COP 3402 System Software	Fall 2000 – Pass 1

This document describes Pass1 of the assembler project. You are to write Pass 1 in standard C code and make sure that it will run on the Olympus1 system, compiled in gcc. Further details on what you are to hand in will be provided in your labs. Remember that the assembler is not case-sensitive: identifiers, opcode names and labels can be in upper or lower case.

Input file:

Your Pass 1 program will prompt the user for the input filename. The input file will be an assembler program written to conform with the UCF 3402 machine language, described in the documents provided in the lecture class. The input file will be similar to the example shown below. The filename will always end in the ".asm" extension.

You will be provided with an ASCII text file called opcode.tab that contains the complete set of opcodes. The file contains 4 columns, one each for:

the opcode's mnemonic name

the opcode's instruction format number

the number of operands for that opcode

the 6-bit opcode (in hexadecimal)

; EXAMPLE2.ASM

.PROGRAM		example2

.CONST

	SIZE	WORD	#10

	MAX	HALF	#12

	NAME	BYTE	$'Your Name'

	TWO	HALF	#2

.DATA

	ARAY	DEFH	SIZE

	INDEX	DEFW	1

	X	DEFH	1

	SUB1	DEFX	1

.CODE

		MOV	R3, R0

		ADDI	R4, R0, SIZE

		MULTI	R4, R4, TWO

		SUBI	R4, R4, TWO

	TOP:	SLT	R10, R4, R0

		BNEZ	R10, BOTTOM

		ADD	R3, R3, R4

		SH	R4, ARAY, R4

		SUBI	R4, R4, TWO

		JR	TOP

	BOTTOM:	SH	R0, X, R3

		EXIT	#0

.EXTERN

	SUB1	MYLIB

.END

Sample input file: example2.asm

�
Output files:

Your Pass 1 will produce two output files:

The intermediate code file will contain all of the DATA definitions, CONST declarations, EXTERN associations and CODE instructions that are found in the input file, plus any assigned addresses and any errors encountered in Pass 1. Errors will be printed on the line following the error. If any errors are found, the count of errors will be printed at the bottom of the file (see the example of an intermediate file that includes errors). An example of an intermediate file for a program that contains no errors is also shown below. The intermediate file's filename will be based on the input filename, but with the extension ".int" instead of ".asm".

The symbol table output file will contain the entire symbol table along with certain specific information about each symbol (see the example below). The symbol table output file's filename will be based on the input filename, but with the extension ".sym" instead of ".asm". The symbol table output format will include:

the symbol's name

the symbol's size in bytes (a jump target label occupies 4 bytes, to hold the label's address)

the symbol's value (for constants)

the symbol's address (if one was assigned)

; EXAMPLE2.ASM

.PROGRAM		example2

.CONST

	SIZE	WORD	#10

	MAX	HALF	#12

0000	NAME	BYTE	$'Your Name'

	TWO	HALF	#2

.DATA

000A	ARAY	DEFH	SIZE

0020	INDEX	DEFW	1

0024	X	DEFH	1

0028	SUB1	DEFX	1

.CODE

0000		MOV	R3, R0

0004		ADDI	R4, R0, SIZE

0008		MULTI	R4, R4, TWO

000C		SUBI	R4, R4, TWO

0010	TOP:	SLT	R10, R4, R0

0014		BNEZ	R10, BOTTOM

0018		ADD	R3, R3, R4

001C		SH	R4, ARAY, R4

0020		SUBI	R4, R4, TWO

0024		JR	TOP

0028	BOTTOM:	SH	R0, X, R3

002C		EXIT	#0

.EXTERN

	SUB1	MYLIB

.END

Sample intermediate file, based on example2.asm

�
Sample Symbol Table file, based on example2.asm

identifier	 size	type			 address

SIZE	 4 bytes	const = #10

MAX	 2 bytes	const = #12

NAME	 9 bytes	const = $'Your Name'	 0000

TWO	 2 bytes	const = #2

ARAY	 20 bytes	data			 000A

INDEX	 4 bytes	data			 0020

X	 2 bytes	data			 0024

SUB1	 4 bytes	date			 0028

TOP		label			 0010

BOTTOM		label			 0028

Internal Data Structures in Pass 1:

Pass 1 needs at least two important data structures, the opcode table and the symbol table. Both tables should be created as an array of structures in C. The arrays should be large enough to hold all expected entries. Since there are exactly 50 opcodes in the language, the opcode table size is known. However, the size of the symbol table is unknown until after the first pass. Therefore, we will set its size to at least 200 entries. The fields in both tables are up to you, but you must store all information needed by Pass 2 of the assembler, so you should expect to add whatever fields are needed to accomplish that goal. The minimum information in each of the tables is described below.

Opcode Table Format:

The opcode table will be loaded from the file opcode.tab before Pass 1 starts. As mentioned above, the file opcode.tab contains four pieces of information related to each opcode and you should store each of those items in the table. The file opcode.tab is already sorted alphabetically. You are not required to use any specific algorithm for finding opcodes in the table, a simple linear search is sufficient.

Symbol Table Format:

The symbol table built by Pass 1 will include all constant declarations from the .CONST section, all data definitions from the .DATA section and all labels in the CODE section that appear on the left of an operation (jump targets). For each entry in the symbol table, you must record, at least, the minimum information mentioned in the description of the symbol table output format above. You may add anything that you believe would be helpful, but should only include the information specified above in the output file. You are not required to use any specific algorithm for finding symbols in the table, a simple linear search is sufficient.

�
Error Detection in Pass 1:

You are to perform at least the following error checking in Pass 1 and report any errors found. Errors will fall into several categories and the error messages printed in the intermediate file should be standardized to match the examples shown below.

If errors are found, and it is possible to do so, continue Pass 1 so all errors can be found. However, if any errors are found in Pass 1, Pass 2 will not be started. The total number of errors found should be counted and, if any errors are found, that total should be printed as a comment at the end of the intermediate file output.

Undefined Symbol – any operand in the CODE section that is not a jump target label should have already been defined as a constant or data variable. If not, an error has occurred. The error message should read: "ERROR: Undefined Symbol %s" with the undefined symbol's name. This error message should be printed on the line following the line where the error occurred.

Duplicate Symbol – each constant, variable name or jump target label should be unique. Also, no opcode or assembler directive can be used as an identifier or label and no label or identifier can be "R" followed by a number from 0 to 31 (i.e., match a register name). The error message should read: "ERROR: Duplicate Symbol %s" with the duplicate identifier or label. This error message should be printed on the line following the line where the error occurred.

Invalid Opcode – any operation name that is not in the opcode table is undefined and an error occurred. The error message should read: "ERROR: Invalid Opcode %s" with the invalid opcode name. This error message should be printed on the line following the line where the error occurred.

Syntax Error – the only syntax errors that will be checked in Pass 1 are:

the incorrect number of operands for an operation

an constant declaration or data definition that is incomplete (missing a value or size)

an incorrectly-formed identifier or label (an identifier that starts with or contains invalid characters)

an incorrect assembler directive (e.g., using BYTE in the .DATA section or a DEF_ in the .CONST section)

an invalid literal (a literal without the required type specifier (#, %, ^ ,$) in the .CONST and .CODE sections or the use of a type specifier in the .DATA section or an unterminated quote in a constant string)

The error message should read: "ERROR: Syntax Error %s" with the symbol or the string that includes the error. This error message should be printed on the line following the line where the error occurred.

Undetermined Error – an error that doesn't fall into one of the above categories, but would keep the assembler from completing its task. These errors could include: missing or misspelled assembler directives, incomplete lines of code (a label without an opcode). The error message should read: "ERROR: Undetermined Error". Since it may be difficult to determine what caused the error, no label or string is output. It is left to the programmer to determine what caused the error. This error message should be printed on the line following the line where the error occurred, where possible.

�
Sample intermediate file with errors, based on example2.asm

; EXAMPLE2.ASM

.PROGRAM		example2

.CONST

	SIZE	WORD	#10

	MAX	HALF	#12

0000	NAME	BYTE	$'Your Name'

	TWO	HALF	#2

	SIZE	WORD	#10

ERROR: Duplicate Symbol SIZE

.DATA

000A	ARAY	DEFH	SIZE

0020	INDEX	DEFW	1

0024	X	DEFH

ERROR: Syntax Error X

0028	SUB1	DEFX	1

.CODE

0000		MOV	R3, R0

0004		ADDI	R4, R0, SIZE

0008		MULTI	R4, TWO

ERROR: Syntax Error MULTI

000C		SUBI	R4, R4, TWO

0010	TOP:	SLT	R10, R4, R0

0014		BNEZ	R10, BOTTOM

0018		ADD	R3, R3, R4

001C		SH	R4, ARRAY, R4

ERROR: Undefined Symbol ARRAY

0020		SUBI	R4,
