.

%skeleton "lalr1.cc" /* -*- C++ -*- */
%require "2.4.1"
%defines
%define parser_class_name "calcxx_parser"

Then come the declarations/inclusions needed to define the %union. Because the parser uses the
parsing driver and reciprocally, both cannot include the header of the other. Because the driver’s
header needs detailed knowledge about the parser class (in particular its inner types), it is the
parser’s header which will simply use a forward declaration of the driver. See Section 3.7.12
[%code], page 65.

%code requires {
include <string>
class calcxx_driver;
}

114 Bison 2.4.1

The driver is passed by reference to the parser and to the scanner. This provides a simple but
effective pure interface, not relying on global variables.

// The parsing context.
%parse-param { calcxx_driver& driver }
%lex-param { calcxx_driver& driver }

Then we request the location tracking feature, and initialize the first location’s file name. Af-
terwards new locations are computed relatively to the previous locations: the file name will be
automatically propagated.

%locations
%initial-action
{
// Initialize the initial location.
@$.begin.filename = @$.end.filename = &driver.file;

};

Use the two following directives to enable parser tracing and verbose error messages.

%debug
%error-verbose

Semantic values cannot use “real” objects, but only pointers to them.

// Symbols.
%union
{
int ival;
std::string *sval;

};

The code between ‘%code {’ and ‘}’ is output in the ‘*.cc’ file; it needs detailed knowledge
about the driver.

%code {
include "calc++-driver.hh"
}

The token numbered as 0 corresponds to end of file; the following line allows for nicer error
messages referring to “end of file” instead of “$end”. Similarly user friendly named are provided
for each symbol. Note that the tokens names are prefixed by TOKEN_ to avoid name clashes.

%token END 0 "end of file"
%token ASSIGN ":="
%token <sval> IDENTIFIER "identifier"
%token <ival> NUMBER "number"
%type <ival> exp

To enable memory deallocation during error recovery, use %destructor.

%printer { debug_stream () << *$$; } "identifier"
%destructor { delete $$; } "identifier"

%printer { debug_stream () << $$; } <ival>

The grammar itself is straightforward.

%%
%start unit;
unit: assignments exp { driver.result = $2; };

assignments: assignments assignment {}

Chapter 10: Parsers Written In Other Languages 115

| /* Nothing. */ {};

assignment:
"identifier" ":=" exp
{ driver.variables[*$1] = $3; delete $1; };

%left ’+’ ’-’;
%left ’*’ ’/’;
exp: exp ’+’ exp { $$ = $1 + $3; }

| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| "identifier" { $$ = driver.variables[*$1]; delete $1; }
| "number" { $$ = $1; };

%%

Finally the error member function registers the errors to the driver.
void
yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,

const std::string& m)
{
driver.error (l, m);

}

10.1.6.4 Calc++ Scanner

The Flex scanner first includes the driver declaration, then the parser’s to get the set of defined
tokens.

%{ /* -*- C++ -*- */
include <cstdlib>
include <errno.h>
include <limits.h>
include <string>
include "calc++-driver.hh"
include "calc++-parser.hh"

/* Work around an incompatibility in flex (at least versions
2.5.31 through 2.5.33): it generates code that does
not conform to C89. See Debian bug 333231
<http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */

undef yywrap
define yywrap() 1

/* By default yylex returns int, we use token_type.
Unfortunately yyterminate by default returns 0, which is
not of token_type. */

#define yyterminate() return token::END
%}

Because there is no #include-like feature we don’t need yywrap, we don’t need unput either,
and we parse an actual file, this is not an interactive session with the user. Finally we enable
the scanner tracing features.

%option noyywrap nounput batch debug

Abbreviations allow for more readable rules.

116 Bison 2.4.1

id [a-zA-Z][a-zA-Z_0-9]*
int [0-9]+
blank [\t]

The following paragraph suffices to track locations accurately. Each time yylex is invoked, the
begin position is moved onto the end position. Then when a pattern is matched, the end position
is advanced of its width. In case it matched ends of lines, the end cursor is adjusted, and each
time blanks are matched, the begin cursor is moved onto the end cursor to effectively ignore the
blanks preceding tokens. Comments would be treated equally.

%{
define YY_USER_ACTION yylloc->columns (yyleng);
%}
%%
%{
yylloc->step ();

%}
{blank}+ yylloc->step ();
[\n]+ yylloc->lines (yyleng); yylloc->step ();

The rules are simple, just note the use of the driver to report errors. It is convenient to use
a typedef to shorten yy::calcxx_parser::token::identifier into token::identifier for
instance.

%{
typedef yy::calcxx_parser::token token;

%}
/* Convert ints to the actual type of tokens. */

[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
":=" return token::ASSIGN;
{int} {
errno = 0;
long n = strtol (yytext, NULL, 10);
if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
driver.error (*yylloc, "integer is out of range");

yylval->ival = n;
return token::NUMBER;

}
{id} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
. driver.error (*yylloc, "invalid character");
%%

Finally, because the scanner related driver’s member function depend on the scanner’s data, it
is simpler to implement them in this file.

void
calcxx_driver::scan_begin ()
{
yy_flex_debug = trace_scanning;
if (file == "-")
yyin = stdin;

else if (!(yyin = fopen (file.c_str (), "r")))
{

error (std::string ("cannot open ") + file);
exit (1);

}

Chapter 10: Parsers Written In Other Languages 117

}

void
calcxx_driver::scan_end ()
{
fclose (yyin);

}

10.1.6.5 Calc++ Top Level

The top level file, ‘calc++.cc’, poses no problem.
#include <iostream>
#include "calc++-driver.hh"

int
main (int argc, char *argv[])
{
calcxx_driver driver;
for (++argv; argv[0]; ++argv)
if (*argv == std::string ("-p"))
driver.trace_parsing = true;

else if (*argv == std::string ("-s"))
driver.trace_scanning = true;

else if (!driver.parse (*argv))
std::cout << driver.result << std::endl;

}

10.2 Java Parsers

10.2.1 Java Bison Interface

(The current Java interface is experimental and may evolve. More user feedback will help to
stabilize it.)

The Java parser skeletons are selected using the %language "Java" directive or the ‘-L
java’/‘--language=java’ option.

When generating a Java parser, bison basename.y will create a single Java source file named
‘basename.java’. Using an input file without a ‘.y’ suffix is currently broken. The basename of
the output file can be changed by the %file-prefix directive or the ‘-p’/‘--name-prefix’ op-
tion. The entire output file name can be changed by the %output directive or the ‘-o’/‘--output’
option. The output file contains a single class for the parser.

You can create documentation for generated parsers using Javadoc.
Contrary to C parsers, Java parsers do not use global variables; the state of the parser is

always local to an instance of the parser class. Therefore, all Java parsers are “pure”, and the
%pure-parser and %define api.pure directives does not do anything when used in Java.

Push parsers are currently unsupported in Java and %define api.push_pull have no effect.
GLR parsers are currently unsupported in Java. Do not use the glr-parser directive.
No header file can be generated for Java parsers. Do not use the %defines directive or the

‘-d’/‘--defines’ options.
Currently, support for debugging and verbose errors are always compiled in. Thus the %debug

and %token-table directives and the ‘-t’/‘--debug’ and ‘-k’/‘--token-table’ options have no
effect. This may change in the future to eliminate unused code in the generated parser, so

118 Bison 2.4.1

use %debug and %verbose-error explicitly if needed. Also, in the future the %token-table
directive might enable a public interface to access the token names and codes.

10.2.2 Java Semantic Values

There is no %union directive in Java parsers. Instead, the semantic values’ types (class names)
should be specified in the %type or %token directive:

%type <Expression> expr assignment_expr term factor
%type <Integer> number

By default, the semantic stack is declared to have Object members, which means that the
class types you specify can be of any class. To improve the type safety of the parser, you can
declare the common superclass of all the semantic values using the %define stype directive.
For example, after the following declaration:

%define stype "ASTNode"

any %type or %token specifying a semantic type which is not a subclass of ASTNode, will cause
a compile-time error.

Types used in the directives may be qualified with a package name. Primitive data types are
accepted for Java version 1.5 or later. Note that in this case the autoboxing feature of Java 1.5
will be used. Generic types may not be used; this is due to a limitation in the implementation
of Bison, and may change in future releases.

Java parsers do not support %destructor, since the language adopts garbage collection. The
parser will try to hold references to semantic values for as little time as needed.

Java parsers do not support %printer, as toString() can be used to print the semantic
values. This however may change (in a backwards-compatible way) in future versions of Bison.

10.2.3 Java Location Values

When the directive %locations is used, the Java parser supports location tracking, see
Section 3.6 [Locations Overview], page 55. An auxiliary user-defined class defines a position, a
single point in a file; Bison itself defines a class representing a location, a range composed of
a pair of positions (possibly spanning several files). The location class is an inner class of the
parser; the name is Location by default, and may also be renamed using %define location_
type "class-name .

The location class treats the position as a completely opaque value. By default, the class
name is Position, but this can be changed with %define position_type "class-name". This
class must be supplied by the user.

[Instance Variable of Location]Position begin
[Instance Variable of Location]Position end

The first, inclusive, position of the range, and the first beyond.

[Constructor on Location]Location (Position loc)
Create a Location denoting an empty range located at a given point.

[Constructor on Location]Location (Position begin , Position end)
Create a Location from the endpoints of the range.

[Method on Location]String toString ()
Prints the range represented by the location. For this to work properly, the position class
should override the equals and toString methods appropriately.

Chapter 10: Parsers Written In Other Languages 119

10.2.4 Java Parser Interface

The name of the generated parser class defaults to YYParser. The YY prefix may be changed us-
ing the %name-prefix directive or the ‘-p’/‘--name-prefix’ option. Alternatively, use %define
parser_class_name "name" to give a custom name to the class. The interface of this class is
detailed below.

By default, the parser class has package visibility. A declaration %define public will change
to public visibility. Remember that, according to the Java language specification, the name of
the ‘.java’ file should match the name of the class in this case. Similarly, you can use abstract,
final and strictfp with the %define declaration to add other modifiers to the parser class.

The Java package name of the parser class can be specified using the %define package
directive. The superclass and the implemented interfaces of the parser class can be specified
with the %define extends and %define implements directives.

The parser class defines an inner class, Location, that is used for location tracking (see
Section 10.2.3 [Java Location Values], page 118), and a inner interface, Lexer (see Section 10.2.5
[Java Scanner Interface], page 119). Other than these inner class/interface, and the members
described in the interface below, all the other members and fields are preceded with a yy or YY
prefix to avoid clashes with user code.

The parser class can be extended using the %parse-param directive. Each occurrence of
the directive will add a protected final field to the parser class, and an argument to its
constructor, which initialize them automatically.

Token names defined by %token and the predefined EOF token name are added as constant
fields to the parser class.

[Constructor on YYParser]YYParser (lex_param , . . . , parse_param , . . .)
Build a new parser object with embedded %code lexer. There are no parameters, unless
%parse-params and/or %lex-params are used.

[Constructor on YYParser]YYParser (Lexer lexer , parse_param , . . .)
Build a new parser object using the specified scanner. There are no additional parameters
unless %parse-params are used.
If the scanner is defined by %code lexer, this constructor is declared protected and is called
automatically with a scanner created with the correct %lex-params.

[Method on YYParser]boolean parse ()
Run the syntactic analysis, and return true on success, false otherwise.

[Method on YYParser]boolean recovering ()
During the syntactic analysis, return true if recovering from a syntax error. See Chapter 6
[Error Recovery], page 91.

[Method on YYParser]java.io.PrintStream getDebugStream ()
[Method on YYParser]void setDebugStream (java.io.printStream o)

Get or set the stream used for tracing the parsing. It defaults to System.err.

[Method on YYParser]int getDebugLevel ()
[Method on YYParser]void setDebugLevel (int l)

Get or set the tracing level. Currently its value is either 0, no trace, or nonzero, full tracing.

10.2.5 Java Scanner Interface

There are two possible ways to interface a Bison-generated Java parser with a scanner: the
scanner may be defined by %code lexer, or defined elsewhere. In either case, the scanner has
to implement the Lexer inner interface of the parser class.

120 Bison 2.4.1

In the first case, the body of the scanner class is placed in %code lexer blocks. If you want
to pass parameters from the parser constructor to the scanner constructor, specify them with
%lex-param; they are passed before %parse-params to the constructor.

In the second case, the scanner has to implement the Lexer interface, which is defined within
the parser class (e.g., YYParser.Lexer). The constructor of the parser object will then accept
an object implementing the interface; %lex-param is not used in this case.

In both cases, the scanner has to implement the following methods.

[Method on Lexer]void yyerror (Location loc , String msg)
This method is defined by the user to emit an error message. The first parameter is omitted
if location tracking is not active. Its type can be changed using %define location_type
"class-name".

[Method on Lexer]int yylex ()
Return the next token. Its type is the return value, its semantic value and location are saved
and returned by the ther methods in the interface.
Use %define lex_throws to specify any uncaught exceptions. Default is
java.io.IOException.

[Method on Lexer]Position getStartPos ()
[Method on Lexer]Position getEndPos ()

Return respectively the first position of the last token that yylex returned, and the first
position beyond it. These methods are not needed unless location tracking is active.
The return type can be changed using %define position_type "class-name".

[Method on Lexer]Object getLVal ()
Return the semantical value of the last token that yylex returned.
The return type can be changed using %define stype "class-name".

10.2.6 Special Features for Use in Java Actions

The following special constructs can be uses in Java actions. Other analogous C action features
are currently unavailable for Java.

Use %define throws to specify any uncaught exceptions from parser actions, and initial
actions specified by %initial-action.

[Variable]$n
The semantic value for the nth component of the current rule. This may not be assigned to.
See Section 10.2.2 [Java Semantic Values], page 118.

[Variable]$<typealt>n
Like $n but specifies a alternative type typealt. See Section 10.2.2 [Java Semantic Values],
page 118.

[Variable]$$
The semantic value for the grouping made by the current rule. As a value, this is in the
base type (Object or as specified by %define stype) as in not cast to the declared subtype
because casts are not allowed on the left-hand side of Java assignments. Use an explicit Java
cast if the correct subtype is needed. See Section 10.2.2 [Java Semantic Values], page 118.

[Variable]$<typealt>$
Same as $$ since Java always allow assigning to the base type. Perhaps we should use this
and $<>$ for the value and $$ for setting the value but there is currently no easy way to
distinguish these constructs. See Section 10.2.2 [Java Semantic Values], page 118.

Chapter 10: Parsers Written In Other Languages 121

[Variable]@n
The location information of the nth component of the current rule. This may not be assigned
to. See Section 10.2.3 [Java Location Values], page 118.

[Variable]@$
The location information of the grouping made by the current rule. See Section 10.2.3 [Java
Location Values], page 118.

[Statement]return YYABORT;
Return immediately from the parser, indicating failure. See Section 10.2.4 [Java Parser
Interface], page 119.

[Statement]return YYACCEPT;
Return immediately from the parser, indicating success. See Section 10.2.4 [Java Parser
Interface], page 119.

[Statement]return YYERROR;
Start error recovery without printing an error message. See Chapter 6 [Error Recovery],
page 91.

[Statement]return YYFAIL;
Print an error message and start error recovery. See Chapter 6 [Error Recovery], page 91.

[Function]boolean recovering ()
Return whether error recovery is being done. In this state, the parser reads token until it
reaches a known state, and then restarts normal operation. See Chapter 6 [Error Recovery],
page 91.

[Function]protected void yyerror (String msg)
[Function]protected void yyerror (Position pos, String msg)
[Function]protected void yyerror (Location loc, String msg)

Print an error message using the yyerror method of the scanner instance in use.

10.2.7 Differences between C/C++ and Java Grammars

The different structure of the Java language forces several differences between C/C++ grammars,
and grammars designed for Java parsers. This section summarizes these differences.
• Java lacks a preprocessor, so the YYERROR, YYACCEPT, YYABORT symbols (see Appendix A

[Table of Symbols], page 131) cannot obviously be macros. Instead, they should be preceded
by return when they appear in an action. The actual definition of these symbols is opaque
to the Bison grammar, and it might change in the future. The only meaningful operation
that you can do, is to return them. See see Section 10.2.6 [Java Action Features], page 120.
Note that of these three symbols, only YYACCEPT and YYABORT will cause a return from the
yyparse method2.

• Java lacks unions, so %union has no effect. Instead, semantic values have a common base
type: Object or as specified by %define stype. Angle backets on %token, type, $n and $$
specify subtypes rather than fields of an union. The type of $$, even with angle brackets, is
the base type since Java casts are not allow on the left-hand side of assignments. Also, $n
and @n are not allowed on the left-hand side of assignments. See see Section 10.2.2 [Java
Semantic Values], page 118 and see Section 10.2.6 [Java Action Features], page 120.

• The prolog declarations have a different meaning than in C/C++ code.

2 Java parsers include the actions in a separate method than yyparse in order to have an intuitive syntax that
corresponds to these C macros.

122 Bison 2.4.1

%code imports
blocks are placed at the beginning of the Java source code. They may include
copyright notices. For a package declarations, it is suggested to use %define
package instead.

unqualified %code
blocks are placed inside the parser class.

%code lexer
blocks, if specified, should include the implementation of the scanner. If there
is no such block, the scanner can be any class that implements the appropriate
interface (see see Section 10.2.5 [Java Scanner Interface], page 119).

Other %code blocks are not supported in Java parsers. In particular, %{ ... %} blocks
should not be used and may give an error in future versions of Bison.
The epilogue has the same meaning as in C/C++ code and it can be used to define other
classes used by the parser outside the parser class.

10.2.8 Java Declarations Summary

This summary only include declarations specific to Java or have special meaning when used in
a Java parser.

[Directive]%language "Java"
Generate a Java class for the parser.

[Directive]%lex-param {type name}
A parameter for the lexer class defined by %code lexer only, added as parameters to the
lexer constructor and the parser constructor that creates a lexer. Default is none. See
Section 10.2.5 [Java Scanner Interface], page 119.

[Directive]%name-prefix "prefix"
The prefix of the parser class name prefixParser if %define parser_class_name is not
used. Default is YY. See Section 10.2.1 [Java Bison Interface], page 117.

[Directive]%parse-param {type name}
A parameter for the parser class added as parameters to constructor(s) and as fields initialized
by the constructor(s). Default is none. See Section 10.2.4 [Java Parser Interface], page 119.

[Directive]%token <type> token . . .
Declare tokens. Note that the angle brackets enclose a Java type. See Section 10.2.2 [Java
Semantic Values], page 118.

[Directive]%type <type> nonterminal . . .
Declare the type of nonterminals. Note that the angle brackets enclose a Java type. See
Section 10.2.2 [Java Semantic Values], page 118.

[Directive]%code { code . . . }
Code appended to the inside of the parser class. See Section 10.2.7 [Java Differences],
page 121.

[Directive]%code imports { code . . . }
Code inserted just after the package declaration. See Section 10.2.7 [Java Differences],
page 121.

[Directive]%code lexer { code . . . }
Code added to the body of a inner lexer class within the parser class. See Section 10.2.5
[Java Scanner Interface], page 119.

Chapter 10: Parsers Written In Other Languages 123

[Directive]%% code . . .
Code (after the second %%) appended to the end of the file, outside the parser class. See
Section 10.2.7 [Java Differences], page 121.

[Directive]%{ code . . . %}
Not supported. Use %code import instead. See Section 10.2.7 [Java Differences], page 121.

[Directive]%define abstract
Whether the parser class is declared abstract. Default is false. See Section 10.2.1 [Java
Bison Interface], page 117.

[Directive]%define extends "superclass"
The superclass of the parser class. Default is none. See Section 10.2.1 [Java Bison Interface],
page 117.

[Directive]%define final
Whether the parser class is declared final. Default is false. See Section 10.2.1 [Java Bison
Interface], page 117.

[Directive]%define implements "interfaces"
The implemented interfaces of the parser class, a comma-separated list. Default is none. See
Section 10.2.1 [Java Bison Interface], page 117.

[Directive]%define lex_throws "exceptions"
The exceptions thrown by the yylex method of the lexer, a comma-separated list. Default
is java.io.IOException. See Section 10.2.5 [Java Scanner Interface], page 119.

[Directive]%define location_type "class"
The name of the class used for locations (a range between two positions). This class is gen-
erated as an inner class of the parser class by bison. Default is Location. See Section 10.2.3
[Java Location Values], page 118.

[Directive]%define package "package"
The package to put the parser class in. Default is none. See Section 10.2.1 [Java Bison
Interface], page 117.

[Directive]%define parser_class_name "name"
The name of the parser class. Default is YYParser or name-prefixParser. See Section 10.2.1
[Java Bison Interface], page 117.

[Directive]%define position_type "class"
The name of the class used for positions. This class must be supplied by the user. Default is
Position. See Section 10.2.3 [Java Location Values], page 118.

[Directive]%define public
Whether the parser class is declared public. Default is false. See Section 10.2.1 [Java Bison
Interface], page 117.

[Directive]%define stype "class"
The base type of semantic values. Default is Object. See Section 10.2.2 [Java Semantic
Values], page 118.

[Directive]%define strictfp
Whether the parser class is declared strictfp. Default is false. See Section 10.2.1 [Java
Bison Interface], page 117.

[Directive]%define throws "exceptions"
The exceptions thrown by user-supplied parser actions and %initial-action, a comma-
separated list. Default is none. See Section 10.2.4 [Java Parser Interface], page 119.

Chapter 11: Frequently Asked Questions 125

11 Frequently Asked Questions

Several questions about Bison come up occasionally. Here some of them are addressed.

11.1 Memory Exhausted

My parser returns with error with a ‘memory exhausted’
message. What can I do?

This question is already addressed elsewhere, See Section 3.4 [Recursive Rules], page 50.

11.2 How Can I Reset the Parser

The following phenomenon has several symptoms, resulting in the following typical questions:
I invoke yyparse several times, and on correct input it works
properly; but when a parse error is found, all the other calls fail
too. How can I reset the error flag of yyparse?

or
My parser includes support for an ‘#include’-like feature, in
which case I run yyparse from yyparse. This fails
although I did specify %define api.pure.

These problems typically come not from Bison itself, but from Lex-generated scanners. Be-
cause these scanners use large buffers for speed, they might not notice a change of input file. As
a demonstration, consider the following source file, ‘first-line.l’:
%{
#include <stdio.h>
#include <stdlib.h>
%}
%%
.*\n ECHO; return 1;
%%
int
yyparse (char const *file)
{
yyin = fopen (file, "r");
if (!yyin)

exit (2);
/* One token only. */
yylex ();
if (fclose (yyin) != 0)

exit (3);
return 0;

}

int
main (void)
{
yyparse ("input");
yyparse ("input");
return 0;

}

If the file ‘input’ contains

126 Bison 2.4.1

input:1: Hello,
input:2: World!

then instead of getting the first line twice, you get:
$ flex -ofirst-line.c first-line.l

$ gcc -ofirst-line first-line.c -ll

$./first-line

input:1: Hello,
input:2: World!

Therefore, whenever you change yyin, you must tell the Lex-generated scanner to discard its
current buffer and switch to the new one. This depends upon your implementation of Lex; see
its documentation for more. For Flex, it suffices to call ‘YY_FLUSH_BUFFER’ after each change
to yyin. If your Flex-generated scanner needs to read from several input streams to handle
features like include files, you might consider using Flex functions like ‘yy_switch_to_buffer’
that manipulate multiple input buffers.

If your Flex-generated scanner uses start conditions (see Section “Start conditions” in The
Flex Manual), you might also want to reset the scanner’s state, i.e., go back to the initial start
condition, through a call to ‘BEGIN (0)’.

11.3 Strings are Destroyed

My parser seems to destroy old strings, or maybe it loses track of
them. Instead of reporting ‘"foo", "bar"’, it reports
‘"bar", "bar"’, or even ‘"foo\nbar", "bar"’.

This error is probably the single most frequent “bug report” sent to Bison lists, but is only
concerned with a misunderstanding of the role of the scanner. Consider the following Lex code:
%{
#include <stdio.h>
char *yylval = NULL;
%}
%%
.* yylval = yytext; return 1;
\n /* IGNORE */
%%
int
main ()
{
/* Similar to using $1, $2 in a Bison action. */
char *fst = (yylex (), yylval);
char *snd = (yylex (), yylval);
printf ("\"%s\", \"%s\"\n", fst, snd);
return 0;

}

If you compile and run this code, you get:
$ flex -osplit-lines.c split-lines.l

$ gcc -osplit-lines split-lines.c -ll

$ printf ’one\ntwo\n’ | ./split-lines

"one
two", "two"

this is because yytext is a buffer provided for reading in the action, but if you want to keep it,
you have to duplicate it (e.g., using strdup). Note that the output may depend on how your

Chapter 11: Frequently Asked Questions 127

implementation of Lex handles yytext. For instance, when given the Lex compatibility option
‘-l’ (which triggers the option ‘%array’) Flex generates a different behavior:

$ flex -l -osplit-lines.c split-lines.l

$ gcc -osplit-lines split-lines.c -ll

$ printf ’one\ntwo\n’ | ./split-lines

"two", "two"

11.4 Implementing Gotos/Loops

My simple calculator supports variables, assignments, and functions,
but how can I implement gotos, or loops?

Although very pedagogical, the examples included in the document blur the distinction to
make between the parser—whose job is to recover the structure of a text and to transmit it
to subsequent modules of the program—and the processing (such as the execution) of this
structure. This works well with so called straight line programs, i.e., precisely those that have
a straightforward execution model: execute simple instructions one after the others.

If you want a richer model, you will probably need to use the parser to construct a tree
that does represent the structure it has recovered; this tree is usually called the abstract syntax
tree, or AST for short. Then, walking through this tree, traversing it in various ways, will
enable treatments such as its execution or its translation, which will result in an interpreter or
a compiler.

This topic is way beyond the scope of this manual, and the reader is invited to consult the
dedicated literature.

11.5 Multiple start-symbols

I have several closely related grammars, and I would like to share their
implementations. In fact, I could use a single grammar but with
multiple entry points.

Bison does not support multiple start-symbols, but there is a very simple means to simulate
them. If foo and bar are the two pseudo start-symbols, then introduce two new tokens, say
START_FOO and START_BAR, and use them as switches from the real start-symbol:

%token START_FOO START_BAR;
%start start;
start: START_FOO foo

| START_BAR bar;

These tokens prevents the introduction of new conflicts. As far as the parser goes, that is all
that is needed.

Now the difficult part is ensuring that the scanner will send these tokens first. If your scanner
is hand-written, that should be straightforward. If your scanner is generated by Lex, them there
is simple means to do it: recall that anything between ‘%{ ... %}’ after the first %% is copied
verbatim in the top of the generated yylex function. Make sure a variable start_token is
available in the scanner (e.g., a global variable or using %lex-param etc.), and use the following:

/* Prologue. */
%%
%{
if (start_token)
{
int t = start_token;
start_token = 0;
return t;

128 Bison 2.4.1

}
%}
/* The rules. */

11.6 Secure? Conform?

Is Bison secure? Does it conform to POSIX?

If you’re looking for a guarantee or certification, we don’t provide it. However, Bison is
intended to be a reliable program that conforms to the POSIX specification for Yacc. If you run
into problems, please send us a bug report.

11.7 I can’t build Bison

I can’t build Bison because make complains that
msgfmt is not found.
What should I do?

Like most GNU packages with internationalization support, that feature is turned on by
default. If you have problems building in the ‘po’ subdirectory, it indicates that your system’s
internationalization support is lacking. You can re-configure Bison with ‘--disable-nls’ to
turn off this support, or you can install GNU gettext from ftp://ftp.gnu.org/gnu/gettext/
and re-configure Bison. See the file ‘ABOUT-NLS’ for more information.

11.8 Where can I find help?

I’m having trouble using Bison. Where can I find help?

First, read this fine manual. Beyond that, you can send mail to help-bison@gnu.org. This
mailing list is intended to be populated with people who are willing to answer questions about
using and installing Bison. Please keep in mind that (most of) the people on the list have
aspects of their lives which are not related to Bison (!), so you may not receive an answer to
your question right away. This can be frustrating, but please try not to honk them off; remember
that any help they provide is purely voluntary and out of the kindness of their hearts.

11.9 Bug Reports

I found a bug. What should I include in the bug report?

Before you send a bug report, make sure you are using the latest version. Check
ftp://ftp.gnu.org/pub/gnu/bison/ or one of its mirrors. Be sure to include the version
number in your bug report. If the bug is present in the latest version but not in a previous
version, try to determine the most recent version which did not contain the bug.

If the bug is parser-related, you should include the smallest grammar you can which demon-
strates the bug. The grammar file should also be complete (i.e., I should be able to run it
through Bison without having to edit or add anything). The smaller and simpler the grammar,
the easier it will be to fix the bug.

Include information about your compilation environment, including your operating system’s
name and version and your compiler’s name and version. If you have trouble compiling, you
should also include a transcript of the build session, starting with the invocation of ‘configure’.
Depending on the nature of the bug, you may be asked to send additional files as well (such as
‘config.h’ or ‘config.cache’).

Patches are most welcome, but not required. That is, do not hesitate to send a bug report
just because you can not provide a fix.

Send bug reports to bug-bison@gnu.org.

ftp://ftp.gnu.org/gnu/gettext/
mailto:help-bison@gnu.org
ftp://ftp.gnu.org/pub/gnu/bison/
mailto:bug-bison@gnu.org

Chapter 11: Frequently Asked Questions 129

11.10 More Languages

Will Bison ever have C++ and Java support? How about insert your
favorite language here?

C++ and Java support is there now, and is documented. We’d love to add other languages;
contributions are welcome.

11.11 Beta Testing

What is involved in being a beta tester?
It’s not terribly involved. Basically, you would download a test release, compile it, and use it

to build and run a parser or two. After that, you would submit either a bug report or a message
saying that everything is okay. It is important to report successes as well as failures because
test releases eventually become mainstream releases, but only if they are adequately tested. If
no one tests, development is essentially halted.

Beta testers are particularly needed for operating systems to which the developers do not
have easy access. They currently have easy access to recent GNU/Linux and Solaris versions.
Reports about other operating systems are especially welcome.

11.12 Mailing Lists

How do I join the help-bison and bug-bison mailing lists?
See http://lists.gnu.org/.

http://lists.gnu.org/

Appendix A: Bison Symbols 131

Appendix A Bison Symbols

[Variable]@$
In an action, the location of the left-hand side of the rule. See Section 3.6 [Locations Over-
view], page 55.

[Variable]@n
In an action, the location of the n-th symbol of the right-hand side of the rule. See Section 3.6
[Locations Overview], page 55.

[Variable]$$
In an action, the semantic value of the left-hand side of the rule. See Section 3.5.3 [Actions],
page 52.

[Variable]$n
In an action, the semantic value of the n-th symbol of the right-hand side of the rule. See
Section 3.5.3 [Actions], page 52.

[Delimiter]%%
Delimiter used to separate the grammar rule section from the Bison declarations section or
the epilogue. See Section 1.9 [The Overall Layout of a Bison Grammar], page 24.

[Delimiter]%{code%}
All code listed between ‘%{’ and ‘%}’ is copied directly to the output file uninterpreted. Such
code forms the prologue of the input file. See Section 3.1 [Outline of a Bison Grammar],
page 43.

[Construct]/*...*/
Comment delimiters, as in C.

[Delimiter]:
Separates a rule’s result from its components. See Section 3.3 [Syntax of Grammar Rules],
page 49.

[Delimiter];
Terminates a rule. See Section 3.3 [Syntax of Grammar Rules], page 49.

[Delimiter]|
Separates alternate rules for the same result nonterminal. See Section 3.3 [Syntax of Grammar
Rules], page 49.

[Directive]<*>
Used to define a default tagged %destructor or default tagged %printer.

This feature is experimental. More user feedback will help to determine whether it should
become a permanent feature.

See Section 3.7.7 [Freeing Discarded Symbols], page 61.

[Directive]<>
Used to define a default tagless %destructor or default tagless %printer.

This feature is experimental. More user feedback will help to determine whether it should
become a permanent feature.

See Section 3.7.7 [Freeing Discarded Symbols], page 61.

132 Bison 2.4.1

[Symbol]$accept
The predefined nonterminal whose only rule is ‘$accept: start $end’, where start is the
start symbol. See Section 3.7.9 [The Start-Symbol], page 63. It cannot be used in the
grammar.

[Directive]%code {code}
[Directive]%code qualifier {code}

Insert code verbatim into output parser source. See Section 3.7.12 [%code], page 65.

[Directive]%debug
Equip the parser for debugging. See Section 3.7.12 [Decl Summary], page 65.

[Directive]%debug
Equip the parser for debugging. See Section 3.7.12 [Decl Summary], page 65.

[Directive]%define define-variable
[Directive]%define define-variable value

Define a variable to adjust Bison’s behavior. See Section 3.7.12 [%define], page 65.

[Directive]%defines
Bison declaration to create a header file meant for the scanner. See Section 3.7.12 [Decl
Summary], page 65.

[Directive]%defines defines-file
Same as above, but save in the file defines-file. See Section 3.7.12 [Decl Summary], page 65.

[Directive]%destructor
Specify how the parser should reclaim the memory associated to discarded symbols. See
Section 3.7.7 [Freeing Discarded Symbols], page 61.

[Directive]%dprec
Bison declaration to assign a precedence to a rule that is used at parse time to resolve
reduce/reduce conflicts. See Section 1.5 [Writing GLR Parsers], page 17.

[Symbol]$end
The predefined token marking the end of the token stream. It cannot be used in the grammar.

[Symbol]error
A token name reserved for error recovery. This token may be used in grammar rules so as
to allow the Bison parser to recognize an error in the grammar without halting the process.
In effect, a sentence containing an error may be recognized as valid. On a syntax error, the
token error becomes the current lookahead token. Actions corresponding to error are then
executed, and the lookahead token is reset to the token that originally caused the violation.
See Chapter 6 [Error Recovery], page 91.

[Directive]%error-verbose
Bison declaration to request verbose, specific error message strings when yyerror is called.

[Directive]%file-prefix "prefix"
Bison declaration to set the prefix of the output files. See Section 3.7.12 [Decl Summary],
page 65.

[Directive]%glr-parser
Bison declaration to produce a GLR parser. See Section 1.5 [Writing GLR Parsers], page 17.

[Directive]%initial-action
Run user code before parsing. See Section 3.7.6 [Performing Actions before Parsing], page 60.

Appendix A: Bison Symbols 133

[Directive]%language
Specify the programming language for the generated parser. See Section 3.7.12 [Decl Sum-
mary], page 65.

[Directive]%left
Bison declaration to assign left associativity to token(s). See Section 3.7.3 [Operator Prece-
dence], page 59.

[Directive]%lex-param {argument-declaration}
Bison declaration to specifying an additional parameter that yylex should accept. See
Section 4.6.4 [Calling Conventions for Pure Parsers], page 76.

[Directive]%merge
Bison declaration to assign a merging function to a rule. If there is a reduce/reduce conflict
with a rule having the same merging function, the function is applied to the two semantic
values to get a single result. See Section 1.5 [Writing GLR Parsers], page 17.

[Directive]%name-prefix "prefix"
Bison declaration to rename the external symbols. See Section 3.7.12 [Decl Summary],
page 65.

[Directive]%no-lines
Bison declaration to avoid generating #line directives in the parser file. See Section 3.7.12
[Decl Summary], page 65.

[Directive]%nonassoc
Bison declaration to assign nonassociativity to token(s). See Section 3.7.3 [Operator Prece-
dence], page 59.

[Directive]%output "file"
Bison declaration to set the name of the parser file. See Section 3.7.12 [Decl Summary],
page 65.

[Directive]%parse-param {argument-declaration}
Bison declaration to specifying an additional parameter that yyparse should accept. See
Section 4.1 [The Parser Function yyparse], page 73.

[Directive]%prec
Bison declaration to assign a precedence to a specific rule. See Section 5.4 [Context-Dependent
Precedence], page 84.

[Directive]%pure-parser
Deprecated version of %define api.pure (see Section 3.7.12 [%define], page 65), for which
Bison is more careful to warn about unreasonable usage.

[Directive]%require "version"
Require version version or higher of Bison. See Section 3.7.1 [Require a Version of Bison],
page 58.

[Directive]%right
Bison declaration to assign right associativity to token(s). See Section 3.7.3 [Operator Prece-
dence], page 59.

[Directive]%skeleton
Specify the skeleton to use; usually for development. See Section 3.7.12 [Decl Summary],
page 65.

134 Bison 2.4.1

[Directive]%start
Bison declaration to specify the start symbol. See Section 3.7.9 [The Start-Symbol], page 63.

[Directive]%token
Bison declaration to declare token(s) without specifying precedence. See Section 3.7.2 [Token
Type Names], page 58.

[Directive]%token-table
Bison declaration to include a token name table in the parser file. See Section 3.7.12 [Decl
Summary], page 65.

[Directive]%type
Bison declaration to declare nonterminals. See Section 3.7.5 [Nonterminal Symbols], page 60.

[Symbol]$undefined
The predefined token onto which all undefined values returned by yylex are mapped. It
cannot be used in the grammar, rather, use error.

[Directive]%union
Bison declaration to specify several possible data types for semantic values. See Section 3.7.4
[The Collection of Value Types], page 59.

[Macro]YYABORT
Macro to pretend that an unrecoverable syntax error has occurred, by making yyparse
return 1 immediately. The error reporting function yyerror is not called. See Section 4.1
[The Parser Function yyparse], page 73.

For Java parsers, this functionality is invoked using return YYABORT; instead.

[Macro]YYACCEPT
Macro to pretend that a complete utterance of the language has been read, by making yyparse
return 0 immediately. See Section 4.1 [The Parser Function yyparse], page 73.

For Java parsers, this functionality is invoked using return YYACCEPT; instead.

[Macro]YYBACKUP
Macro to discard a value from the parser stack and fake a lookahead token. See Section 4.8
[Special Features for Use in Actions], page 78.

[Variable]yychar
External integer variable that contains the integer value of the lookahead token. (In a pure
parser, it is a local variable within yyparse.) Error-recovery rule actions may examine this
variable. See Section 4.8 [Special Features for Use in Actions], page 78.

[Variable]yyclearin
Macro used in error-recovery rule actions. It clears the previous lookahead token. See
Chapter 6 [Error Recovery], page 91.

[Macro]YYDEBUG
Macro to define to equip the parser with tracing code. See Section 8.2 [Tracing Your Parser],
page 102.

[Variable]yydebug
External integer variable set to zero by default. If yydebug is given a nonzero value, the
parser will output information on input symbols and parser action. See Section 8.2 [Tracing
Your Parser], page 102.

Appendix A: Bison Symbols 135

[Macro]yyerrok
Macro to cause parser to recover immediately to its normal mode after a syntax error. See
Chapter 6 [Error Recovery], page 91.

[Macro]YYERROR
Macro to pretend that a syntax error has just been detected: call yyerror and then perform
normal error recovery if possible (see Chapter 6 [Error Recovery], page 91), or (if recovery is
impossible) make yyparse return 1. See Chapter 6 [Error Recovery], page 91.
For Java parsers, this functionality is invoked using return YYERROR; instead.

[Function]yyerror
User-supplied function to be called by yyparse on error. See Section 4.7 [The Error Reporting
Function yyerror], page 77.

[Macro]YYERROR_VERBOSE
An obsolete macro that you define with #define in the prologue to request verbose, specific
error message strings when yyerror is called. It doesn’t matter what definition you use for
YYERROR_VERBOSE, just whether you define it. Using %error-verbose is preferred.

[Macro]YYINITDEPTH
Macro for specifying the initial size of the parser stack. See Section 5.9 [Memory Manage-
ment], page 89.

[Function]yylex
User-supplied lexical analyzer function, called with no arguments to get the next token. See
Section 4.6 [The Lexical Analyzer Function yylex], page 74.

[Macro]YYLEX_PARAM
An obsolete macro for specifying an extra argument (or list of extra arguments) for yyparse
to pass to yylex. The use of this macro is deprecated, and is supported only for Yacc like
parsers. See Section 4.6.4 [Calling Conventions for Pure Parsers], page 76.

[Variable]yylloc
External variable in which yylex should place the line and column numbers associated with
a token. (In a pure parser, it is a local variable within yyparse, and its address is passed to
yylex.) You can ignore this variable if you don’t use the ‘@’ feature in the grammar actions.
See Section 4.6.3 [Textual Locations of Tokens], page 76. In semantic actions, it stores the
location of the lookahead token. See Section 3.6.2 [Actions and Locations], page 56.

[Type]YYLTYPE
Data type of yylloc; by default, a structure with four members. See Section 3.6.1 [Data
Types of Locations], page 55.

[Variable]yylval
External variable in which yylex should place the semantic value associated with a token.
(In a pure parser, it is a local variable within yyparse, and its address is passed to yylex.)
See Section 4.6.2 [Semantic Values of Tokens], page 76. In semantic actions, it stores the
semantic value of the lookahead token. See Section 3.5.3 [Actions], page 52.

[Macro]YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. See Section 5.9 [Memory Man-
agement], page 89.

[Variable]yynerrs
Global variable which Bison increments each time it reports a syntax error. (In a pure parser,
it is a local variable within yyparse. In a pure push parser, it is a member of yypstate.) See
Section 4.7 [The Error Reporting Function yyerror], page 77.

136 Bison 2.4.1

[Function]yyparse
The parser function produced by Bison; call this function to start parsing. See Section 4.1
[The Parser Function yyparse], page 73.

[Function]yypstate_delete
The function to delete a parser instance, produced by Bison in push mode; call this function
to delete the memory associated with a parser. See Section 4.5 [The Parser Delete Function
yypstate_delete], page 74. (The current push parsing interface is experimental and may
evolve. More user feedback will help to stabilize it.)

[Function]yypstate_new
The function to create a parser instance, produced by Bison in push mode; call this function
to create a new parser. See Section 4.4 [The Parser Create Function yypstate_new], page 74.
(The current push parsing interface is experimental and may evolve. More user feedback will
help to stabilize it.)

[Function]yypull_parse
The parser function produced by Bison in push mode; call this function to parse the rest of
the input stream. See Section 4.3 [The Pull Parser Function yypull_parse], page 74. (The
current push parsing interface is experimental and may evolve. More user feedback will help
to stabilize it.)

[Function]yypush_parse
The parser function produced by Bison in push mode; call this function to parse a single
token. See Section 4.2 [The Push Parser Function yypush_parse], page 74. (The current
push parsing interface is experimental and may evolve. More user feedback will help to
stabilize it.)

[Macro]YYPARSE_PARAM
An obsolete macro for specifying the name of a parameter that yyparse should accept. The
use of this macro is deprecated, and is supported only for Yacc like parsers. See Section 4.6.4
[Calling Conventions for Pure Parsers], page 76.

[Macro]YYRECOVERING
The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax error,
and 0 otherwise. See Section 4.8 [Special Features for Use in Actions], page 78.

[Macro]YYSTACK_USE_ALLOCA
Macro used to control the use of alloca when the C LALR(1) parser needs to extend its
stacks. If defined to 0, the parser will use malloc to extend its stacks. If defined to 1, the
parser will use alloca. Values other than 0 and 1 are reserved for future Bison extensions.
If not defined, YYSTACK_USE_ALLOCA defaults to 0.
In the all-too-common case where your code may run on a host with a limited stack and with
unreliable stack-overflow checking, you should set YYMAXDEPTH to a value that cannot possibly
result in unchecked stack overflow on any of your target hosts when alloca is called. You
can inspect the code that Bison generates in order to determine the proper numeric values.
This will require some expertise in low-level implementation details.

[Type]YYSTYPE
Data type of semantic values; int by default. See Section 3.5.1 [Data Types of Semantic
Values], page 51.

Appendix B: Glossary 137

Appendix B Glossary

Backus-Naur Form (BNF; also called “Backus Normal Form”)
Formal method of specifying context-free grammars originally proposed by John
Backus, and slightly improved by Peter Naur in his 1960-01-02 committee document
contributing to what became the Algol 60 report. See Section 1.1 [Languages and
Context-Free Grammars], page 15.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if there
is a rule which says that an integer can be used as an expression, integers are allowed
anywhere an expression is permitted. See Section 1.1 [Languages and Context-Free
Grammars], page 15.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time or
on entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string of
length zero.

Finite-state stack machine
A “machine” that has discrete states in which it is said to exist at each instant in
time. As input to the machine is processed, the machine moves from state to state
as specified by the logic of the machine. In the case of the parser, the input is the
language being parsed, and the states correspond to various stages in the grammar
rules. See Chapter 5 [The Bison Parser Algorithm], page 81.

Generalized LR (GLR)
A parsing algorithm that can handle all context-free grammars, including those
that are not LALR(1). It resolves situations that Bison’s usual LALR(1) algorithm
cannot by effectively splitting off multiple parsers, trying all possible parsers, and
discarding those that fail in the light of additional right context. See Section 5.8
[Generalized LR Parsing], page 88.

Grouping A language construct that is (in general) grammatically divisible; for example, ‘ex-
pression’ or ‘declaration’ in C. See Section 1.1 [Languages and Context-Free Gram-
mars], page 15.

Infix operator
An arithmetic operator that is placed between the operands on which it performs
some operation.

Input stream
A continuous flow of data between devices or programs.

Language construct
One of the typical usage schemas of the language. For example, one of the constructs
of the C language is the if statement. See Section 1.1 [Languages and Context-Free
Grammars], page 15.

Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’ first
computes ‘a+b’ and then combines with ‘c’. See Section 5.3 [Operator Precedence],
page 83.

138 Bison 2.4.1

Left recursion
A rule whose result symbol is also its first component symbol; for example, ‘expseq1
: expseq1 ’,’ exp;’. See Section 3.4 [Recursive Rules], page 50.

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to right.
See Chapter 5 [The Bison Parser Algorithm], page 81.

Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See Section 4.6
[The Lexical Analyzer Function yylex], page 74.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are parsed.
See Section 7.2 [Lexical Tie-ins], page 94.

Literal string token
A token which consists of two or more fixed characters. See Section 3.2 [Symbols],
page 48.

Lookahead token
A token already read but not yet shifted. See Section 5.1 [Lookahead Tokens],
page 81.

LALR(1) The class of context-free grammars that Bison (like most other parser generators)
can handle; a subset of LR(1). See Section 5.7 [Mysterious Reduce/Reduce Con-
flicts], page 87.

LR(1) The class of context-free grammars in which at most one token of lookahead is
needed to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed
through rules in terms of smaller constructs; in other words, a construct that is not
a token. See Section 3.2 [Symbols], page 48.

Parser A function that recognizes valid sentences of a language by analyzing the syntax
structure of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs
some operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal, ac-
cording to a grammar rule. See Chapter 5 [The Bison Parser Algorithm], page 81.

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number
of times in parallel, without interference between the various invocations. See
Section 3.7.10 [A Pure (Reentrant) Parser], page 63.

Reverse polish notation
A language in which all operators are postfix operators.

Right recursion
A rule whose result symbol is also its last component symbol; for example, ‘expseq1:
exp ’,’ expseq1;’. See Section 3.4 [Recursive Rules], page 50.

Semantics In computer languages, the semantics are specified by the actions taken for each in-
stance of the language, i.e., the meaning of each statement. See Section 3.5 [Defining
Language Semantics], page 51.

Appendix B: Glossary 139

Shift A parser is said to shift when it makes the choice of analyzing further input from
the stream rather than reducing immediately some already-recognized rule. See
Chapter 5 [The Bison Parser Algorithm], page 81.

Single-character literal
A single character that is recognized and interpreted as is. See Section 1.2 [From
Formal Rules to Bison Input], page 16.

Start symbol
The nonterminal symbol that stands for a complete valid utterance in the language
being parsed. The start symbol is usually listed as the first nonterminal symbol in
a language specification. See Section 3.7.9 [The Start-Symbol], page 63.

Symbol table
A data structure where symbol names and associated data are stored during parsing
to allow for recognition and use of existing information in repeated uses of a symbol.
See Section 2.5 [Multi-function Calc], page 37.

Syntax error
An error encountered during parsing of an input stream due to invalid syntax. See
Chapter 6 [Error Recovery], page 91.

Token A basic, grammatically indivisible unit of a language. The symbol that describes
a token in the grammar is a terminal symbol. The input of the Bison parser is a
stream of tokens which comes from the lexical analyzer. See Section 3.2 [Symbols],
page 48.

Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is grammatically
indivisible. The piece of text it represents is a token. See Section 1.1 [Languages
and Context-Free Grammars], page 15.

Appendix C: Copying This Manual 141

Appendix C Copying This Manual

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

142 Bison 2.4.1

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

Appendix C: Copying This Manual 143

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

144 Bison 2.4.1

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

Appendix C: Copying This Manual 145

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

146 Bison 2.4.1

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Appendix C: Copying This Manual 147

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Index 149

Index

$
$$. 52, 78, 120, 131
$<typealt>$. 79, 120
$<typealt>n . 79, 120
$accept . 132
$end . 132
$n . 52, 78, 120, 131
$undefined . 134

%
%% . 123, 131
%{ . 123
%{code%} . 131
%code . 44, 65, 66, 114, 122, 132
%code imports . 66, 122
%code lexer . 122
%code provides . 44, 66, 69
%code requires . 44, 66, 69, 113
%code top . 44, 66
%debug . 67, 102, 132
%define . 67, 132
%define abstract . 123
%define api.pure . 63, 67
%define api.push_pull . 63, 67
%define extends . 123
%define final . 123
%define implements . 123
%define lex_throws . 123
%define location_type . 123
%define lr.keep_unreachable_states 67
%define namespace . 68, 109
%define package . 123
%define parser_class_name . 123
%define position_type . 123
%define public . 123
%define strictfp . 123
%define stype . 123
%define throws . 123
%defines . 68, 69, 132
%destructor . 54, 61, 69, 132
%dprec . 20, 132
%error-verbose . 77, 132
%expect . 62, 65
%expect-rr . 18, 62
%file-prefix . 69, 132
%glr-parser . 17, 18, 132
%initial-action . 60, 61, 132
%language . 69, 133
%language "Java" . 122
%left . 65, 83, 133
%lex-param . 77, 122, 133
%locations . 69
%merge . 20, 133
%name-prefix . 69, 122, 133
%no-lines . 69, 133
%nonassoc . 65, 83, 133
%output . 69, 133
%parse-param . 73, 122, 133
%prec . 84, 133
%pure-parser . 69, 133

%require . 58, 70, 133
%right . 65, 83, 133
%skeleton . 70, 133
%start . 63, 65, 134
%token . 58, 65, 122, 134
%token-table . 70, 134
%type . 60, 65, 122, 134
%union . 59, 65, 134
%verbose . 70
%yacc . 70

*
*yypstate_new . 74

/
/*...*/ . 131

:
: . 131

;
; . 131

<
<*> . 61, 131
<> . 61, 131

@
@$. 56, 80, 121, 131
@n . 56, 80, 121, 131

|
| . 50, 131

A
abstract syntax tree . 127
action . 52
action data types . 53
action features summary . 78
actions in mid-rule . 53, 62
actions, location . 56
actions, semantic . 17
additional C code section . 47
algorithm of parser . 81
ambiguous grammars . 15, 88
associativity . 83
AST . 127

B
Backus-Naur form . 15
begin of Location . 118

150 Bison 2.4.1

begin on location . 110
Bison declaration summary . 65
Bison declarations . 58
Bison declarations (introduction) 47
Bison grammar . 16
Bison invocation . 105
Bison parser . 23
Bison parser algorithm . 81
Bison symbols, table of . 131
Bison utility . 23
bison-i18n.m4 . 80
bison-po . 80
BISON_I18N . 80
BISON_LOCALEDIR . 80
BNF . 15
braced code . 50

C
C code, section for additional . 47
C-language interface . 73
calc . 32
calculator, infix notation . 32
calculator, location tracking . 34
calculator, multi-function . 37
calculator, simple . 27
character token . 48
column on position . 110
columns on location . 110
columns on position . 110
compiling the parser . 32
conflicts . 17, 18, 20, 82
conflicts, reduce/reduce . 85
conflicts, suppressing warnings of 62
context-dependent precedence . 84
context-free grammar . 15
controlling function . 31
core, item set . 99

D
dangling else . 82
data type of locations . 55
data types in actions . 53
data types of semantic values . 51
debug_level on parser . 111
debug_stream on parser . 111
debugging . 102
declaration summary . 65
declarations . 43
declarations section . 43
declarations, Bison . 58
declarations, Bison (introduction) 47
declaring literal string tokens . 58
declaring operator precedence . 59
declaring the start symbol . 63
declaring token type names . 58
declaring value types . 59
declaring value types, nonterminals 60
default action . 52
default data type . 51
default location type . 55
default stack limit . 90
default start symbol . 63

deferred semantic actions . 22
defining language semantics . 51
discarded symbols . 62
discarded symbols, mid-rule actions 54

E
else, dangling . 82
end of Location . 118
end on location . 110
epilogue . 47
error . 91, 132
error on parser . 111
error recovery . 91
error recovery, mid-rule actions 54
error recovery, simple . 33
error reporting function . 77
error reporting routine . 31
examples, simple . 27
exercises . 42

F
file format . 24
file on position . 109
finite-state machine . 85
formal grammar . 16
format of grammar file . 24
freeing discarded symbols . 61
frequently asked questions . 125

G
generalized LR (GLR) parsing 15, 17, 88
generalized LR (GLR) parsing, ambiguous grammars

. 20
generalized LR (GLR) parsing, unambiguous

grammars . 18
getDebugLevel on YYParser . 119
getDebugStream on YYParser 119
getEndPos on Lexer . 120
getLVal on Lexer . 120
getStartPos on Lexer . 120
gettext . 80
glossary . 137
GLR parsers and inline . 23
GLR parsers and yychar . 22
GLR parsers and yyclearin . 22
GLR parsers and YYERROR . 22
GLR parsers and yylloc . 22
GLR parsers and YYLLOC_DEFAULT 57
GLR parsers and yylval . 22
GLR parsing . 15, 17, 88
GLR parsing, ambiguous grammars 20
GLR parsing, unambiguous grammars 18
grammar file . 24
grammar rule syntax . 49
grammar rules section . 47
grammar, Bison . 16
grammar, context-free . 15
grouping, syntactic . 15

Index 151

I
i18n . 80
infix notation calculator . 32
inline . 23
interface . 73
internationalization . 80
introduction . 1
invoking Bison . 105
item . 98
item set core . 99

K
kernel, item set . 99

L
LALR(1) . 87
LALR(1) grammars . 15
language semantics, defining . 51
layout of Bison grammar . 24
left recursion . 50
lex-param . 77
lexical analyzer . 74
lexical analyzer, purpose . 23
lexical analyzer, writing . 30
lexical tie-in . 94
line on position . 110
lines on location . 110
lines on position . 110
literal string token . 48
literal token . 48
location . 23, 55
location actions . 56
Location on Location . 118
location tracking calculator . 34
location, textual . 23, 55
location_value_type of parser 110
lookahead token . 81
LR(1) . 87
LR(1) grammars . 15
ltcalc . 34

M
main function in simple example 31
memory exhaustion . 89
memory management . 89
mfcalc . 37
mid-rule actions . 53, 62
multi-function calculator . 37
multicharacter literal . 48
mutual recursion . 51

N
NLS . 80
nondeterministic parsing . 15, 88
nonterminal symbol . 48
nonterminal, useless . 98

O
operator precedence . 83

operator precedence, declaring . 59
operator+ on location . 110
operator+ on position . 110
operator+= on location . 110
operator+= on position . 110
operator- on position . 110
operator-= on position . 110
operator<< on position . 110
options for invoking Bison . 105
overflow of parser stack . 89

P
parse error . 77
parse on parser . 110
parse on YYParser . 119
parser . 23
parser on parser . 110
parser stack . 81
parser stack overflow . 89
parser state . 85
pointed rule . 98
polish notation calculator . 27
precedence declarations . 59
precedence of operators . 83
precedence, context-dependent 84
precedence, unary operator . 84
preventing warnings about conflicts 62
Prologue . 43, 65, 66
Prologue Alternatives . 44
pure parser . 63
push parser . 63

Q
questions . 125

R
recovering . 121
recovering on YYParser . 119
recovery from errors . 91
recursive rule . 50
reduce/reduce conflict . 85
reduce/reduce conflicts . 17, 18, 20
reduction . 81
reentrant parser . 63
requiring a version of Bison . 58
return YYABORT; . 121
return YYACCEPT; . 121
return YYERROR; . 121
return YYFAIL; . 121
reverse polish notation . 27
right recursion . 50
rpcalc . 27
rule syntax . 49
rule, pointed . 98
rule, useless . 98
rules section for grammar . 47
running Bison (introduction) . 31

S
semantic actions . 17

152 Bison 2.4.1

semantic value . 17
semantic value type . 51
semantic_value_type of parser 110
set_debug_level on parser . 111
set_debug_stream on parser 111
setDebugLevel on YYParser . 119
setDebugStream on YYParser 119
shift/reduce conflicts . 17, 18, 82
shifting . 81
simple examples . 27
single-character literal . 48
stack overflow . 89
stack, parser . 81
stages in using Bison . 24
start symbol . 16
start symbol, declaring . 63
state (of parser) . 85
step on location . 110
string token . 48
summary, action features . 78
summary, Bison declaration . 65
suppressing conflict warnings . 62
symbol . 48
symbol table example . 38
symbols (abstract) . 15
symbols in Bison, table of . 131
syntactic grouping . 15
syntax error . 77
syntax of grammar rules . 49

T
terminal symbol . 48
textual location . 23, 55
token . 15
token type . 48
token type names, declaring . 58
token, useless . 98
toString on Location . 118
tracing the parser . 102

U
unary operator precedence . 84
useless nonterminal . 98
useless rule . 98
useless token . 98
using Bison . 24

V
value type, semantic . 51
value types, declaring . 59

value types, nonterminals, declaring 60
value, semantic . 17
version requirement . 58

W
warnings, preventing . 62
writing a lexical analyzer . 30

Y
YYABORT . 73, 134
YYABORT; . 79
YYACCEPT . 73, 134
YYACCEPT; . 79
YYBACKUP . 79, 134
yychar . 22, 79, 82, 134
yyclearin . 22, 92, 134
yyclearin; . 79
yydebug . 102, 134
YYDEBUG . 102, 134
YYEMPTY . 79
YYENABLE_NLS . 80
YYEOF . 79
yyerrok . 92, 135
yyerrok; . 79
yyerror . 77, 121, 135
YYERROR . 22, 79, 135
yyerror on Lexer . 120
YYERROR; . 79
YYERROR_VERBOSE . 135
YYINITDEPTH . 90, 135
yylex . 74, 135
yylex on Lexer . 120
yylex on parser . 111
YYLEX_PARAM . 135
yylloc . 22, 57, 76, 80, 82, 135
YYLLOC_DEFAULT . 57
YYLTYPE . 76, 135
yylval . 22, 52, 76, 80, 82, 135
YYMAXDEPTH . 89, 135
yynerrs . 78, 135
yyparse . 73, 136
YYPARSE_PARAM . 136
YYParser on YYParser . 119
YYPRINT . 103
yypstate_delete . 74, 136
yypstate_new . 74, 136
yypull_parse . 74, 136
yypush_parse . 74, 136
YYRECOVERING . 79, 92, 136
YYSTACK_USE_ALLOCA . 136
YYSTYPE . 136

	Introduction
	Conditions for Using Bison
	GNU GENERAL PUBLIC LICENSE
	The Concepts of Bison
	Languages and Context-Free Grammars
	From Formal Rules to Bison Input
	Semantic Values
	Semantic Actions
	Writing GLR Parsers
	Using GLR on Unambiguous Grammars
	Using GLR to Resolve Ambiguities
	GLR Semantic Actions
	Considerations when Compiling GLR Parsers

	Locations
	Bison Output: the Parser File
	Stages in Using Bison
	The Overall Layout of a Bison Grammar

	Examples
	Reverse Polish Notation Calculator
	Declarations for rpcalc
	Grammar Rules for rpcalc
	Explanation of input
	Explanation of line
	Explanation of expr

	The rpcalc Lexical Analyzer
	The Controlling Function
	The Error Reporting Routine
	Running Bison to Make the Parser
	Compiling the Parser File

	Infix Notation Calculator: calc
	Simple Error Recovery
	Location Tracking Calculator: ltcalc
	Declarations for ltcalc
	Grammar Rules for ltcalc
	The ltcalc Lexical Analyzer.

	Multi-Function Calculator: mfcalc
	Declarations for mfcalc
	Grammar Rules for mfcalc
	The mfcalc Symbol Table

	Exercises

	Bison Grammar Files
	Outline of a Bison Grammar
	The prologue
	Prologue Alternatives
	The Bison Declarations Section
	The Grammar Rules Section
	The epilogue

	Symbols, Terminal and Nonterminal
	Syntax of Grammar Rules
	Recursive Rules
	Defining Language Semantics
	Data Types of Semantic Values
	More Than One Value Type
	Actions
	Data Types of Values in Actions
	Actions in Mid-Rule

	Tracking Locations
	Data Type of Locations
	Actions and Locations
	Default Action for Locations

	Bison Declarations
	Require a Version of Bison
	Token Type Names
	Operator Precedence
	The Collection of Value Types
	Nonterminal Symbols
	Performing Actions before Parsing
	Freeing Discarded Symbols
	Suppressing Conflict Warnings
	The Start-Symbol
	A Pure (Reentrant) Parser
	A Push Parser
	Bison Declaration Summary

	Multiple Parsers in the Same Program

	Parser C-Language Interface
	The Parser Function yyparse
	The Push Parser Function yypush_parse
	The Pull Parser Function yypull_parse
	The Parser Create Function yystate_new
	The Parser Delete Function yystate_delete
	The Lexical Analyzer Function yylex
	Calling Convention for yylex
	Semantic Values of Tokens
	Textual Locations of Tokens
	Calling Conventions for Pure Parsers

	The Error Reporting Function yyerror
	Special Features for Use in Actions
	Parser Internationalization

	The Bison Parser Algorithm
	Lookahead Tokens
	Shift/Reduce Conflicts
	Operator Precedence
	When Precedence is Needed
	Specifying Operator Precedence
	Precedence Examples
	How Precedence Works

	Context-Dependent Precedence
	Parser States
	Reduce/Reduce Conflicts
	Mysterious Reduce/Reduce Conflicts
	Generalized LR (GLR) Parsing
	Memory Management, and How to Avoid Memory Exhaustion

	Error Recovery
	Handling Context Dependencies
	Semantic Info in Token Types
	Lexical Tie-ins
	Lexical Tie-ins and Error Recovery

	Debugging Your Parser
	Understanding Your Parser
	Tracing Your Parser

	Invoking Bison
	Bison Options
	Option Cross Key
	Yacc Library

	Parsers Written In Other Languages
	C++ Parsers
	C++ Bison Interface
	C++ Semantic Values
	C++ Location Values
	C++ Parser Interface
	C++ Scanner Interface
	A Complete C++ Example
	Calc++ --- C++ Calculator
	Calc++ Parsing Driver
	Calc++ Parser
	Calc++ Scanner
	Calc++ Top Level

	Java Parsers
	Java Bison Interface
	Java Semantic Values
	Java Location Values
	Java Parser Interface
	Java Scanner Interface
	Special Features for Use in Java Actions
	Differences between C/C++ and Java Grammars
	Java Declarations Summary

	Frequently Asked Questions
	Memory Exhausted
	How Can I Reset the Parser
	Strings are Destroyed
	Implementing Gotos/Loops
	Multiple start-symbols
	Secure? Conform?
	I can't build Bison
	Where can I find help?
	Bug Reports
	More Languages
	Beta Testing
	Mailing Lists

	Bison Symbols
	Glossary
	Copying This Manual
	Index

