COP 3402 System Software	Fall 2000 – Pass 2

This document describes Pass2 of the assembler project. You are to write Pass 2 in standard C code and make sure that it will run on the Olympus1 system, compiled in gcc. Further details on what you are to hand in will be provided in your labs. Completing Pass 2 will require that you have a working Pass 1.

Input files:

Pass 2's input file will be the intermediate file produced by Pass 1. The intermediate file's name will always end in the ".int" extension. You have the choice of combining your Pass 2 with your Pass 1 so that they can share the same symbol table and global variables (code size, data size, etc.) or writing your Pass 2 so that it relies entirely on input from files. In either case, Pass 2 must read from the intermediate file to get the lines of code and their address and the .EXTERN declarations. If you choose to separate the two passes, your Pass 2 program will have to prompt the user for the input filename and you will also have to use the symbol table output from your Pass 1 as input to your Pass 2.

You have also been provided with an ASCII text file called opcode.tab that contains the complete set of opcodes. The file contains 4 columns, one each for:

the opcode's mnemonic name

the opcode's instruction format number

the number of operands for that opcode

the 6-bit opcode (in hexadecimal)

; EXAMPLE2.ASM

.PROGRAM		example2

.CONST

	SIZE	WORD	#10

	MAX	HALF	#12

0000	NAME	BYTE	$'Your Name'

	TWO	HALF	#2

.DATA

000A	ARAY	DEFH	SIZE

0020	INDEX	DEFW	1

0024	X	DEFH	1

0028	SUB1	DEFX	1

.CODE

0000		MOV	R3, R0

0004		ADDI	R4, R0, SIZE

0008		MULTI	R4, R4, TWO

000C		SUBI	R4, R4, TWO

0010	TOP:	SLT	R10, R4, R0

0014		BNEZ	R10, BOTTOM

0018		ADD	R3, R3, R4

001C		SH	R4, ARAY, R4

0020		SUBI	R4, R4, TWO

0024		JR	TOP

0028	BOTTOM:	SH	R0, X, R3

002C		EXIT	#0

.EXTERN

	SUB1	MYLIB

.END

Sample input file for Pass 2 (based on example2.asm in the Pass 1 handout)

�Internal Data Structures in Pass 2:

Pass 2 uses the same two main data structures as Pass 1, the opcode table and the symbol table. Both tables should be created as an array of structures in C. The arrays should be large enough to hold all expected entries. Since there are exactly 50 opcodes in the language, the opcode table size is known. The size of the symbol table is set in Pass 1. The fields in both tables are up to you, but you may need to add fields to your symbol table from Pass 1 to include information needed by Pass 2. The minimum information in each of the tables was described in the Pass 1 handout.

If you chose to perform the two passes in two separate programs, you will have to add information to the symbol table output by Pass 1 so that the information is available to Pass 2. If you do both passes in one program, you do not need to reload the tables from the output files before you start Pass 2.

Output files:

Your Pass 2 will produce two output files:

The object code output file will contain the assembled object code for each instruction and an image of the data storage space for the program. The data storage space will contain either string constants or zeros, depending on the contents of the associated memory area. The object code file's specific format is shown on the next page. The object code output file's filename will be based on the input filename, but with the extension ".obj" instead of ".int".

The listing file will contain the same information that is contained in the intermediate file, plus the object code (written in hexadecimal) produced by Pass 2 of the assembler. It will also include any errors encountered in Pass 2. Just as in Pass 1, errors will be printed on the line following the error. If any errors are found, the count of errors will be printed at the bottom of the file (see the example of a listing file that includes errors, shown later). An example of a listing file for a program that contains no errors is also shown below. The listing file's filename will be based on the input filename, but with the extension ".lst" instead of ".int".

�Object Code Format:

Although the object code file format was described in the handout on the assembly language, the description given below is to be used for this assignment.

The object code file is divided into three parts:

the header – contains the program name and the overall size of code and data

the object code and data storage contents

the trailer – contains the locations of the external references used by the linker/loader

The header section must include the following (no spaces between fields):

the word PROGRAM (all caps)

one hexadecimal byte giving the program name's length (maximum 255 characters)

the program's name (all caps)

four hexadecimal bytes giving the overall program length in bytes

The object code and data section consists of an exact image of the program as it will be loaded into memory by the linker/loader. The program's object code appears first and then the data section follows. Within the data section, string constants appear first and data storage locations follow. The alignment rules for halfwords and words should have been taken care of when storage addresses were assigned in Pass 1, so the information in the symbol table can be used to fill in this section. All string constants are stored as hexadecimal bytes representing the ASCII code for each character in the string. Since no data initialization is allowed, the data storage is filled with zeros. The overall length of the code and data sections must match the length included in the header section.

The trailer section must include information about each external reference in the .EXTERN section of the program. The format of the trailer section must include the following (no spaces between fields):

the word EXTERN (all caps)

one hexadecimal byte giving the number of external references included in this section

one entry for each external reference, consisting of the following:

one hexadecimal byte giving the length of the external reference's variable name

the external reference's variable name from the DEFX declaration

one hexadecimal byte giving the length of the name of the external file associated with the external reference in the .EXTERN section

the name of the external file associated with the external reference in the .EXTERN section

four hexadecimal bytes giving the address (in the data storage area) of the external reference variable

The example below shows the object code file generated from the intermediate file shown on page 1.

Note that there is a carriage return (\n) between the header section and the object code section and another carriage return (\n) between the object code section and the trailer section. The object code section should be one continuous line (however it is broken into lines here due to the limits of line length on the printed page).

PROGRAM08EXAMPLE20000005B

240300004004000A5084000248840002A88050002D400010806418001C84001A48840002

C7FFFFE81C600028D0000000596F7572204E616D65000000000000000000000000000000

00

EXTERN0104SUB105MYLIB00000058

�Listing File Format:

The listing file includes all the information in the input intermediate file, but also adds a column (to the right of the address column, see above) that includes the assembled object code for that line. No object code is generated for constants, data or assembler directives. The object code is 32 bits long and will be printed in hexadecimal notation with leading zeros. The object code printed next to each instruction is exactly the same as the object code output to the object code file. The listing file is provided for debugging purposes since it also includes error messages for each error in the program.

		; EXAMPLE2.ASM

.PROGRAM	example2

.CONST

		SIZE	WORD	#10

		MAX	HALF	#12

0000		NAME	BYTE	$'Your Name'

		TWO	HALF	#2

.DATA

000A		ARAY	DEFH	SIZE

0020		INDEX	DEFW	1

0024		X	DEFH	1

0028		SUB1	DEFX	1

.CODE

0000	24030000		MOV	R3, R0

0004	4004000A		ADDI	R4, R0, SIZE

0008	50840002		MULTI	R4, R4, TWO

000C	48840002		SUBI	R4, R4, TWO

0010	A8805000	TOP:	SLT	R10, R4, R0

0014	2D400010		BNEZ	R10, BOTTOM

0018	80641800		ADD	R3, R3, R4

001C	1C84001A		SH		R4, ARAY, R4

0020	48840002		SUBI	R4, R4, TWO

0024	C7FFFFE8		JR		TOP

0028	1C600028	BOTTOM:	SH		R0, X, R3

002C	D0000000		EXIT	#0

.EXTERN

	SUB1	MYLIB

.END

Sample listing file output from Pass 2 (based on the input file shown above)

Error Detection in Pass 2:

In Pass 2, you are to perform the error checking that couldn't be done in Pass 1 and report any errors found. Errors will fall into several categories and the error messages printed in the listing file should be standardized to match the examples shown below. Pass 1 should have found all duplicate references and invalid opcodes, but not all syntax errors or undefined symbols can be detected in Pass 1. Because of the possibility of forward references in branch and jump operations and the possibility that the .DATA section can come after the .CODE section, undefined symbols must be checked in Pass 2.

If errors are found, and it is possible to do so, continue Pass 2 so all errors can be found. The total number of errors found should be counted and, if any errors are found, that total should be printed at the end of the listing file output.

�Undefined Symbol – operands must be checked in Pass 2 since they can contain forward references or references to data not declared until after the CODE section. The error message should read: "ERROR: Undefined Symbol %s" with the undefined symbol's name. This error message should be printed on the line following the line where the error occurred.

Syntax Errors – Pass 1 took care of most syntax errors, but some things must still be checked:

errors in the .EXTERN section, such as missing information

invalid register names (missing the 'R' or out of range)

constants that are out of range for the size declared

immediate values that require more than 16 bits to store in the object code

The error message should read: "ERROR: <error type> %s" where the <error type> should be replaced with the type of error detected. If the type of error can't be determined, just print "syntax error" in place of the error type. The %s should be replaced by the symbol or operation that caused the error. This error message should be printed on the line following the line where the error occurred.

Sample listing file with errors, based on a modified example2.int

; EXAMPLE2.ASM

.PROGRAM	example2

.CONST

		SIZE	WORD	#10

		MAX	HALF	#123456

ERROR: constant out of range MAX

0000		NAME	BYTE	$'Your Name'

		TWO	HALF	#2

.DATA

000A		ARAY	DEFH	SIZE

0020		INDEX	DEFW	1

0024		X	DEFH	1

0028		SUB1	DEFX	1

.CODE

0000			MOV	R33, R0

ERROR: invalid register R33

0004	4004000A		ADDI	R4, R0, SIZE

0008	50840002		MULTI	R4, R4, TWO

000C	48840002		SUBI	R4, R4, TWO

0010	A8805000	TOP:	SLT	R10, R4, R0

0014			BNEZ	R10, BOTTM

ERROR: undefined symbol BOTTM

0018	80641800		ADD	R3, R3, R4

001C	1C84001A		SH		R4, ARAY, R4

0020	48840002		SUBI	R4, R4, TWO

0024	C7FFFFE8		JR		TOP

0028	1C600028	BOTTOM:	SH		R0, X, R3

002C	D0000000		EXIT	#0

.EXTERN

	SUB1

ERROR: missing filename for SUB1

.END

Total Error Count: 4

Page � PAGE �5�

