
Assignment # 1
COP 3402 Fall 2011

Lexical Specification of KOOL Language

In this course, we will write a compiler for a simple programming language called KOOL
(Knights Object-Oriented Language). The language is powerful but trimmed down from
typical languages in a variety of ways to make the exercise easier without limiting the
learning outcomes. Your current task is to write a lexical analyzer for KOOL.

KOOL has a relatively small set of keywords. At present (and life can change over the
semester), these reserved words are:
void int bool string null true false class new this extends
for do while until if then else break return
print println read readln

Special characters in KOOL are:
+ - * / % = += -= *= /= %= < <= > >= == # ||

&& ! ; , . [] () { }

Notice that neither “ nor \ are special characters as they can only appear as part of a string.

An integer constant can either be specified in decimal (base 10) or binary (base 2).
A decimal integer is a sequence of decimal digits. A binary integer must begin with 0B or
0b and is followed by a sequence of binary digits.

An identifier is a sequence of letters, digits, and underscores, starting with a letter. At
present the language is case insensitive, but I could change my mind so I would isolate the
case sensitivity to the lexical phase (in other words have it alter all identifiers and
keywords to lower case so the keyword lookup and, eventually, the symbol table lookup is
even unaware of this decision). Identifiers that match in their first 8 letters are considered
the same, so you will want to truncate them to this maximum length, if necessary. Anything
that is a blank or that collates to being less than a blank is whitespace. These characters
separate tokens. Keywords and identifiers must be separated by whitespace or a token
that is neither a keyword nor an identifier. Thus, whiledo is an identifier rather than two
keywords. MyData(123#x) might make no sense syntactically, but is viewed lexically as
IDENT(mydata), LPAREN, INTEGER(123), NOTEQUAL, IDENT(x), RPAREN.

A string constant is a sequence of characters enclosed in double quotes. Strings can contain
any character except a newline or double quote, unless the double quote is preceded by an
escape character (\). The escape character also needs to be escaped. If a \ appears vbefore
any character other than a “ or \, then it is just ignored. A string cannot span multiple lines
nor can it exceed 80 characters, including the quotes and escape characters – this means
strings are limited to 78 characters each.

An end-of-line terminated comment is started by // and extends to the end of the line. Any
symbol is allowed after the // with the end-of line signifying its end. Cstyle comments start
with /* and end with the first subsequent */. Any symbol is allowed in a C-style comment

except the sequence */ which ends the current comment. C-style comments can span
multiple lines, but also can end in the middle of a line.

Your lexical analyzer must report on each token, giving the token type and, where
appropriate, the token value. I will create a reference solution that you can use to check
your answers out.

Turn in a C or C++ program (source) that runs on a standard C or C++ compiler (no
Windows sugar; just a console application). Name your source with your First Initial
followed by your Last Name followed by “Asn1” and the C or C++ extension. E.g., Steven
would be SZittrowerAsn1.c or perhaps SZittrowerAsn1.cpp.

Due Dates:

Due on Monday, September 19 before the end of day (11:59PM)

Turn in must be done via Webcourses (it will be set up by next week). Only the source is
to be turned in. We will provide some test cases by next week, but we will also run
many other test cases as part of the grading.

Grading Criteria
EXECUTION POINTS (60 POINTS)
The student’s program should compile, run and produce the correct output.

Test Case 1 (hanoi.kool) – 20 points
o Every line containing incorrect tokens is -1 point
Test Case 2 (errors.kool) – 20 points
o Main focus here is that the lexical analyzer correctly identifies and prints the errors

o There are 5 errors printed in this program, each one is worth 3 points

o Overall correctness of the other tokens is 5 points
Test Case 3 (biggie.kool) – 20 points
o We are not checking every token

o Overall soundness of the output is important

IMPLEMENTATION DETAILS (30 POINTS)
We are looking for correct functionality (at least conceptually). The actual structure or
naming of the functions is irrelevant.

Distinguishes identifiers and keywords – 10 points

Distinguishes ints, strings and bools– 5 points

Correct handling of strings and comments – 10 points

Handling of special characters – 5 points

CODE POINTS (10 POINTS)
Code formatting (readable indentation, variable names, etc.) – 5 points

Overall input / output is setup correctly – 5 points

There is an optional up to 5 point bonus if your coding style demonstrates elegance.

NOTES:
If the assignment is submitted up to 24 hours late, there is a 10% deduction from the final
grade; submitting between 24 – 48 hours late results in a 20% deduction.

If the program does not compile or crashes, at least 25 points will be deducted from the
execution points; if only a small fix is required 5 points are taken off. (This can happen if
you use some non-standard C or C++ feature that we can access quickly.

IDE:
I talked to Remo who GTA-ed last semester and found that most students preferred
Code::Blocks and so that will be the preferred environment, although you may also use
Eclipse (my fave) or Visual Studio. Using any other environment will take special
arrangement with one of the GTAs.

