UCF 3402 - a RISC architecture for COP 3402

The UCF 3402 machine is based on typical RISC (reduced instruction set computer) architectures and was developed for the course COP 3402 - System Software. It incorporates common RISC features, but draws most heavily from the DLX architecture presented in Computer Architecture: a Quantitative Approach, by John Hennessy and David Patterson, Morgan Kaufman Publishers, 1990, 1996.

The UCF 3402 architecture consists of:

	32 - 32-bit General Purpose Registers called R0 … R31

R0 always holds the value 0 (i.e., you can't store data in R0)

R31 is used to store the return address when a Jump and Link command is executed

any register (except R0) can be used to store condition codes

signed integers are stored as 2's compliment numbers

the UCF 3402 does not include any floating point capabilities

	The Program Counter (PC) is a 32-bit register, thus the total address space is 4 GB.

Memory is byte-addressable and can be loaded or stored in byte (8-bit), halfword (16-bit) and

word (32-bit) increments. However, address alignment is required:

halfwords can only be accessed at even memory addresses

full words of memory can only be accessed at memory locations that are divisible by 4

When loaded into a 32-bit register, bytes and halfwords are converted into 32-bit numbers as follows:

signed numbers are stored as sign-extended 2's compliment numbers

unsigned numbers are stored as binary numbers with leading zeros to fill the register

Byte ordering in registers follows the big-endian convention where the most significant bit is in location 0 and the least significant bit is at the other end. Byte operations (LB, SB) access the least significant 8 bits of a 32-bit register (bits 24-31) and halfword operations (LH, SH) access the least significant 16 bits (bits 16-31) except in the case of the LUHI (Load Upper Halfword Immediate) instruction which loads a halfword into the most significant 16 bits (bits 0-15) and fills the other 16 bits (bits 16-31) with zeros.

0 7�
8 15�
16 23�
24 31�
�
zeros or sign extension�
byte�
�
zeros or sign extension�
halfword�
�

32-bit register employing big-endian byte ordering

Arithmetic can be performed on either signed or unsigned numbers, using the corresponding

command. (Multiply and divide are only done on signed numbers.)

All instructions are 32 bits in total length. There are three instruction formats (see Instruction Formats below) and all use a 6-bit opcode field in the first 6 bits of the instruction. Since there are 32 general purpose registers, instructions that refer to registers use 5 bits for each register field. One format (type 3) does not refer to any registers, one format (type 1) references one source register and one destination register and the remaining format (type 2) refers to two source registers and one destination register.

�
UCF 3402 Instruction Formats

Type 1: Register-Immediate Format

The immediate field in type 1 instructions is a 16-bit number which is interpreted as a signed integer (range: 2-15 (x (215) when used with instructions that expect signed arguments, such as ADDI or DIVI, and as an unsigned 16-bit integer (range: 0 (x (216) when used with instructions that expect unsigned arguments, such as ADDUI or SLLI.

opcode�
source

register�
destination

register�
immediate value�
�
6 bits�
5 bits�
5 bits�
16 bits�
�

Type 1 is used for:

load instructions: LB, LH, LUHI, LW – the immediate field will contain a signed 16-bit integer

store instructions: SB, SH, SW – the immediate field will contain a signed 16-bit integer

all arithmetic/logic instructions with an immediate value: ADDI, SLLI, SLTI, etc. – the immediate field may contain a signed or unsigned 16-bit integer depending on the instruction

the branch instructions: BEQZ, BNEZ – the immediate field is a signed 16-bit integer

jump instructions with an absolute address: JA, JAL – do not use the immediate field

Type 2: Register-Register Format

The 11-bit function field in type 2 instructions is not used at this time, It may be used later to extend the UCF 3402 to handle floating point operations or other new features.

opcode�
source

register # 1�
source

register # 2�
destination

register�
function bits

(not used)�
�
6 bits�
5 bits�
5 bits�
5 bits�
11 bits�
�

Type 2 is used for:

all arithmetic/logic instructions that use two source registers: ADD, SLL, SLT, etc.

Type 3: Relative Jump Format

The offset address field in type 3 instructions holds a 26-bit signed number that can be used for PC-relative addressing. Destination addresses are specified by labels in assembly code, however the assembler resolves them to a PC-relative offset using the target label's address. Local subroutine calls and unconditional jumps are implemented using relative jumps (JR & JRL). External subroutine calls use absolute jumps (see JA & JAL above).

opcode�
address offset

(signed integer, added to PC)�
�
6 bits�
26 bits�
�

Type 3 is used for:

jump instructions that use a relative address: JR, JRL – local jumps are PC-relative and are limited to (2-25 (x (225) or ±33,554,432 bytes from the current PC location

the EXIT instruction, which uses the operand to return an error code (0 = no error)

the NOP instruction, which has no operand

�
UCF 3402 Assembly Language

This language is not case-sensitive: opcodes, register identifiers, labels and assembler directives can be in either upper or lower case, although general practice is to use upper case for everything but comments. However, character strings contained in quotes should retain their original case.

Constants:

Constants can be declared using any of the following data types:

32-bit integers (signed or unsigned)

16-bit integers (signed or unsigned)

8-bit integers (signed or unsigned)

ASCII characters, either individually or in strings

Integers can be declared using decimal, hexadecimal or binary notation. The literal value specified in the constant declaration must be preceded by the correct symbol to indicate which notation is being used. Decimal numbers must be preceded by the # symbol, hexadecimal numbers by the % symbol and binary numbers by the ^ symbol. Characters, either individually or in strings, must be between single quotes and must also be preceded by the $ symbol to indicate their data type.

#17 indicates a literal with the decimal value 17

%1A3C indicates a literal with the hexadecimal value 1A3C (6716 decimal)

^01100111 indicates a literal that is the binary number 01100111 (103 decimal)

$'X' indicates a single ASCII character, the letter X

$'your name here' indicates a 14-character ASCII string

Data Storage:

Storage space for variables can be defined using one of the following allocation units:

word, a 32-bit allocation unit

halfword, a 16-bit allocation unit

byte, an 8-bit allocation unit

Each of the three allocation units can be used to store signed or unsigned integers but only the 8-bit size can be used to store ASCII characters. An array of integers or characters (a string) can be allocated by specifying more than one allocation unit. The number of allocation units must be a decimal number and it should not be preceded by the # symbol.

Comments:

Comments are preceded by the ; (semicolon) symbol. Comments in a program can appear on a line by themselves or on the same line as a program statement, but all text after the ; symbol is considered to be a comment and is ignored by the assembler. If a comment appears after code on a line, there should be at least one space between the end of the code and the comment.

; This is a comment on a line by itself

		ADD		R1, R2, R3		; a comment that follows code

�
Identifiers (labels):

Identifiers are used as labels for constants or data storage and as labels that indicate specific locations in the program (targets for jump and branch instructions). Because of the range of symbols used for other purposes, identifiers can only consist of alphabetic characters (a-z or A-Z), decimal digits (0-9), the _ (underscore) symbol, with the requirement that identifiers can not begin with a digit or an underscore.

You can not use reserved words (opcode names and assembler directives) as identifiers. Since registers are identified by an 'R' (or an 'r') followed by the register number (for example, R0, R11, R21), you can't use that combination for identifiers either.

Labels used as the target of a branch or jump instruction (appearing on the left of an opcode) must have a colon (:) appended to the identifier name, but the colon is not used when they appear as an operand.

	LOOP:		JR	LOOP		; this is an infinite loop

Instruction formats:

Although there are no designated columns or fixed indenting rules, the following apply:

there must be at least one space between the label (if present) and the operator and at least one space between the operator and the first operand (if present)

multiple operands must be separated by commas, spaces between operands are optional

Assembler directives:

There are a number of reserved words, called assembler directives, that provide a variety of information to the assembler including program layout, data storage definitions and constant declarations. Some directives appear on a separate line and are preceded by a . (period). Other directives appear in data definitions or constant declarations to specify the size or type of data being stored.

Program layout assembler directives:

.PROGRAM – the first line of the program file, must specify the program's name

.CONST – marks beginning of the section where constants are declared

.DATA – marks the beginning of the section where data storage locations are defined

.EXTERN – (optional) marks the beginning of the section where external references are listed

.CODE – marks the beginning of the section where program code is found

.END – the last line of the program file

Assembler directives that are used for data definitions or constant declarations:

Note: <label> must be replaced by a valid identifier. <value> can be a16-bit or 32-bit integer or one or more 8-bit ASCII characters (see examples below)

Format for constant declarations:		(values must be preceded by a type indicator)

<label>	WORD		<value>	; used to declare a 32-bit constant

<label>	HALF		<value> 	; used to declare a 16-bit constant

<label>	BYTE		<value> 	; used to declare an 8-bit constant

Format for data storage definitions:		(values must be decimal integers, no #)

<label>	DEFW		<value>	; reserves one or more 32-bit memory locations

<label>	DEFH		<value> 	; reserves one or more 16-bit memory locations

<label>	DEFB		<value> 	; reserves one or more 8-bit memory locations

<label>	DEFX		<value>	; reserves one word for an external reference

�
Program layout:

The first non-blank line of the program file must be the .PROGRAM directive and the last line must be the .END directive. Programs are divided into three sections for program code, declaration of constants and the definition of static (local) variables, plus an optional section where external references are listed. Each section is marked by a specific assembler directive. The section containing constants must appear in the program file before the code and data sections, but the order of the data, external reference and code sections is up to the programmer. There can only be one of each section in a program file. Each declaration of a constant, data storage definition or program instruction will appear on a separate line of the file. There are no line numbers and no fixed columns for each portion of a line, but each label, operator or operand must be properly delimited and consistent indenting is strongly suggested. Any number of blank lines may appear between sections or lines of the program.

Constant Declarations:

The section where constants are declared follows the assembler directive .CONST. There are three kinds of declaration statements (see above), each one representing a constant stored in a particular data type. Characters can only be declared using the BYTE directive, but numeric constants can be declared using any of the three sizes. Numeric arrays can not be declared as constants but character strings are allowed. Once declared, constants can be used in both the .DATA and .CODE sections. When used in the immediate field of a type 1 instruction, signed numbers must be in the range 2-15 (x (215 and unsigned numbers must be in the range 0 (x (216. Numeric or single character constants can only be used as immediate values, therefore you can't declare a numeric constant that is outside of the specified range.

Data Definitions

Data storage definitions follow the .DATA directive. Storage locations for variables are defined using one of the three available allocation units, word, halfword or byte, specified by the DEFW, DEFH or DEFB directives, respectively. Space for numeric variables can be defined using any one of the three allocation units, but characters (and character string) variables can only be defined using the DEFB directive. The DEFX directive is used to declare storage space for the target location of jumps to external subroutines.

Example of .CONST and .DATA sections:

.CONST

ONE	BYTE	#1	; decimal constants

TWOS	HALF	#22222	; see range limits above

SIZE	WORD	#10	; see range limits above

BINB	BYTE	^01010011	; decimal 83

BINH	HALF	^0110010100110100	; decimal 25908

HEXB	BYTE	%3D	; decimal 61

HEXH	HALF	%7FA4	; decimal 32676

CH	BYTE	$'X'	; char constant

NAME	BYTE	$'WHO?'	; string constant

.DATA

	ARRAY1	DEFW	SIZE	; array of 32-bit numbers

	CHAR	DEFB	1

	SHORT	DEFH	5	; array of 16-bit numbers

	LONG	DEFW	ONE

	SUB1	DEFX	1	; external subroutine

	STR1	DEFB	12	; array of characters

�
How Constants are Handled:

Numeric and single character constants can only be used as immediate values in Type 1 instructions. Therefore, in Pass 1, the assembler will add all constants to the symbol table along with their address and value. In Pass 2, the assembler will perform a substitution, replacing any single character or numeric constant's name with the actual value of the constant. However, when a string constant exists, the entire string can't be used an immediate value, so the string must be treated as a literal. In Pass 2, the assembler will allocate space for each string constant ahead of the storage space allocated for data variables and it will place the constant's value in that space. The characters that make up the string can be accessed in the same way as an array of characters. However, unlike an array variable, string constants can not be changed by storing new values in their memory location.

External References:

References to subroutines that are outside of the program file are called external references. Since their location is unknown at the time the program is assembled, the address of each subroutine reference must be determined when the program is loaded into memory in a process called linking. The use of external subroutines is described below. In order to successfully link to external references, the linker must know which external references appear in the program file, where they appear and what external subroutine they refer to. The .EXTERN directive indicates a section where all external references are listed. The assembler uses this information to add records to the object file so that the linker can determine which external references must be resolved. Since the existence of unresolved references would normally generate errors in pass 1, the data directive DEFX is used to indicate an external reference that the assembler can overlook when error checking. Each DEFX declaration is automatically a single 32-bit word (filled with zeros) and the <value> field is ignored.

Calling External Subroutines:

Since external subroutines may be located anywhere in the machine's memory space, they must be accessed via the absolute jump instructions JA and JAL. The JAL instruction must be used if you expect the subroutine to return to the calling program, JA can be used to transfer execution to another program when you do not expect a return. Any parameters needed by the called subroutine must be loaded into registers before the subroutine is called, it will not have access to the calling program's local variables. The symbolic name of the subroutine itself must be declared in the .DATA section using the DEFX directive. Both the symbolic name of the subroutine and the program file where it can be found must be specified in the .EXTERN section. Since the absolute jump instructions must use a 32-bit address that was loaded into a register, an LW instruction must first be used to load the subroutine's address. However, the subroutine's value field does not contain the subroutine's address at the time of assembly, it will actually be inserted when the program is loaded into memory for execution. This is not a problem, because the location that will hold the subroutine's address is allocated by the DEFX directive and that location is reported to the loader via the .EXTERN directive.

During Pass 1, the assembler creates entries in the symbol table for all subroutine names specified by DEFX directives, allocating each a full word of storage space.

During Pass 2, the assembler treats each subroutine label the same as a local memory reference, calculating the PC-relative address offset for each LW instruction that specifies the subroutine's name.

At load time, the loader finds the external subroutine in memory and inserts its address into the storage location that was allocated for the subroutine's label during Pass 2.

�
Pass 1 of the Assembler:

Pass 1 produces the symbol table listing all constants, data declarations and correctly-formed identifiers, along with their value or location. At this time, syntax checking and checking for duplicate identifiers is done, along with checking for the correct number of operands for each opcode. Single characters and numeric constants will be stored in the symbol table in pass 1, but will be converted into immediate values and imbedded into opcodes in pass 2. String constants must be treated as literals and have space allocated for them. External references must also have space allocated. Consequentially, all of these different types and uses of entries into the symbol table must be somehow distinguished by additional fields in the table. The total space allocated for string constants, data and code must be stored for use by pass 2 and the program's name should be extracted for later use as well.

As the assembler makes the first pass, it must write an intermediate file to the disk, listing all information in the original file (although it can ignore blank lines and comments). In addition, it must add the memory address of each string constant, data declaration and jump label. This intermediate file will be used as input for pass 2.

Pass 2 of the Assembler:

Pass 2 reads the intermediate file and that information, along with the data in the opcode table and symbol table, is used to construct two output files. One file, called the listing file, shows all of the information in the intermediate file, plus it includes the actual completed opcodes. This provides a debugging tool for the assembly programmer. For each line of assembly code, the address and opcode associated with that line are also printed. The listing file also includes all constants and data declarations along with their value and/or address. The other output file is the object file which contains only the object code and such information as is necessary for the linker/loader. For example, the object file would include the program's name and total length and any external references that must be resolved at load time.

Object Code Output Format:

The object file must follow a specific format so that the linker/loader can read the information that it contains. Other than the program name and names of any external references, all output data is in hexadecimal bytes. The number of bytes for each item in the output format are shown below.

Header information:

the word PROGRAM followed by one hex byte that indicates the length of the program's name

the program's name (stored as characters)

two hex bytes that indicate the combined length of all code, data and string constants

Code, data and string constants are stored in that order and all are stored as hexadecimal bytes.

All code is 4 bytes in length. Data must follow the address alignment rules mentioned above. Only constant strings longer than 1 character are stored in memory as literals.

Trailer information:

Each external reference declared by a DEFX directive will have an entry in the trailer.

The format for these external references is as follows:

the character string EXTERN followed by one hex byte with the number of entries (0 if none)

each entry will include the length of the symbolic name (1 hex byte), a character string containing the symbolic name (from the DEFX), the length of the external name (1 hex byte), a character string containing the external name (from the .EXTERN directive) and the local address of the symbolic name (4 hex bytes).

�
Program Code:

Note that any operands that are literal values must be preceded by the correct data type indicator, just as in the .CONST section. The last line of program code will normally contain the EXIT opcode with the value 0 as an operand to indicate that no errors occurred.

Example of program layout with constant and data sections:

.PROGRAM		example1				; program name: example1

.CONST

SEVEN		WORD		#7			; 32-bit integer constant

NAME		BYTE		$'your name'	; character string constant

NUM1		WORD		#81			; 32-bit integer constant

SIZE		WORD		#10			; constant giving array size

.DATA

NUM_ARRAY	DEFW		SIZE			; array of 10 words

SHORT1	DEFH		1			; 16-bit integer variable

STR1		DEFB		20			; space for string of size 20

NUM2		DEFW		1			; 32-bit integer variable

SQRT		DEFX		1			; external subroutine

.EXTERN

	SQRT		MATHLIB				; file containing SQRT
