( 2-1 Chapter 2: Data Representation \

Principles of Computer Architecture
Miles Murdocca and Vincent Heuring

Chapter 2: Data Representation

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heurin




[ 2-2 Chapter 2: Data Representation \

Chapter Contents

2.1 Introduction

2.2 Fixed Point Numbers

2.3 Floating Point Numbers

2.4 Case Study: Patriot Missile Defense Failure Caused by Loss of
Precision

2.5 Character Codes

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




[ 2-3 Chapter 2: Data Representation \

Fixed Point Numbers

» Using only two digits of precision for signed base 10 numbers,
the range (interval between lowest and highest numbers) is
[-99, +99] and the precision (distance between successive num-
bers) is 1.

» The maximum error, which is the difference between the value of a
real number and the closest representable number, is 1/2 the pre-
cision. For this case, the erroris 1/2 x1 =0.5.

o If we choose a =70, b =40, and c =-30, then a + (b + ¢) =80 (which
IS correct) but (a + b) + ¢ = -30 which is incorrect. The problem is
that (a + b) is +110 for this example, which exceeds the range of
+99, and so only the rightmost two digits (+10) are retained in the
iIntermediate result. This is a problem that we need to keep in
mind when representing real numbers in a finite representation.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/




[ 2-4 Chapter 2: Data Representation \

Weighted Position Code

* The base, or radix of a number system defines the range of pos-
sible values that a digit may have: 0 — 9 for decimal; 0,1 for binary.

* The general form for determining the decimal value of a number is

given by:
n—1
!
Value = E b,k
1 = —m
Example:

541.25,,=5x102+4 x 101+ 1 x 100 + 2 x 101 + 5 x 1072
= (500),, + (40),4 + (1)1, + (2/10),, + (5/100),,
= (541.25),,

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




// 2-5

Chapter 2: Data Representation \

Base Conversion with the Remainder
Method

« Example: Convert 23.375 ,,to base 2. Start by converting the inte-

ger portion:
Integer Remainder
23[2 = 11 1 «— Least significant bit
|
\/
11/2 = 5 1
|
\]
52 = 2 1
|
]
212 = 1 0
|
\]
12 = 0 1 «— Most significant bit

(23)yp = (10111),

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




/ 2-6 Chapter 2: Data Representation \

Base Conversion with the Multiplica-
tion Method

 Now, convert the fraction:

hMost significant bit

375 X 2 = 0.75

|
\/
75 X 2 = 1.5

|
Y
5 X 2 = 1.0

A L east significant bit

(.375)0 = (.011),

* Putting it all together, 23.375 ,,=10111.011,,.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




Nonterminating Base 2 Fraction

« We can’t always convert a terminating base 10 fraction into an
equivalent terminating base 2 fraction:

\Principles of Computer Architecture by M. Murdocca and V. Heuring

2 x 2 = 04
|

\J

4 x 2 = 08
I

\J

8 x 2 = 16
|

\J

6 x 2 = 12
I

\J

2 x 2 = 04

Chapter 2: Data Representation \

© 1999 M. Murdocca and V. Heuringjj




/ 2-8 Chapter 2: Data Representation \

Base 2, 8, 10, 16 Number Systems

Binary Octal Decimal Hexadecimal
(base 2) (base 8) (base 10) (base 16)

0 0 0 0
1 1 1 1
10 2 2 2
11 3 3 3
100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

« Example: Show a column for ternary (base 3). As an extension of
that, convert 14 ,, to base 3, using 3 as the divisor for the remain-
der method (instead of 2). Resultis 112 4

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




[ 2-9 Chapter 2: Data Representation \

More on Base Conversions

« Converting among power-of-2 bases is particularly simple:
1011, = (10,)(11,) = 23,

23, = (2,)(3,) = (10,)(11,) = 1011,
101010, = (101,)(010,) = 52,
01101101, = (0110,)(1101,) = 6D,

« How many bits should be used for each base 4,8, etc., digit? For
base 2, in which 2 =2 1, the exponent is 1 and so one bit is used
for each base 2 digit. For base 4, in which 4 =2 2, the exponent is
2, SO so two bits are used for each base 4 digit. Likewise, for base
8 and base 16, 8 =23 and 16 = 24, and so 3 bits and 4 bits are used
for base 8 and base 16 digits, respectively.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




/ 2-10 Chapter 2: Data Representation \

Binary Addition

* This simple binary addition example provides background for the
signed number representations to follow.

Caryin = 0 0 0 0 1 1 1 1
OperandSI: 0 0) 1 1 0 o) 1 1
+ 0 +1 +0 +1 +0 +1 +0 +1
oo 01 01 10 01 10 10 11
Carry Sum Example:
out Carry 11110000

Addend: A 01111100 (124)
Augend:B + 01 011010 (9)

Sum 11010110 (24

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




[ 2-11 Chapter 2: Data Representation \

Signed Fixed Point Numbers

« For an 8-bit number, there are 2 8 = 256 possible bit patterns.
These bit patterns can represent negative numbers if we choose
to assign bit patterns to numbers in this way. We can assign half
of the bit patterns to negative numbers and half of the bit patterns
to positive numbers.

* Four signed representations we will cover are:
Signed Magnitude

One’s Complement

Two’s Complement

Excess (Biased)

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




/ 2-12 Chapter 2: Data Representation \

Signed Magnitude

» Also know as “sign and magnitude,” the leftmost bit is the sign (0
= positive, 1 = negative) and the remaining bits are the magnitude.

« Example:
+25,,=00011001,
-25,, = 10011001,

* Two representations for zero: +0 = 00000000 ,, -0 = 10000000,

* Largest number is +127, smallest number is -127  ,,, using an 8-bit
representation.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




[ 2-13 Chapter 2: Data Representation \

One’s Complement

» The leftmost bit is the sign (O = positive, 1 = negative). Negative of
a number is obtained by subtracting each bit from 2 (essentially,
complementing each bit from 0 to 1 or from 1 to 0). This goes both
ways: converting positive numbers to negative numbers, and con-
verting negative numbers to positive numbers.

« Example:
+25,,=00011001,
-25,, = 11100110,

* Two representations for zero: +0 = 00000000 ,, -0 =11111111,,.

* Largest number is +127 ,,, smallest number is -127 ,,, using an 8-
bit representation.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




[ 2-14 Chapter 2: Data Representation \

Two’s Complement

* The leftmost bit is the sign (O = positive, 1 = negative). Negative of
a number is obtained by adding 1 to the one’s complement nega-
tive. This goes both ways, converting between positive and nega-
tive numbers.

« Example (recall that -25 ,,in one’s complement is 11100110 .):
+25,,= 00011001,
-25,,=11100111,

 One representation for zero: +0 = 00000000 ,, -0 = 00000000,

 Largest number is +127 ,,, smallest number is -128 ,,, using an 8-
bit representation.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




[ 2-15 Chapter 2: Data Representation \

Excess (Biased)

» The leftmost bit is the sign (usually 1 = positive, O = negative).
Positive and negative representations of a number are obtained
by adding a bias to the two’s complement representation. This
goes both ways, converting between positive and negative num-
bers. The effect is that numerically smaller numbers have smaller
bit patterns, simplifying comparisons for floating point exponents.

« Example (excess 128 “adds” 128 to the two’s complement ver-
sion, ignoring any carry out of the most significant bit) :

+12,, = 10001100,
-12,, = 01110100,

 One representation for zero: +0 = 10000000 ,, -0 = 10000000,

 Largest number is +127 ,,, smallest number is -128 ,,, using an 8-
bit representation.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




BCD Representations in Nine’s and
Ten’s Complement

» Each binary coded decimal digit is composed of 4 bhits.

@ I0 00 OI I0 01 1I IO 00 0I |O 00 1I (+301)1O CNCirr;]e’ISa?nngnien’S
(010 (310 (0)10 (D10 P

(p 1001 0110 1001 1000 (301);, Nine'scomplement
)10 (6)10 910 ()10

(©) |1 00 1I I0 11 OI |1 00 1| I1 00 1| (-301) 4 Ten's complement
910 (6)10 910 910

« Example: Represent +079 ,,in BCD: 0000 0111 1001

« Example: Represent -079 ,,in BCD: 1001 0010 0001. This is ob-
tained by first subtracting each digit of 079 from 9 to obtain the
nine’s complement, so 999 - 079 = 920. Adding 1 produces the
ten’s complement: 920 + 1 = 921. Converting each base 10 digit of
921 to BCD produces 1001 0010 0001.

[ 2-16 Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




( 2-17 Chapter 2: Data Representation \

3-Bit Signed Integer Representations
Decimal Unsigned Sign—-Mag., 15 Comp. 2 Comp. Excess4

7 111 — — — —

G 110 — — — —

3 101 - - - —

4 100 — — — —

3 011 011 011 011 111
2 (10 (10 (10 (10 110
1 001 001 001 001 101
+() (00 000 000 (00 100
-0 - 100 111 000 100
-1 — 101 110 111 011
-2 - 110 101 110 010
-3 — 111 100 101 001
-4 - - - 100 000

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. HeuringJ




/f 2-18

Chapter 2: Data Representation \

Base 10 Floating Point Numbers

 Floating point numbers allow very large and very small numbers
to be represented using only a few digits, at the expense of preci-
sion. The precision is primarily determined by the number of dig-
its in the fraction (or significand , which has integer and fractional

parts), and the range is primarily determined by the number of
digits in the exponent.

« Example (+6.023 x 10%3):

Position of decimal point

!

+ 2113]116].]0[|2]]3

Sign Exponent Significand
(two digits) (four digits)

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




[ 2-19 Chapter 2: Data Representation \
Normalization

» The base 10 number 254 can be represented in floating point form
as 254 x 100, or equivalently as:

25.4 x 101, or
2.54 x 10%, or
254 x 103, or
.0254 x 104, or

Infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number.

* Floating point numbers are usually  normalized , in which the radix
point is located in only one possible position for a given number.

« Usually, but not always, the normalized representation places the
radix point immediately to the left of the leftmost, nonzero digit in
the fraction, as in: .254 x 103

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




Floating Point Example

« Represent .254 x 103 in a normalized base 8 floating point format
with a sign bit, followed by a 3-bit excess 4 exponent, followed by
four base 8 digits.

« Step #1: Convert to the target base.

254 x 103 = 254, ,. Using the remainder method, we find that 254
= 376 x 8°:

254/8 =31 R 6
31/8=3R7
3/8=0R 3
o Step #2: Normalize: 376 x 89 =.376 x 83,

« Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an
exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:

O 111 . 011 111 110 000

[ 2-20 Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




[ 2-21 Chapter 2: Data Representation \

Error, Range, and Precision

* In the previous example, we have the base b = 8, the number of

significant digits (not bits!) in the fraction S = 4, the largest expo-
nent value (not bit pattern) M = 3, and the smallest exponent value
m=-4,

* In the previous example, there is no explicit representation of O,
but there needs to be a special bit pattern reserved for O other-
wise there would be no way to represent O without violating the
normalization rule. We will assume a bit pattern of
O 000 000 000 000 000 represents 0.

e Using b, s, M, and m, we would like to characterize this floating
point representation in terms of the largest positive representable
number, the smallest (nonzero) positive representable number,
the smallest gap between two successive numbers, the largest
gap between two successive numbers, and the total number of
numbers that can be represented.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/




[[ 2-22

o Largest representable number:  bMx (1 -bS) =83 x (1-8%)
« Smallest representable number: bMx p1=84-1=8>
 Largestgap: bMx ps=83-4=81

« Smallest gap: b x bS=84-4=88

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

Chapter 2: Data Representation \

Error, Range, and Precision (cont’)




[ 2-23 Chapter 2: Data Representation \

Error, Range, and Precision (cont’)
® © ®

2 x (M-m+1) x (b-1) x bsl + 1
L I I L1
Thenumber  Firstdigit Remaining T

Sign bit of exponents  of fraction digitsof Zero

fraction

 Number of representable numbers: There are 5 components: (A)
sign bit; for each number except O for this case, there is both a
positive and negative version; (B) ( M- m) + 1 exponents; (C)b -1
values for the first digit (O is disallowed for the first normalized
digit); (D) b1 values for each of the s-1 remaining digits, plus (E)
a special representation for 0. For this example, the 5 components
resultin: 2 x ((3-4)+1)x(8-1) x8*%1+ 1 numbers that can be
represented. Notice this number must be no greater than the num-
ber of possible bit patterns that can be generated, which is 2 16,

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/




/ 2-24 Chapter 2: Data Representation \

Example Floating Point Format

AL AAa
-3 —1 —1 o) 1 1 3
2 2 4 4 2 2
1 1 b=2 M= +1
8 8 s=3 m= -2

« Smallest number is 1/8

e Largest number is 7/4

 Smallest gap is 1/32

e Largestgapis 1/4

 Number of representable numbers is 33.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




/[2-25
Gap Size Follows Exponent Size

* The relative error is approximately the same for all numbers.

* If we take the ratio of a large gap to a large number, and compare
that to the ratio of a small gap to a small number, then the ratios
are the same:

A large gap > pM-s b1
A large number > pM x (1—bs) 1—bs b1
A small gap > bm-s b

A small number > pmx (1-b) 1—bs b1

Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




[ 2-26 Chapter 2: Data Representation \

Conversion Example

« Example: Convert (9.375 x 10'2)10 to base 2 scientific notation

 Start by converting from base 10 floating point to base 10 fixed
point by moving the decimal point two positions to the left, which
corresponds to the -2 exponent: .09375.

* Next, convert from base 10 fixed point to base 2 fixed point:

09375 x 2 = 0.1875
1875 x 2 = 0.375
375 x 2 = 0.75
.75 x 2 = 15

D x 2 = 1.0

* Thus, (.09375) ,, = (.00011),.
 Finally, convert to normalized base 2 floating point:

.00011 =.00011 x20=1.1 x 24

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




[( 2-27

32 bits
|
Single , .
precision 8 bits 23 bits
/ Exponent Fraction
Sign
(1 bit) 64 bits
\I
Double , .
precision 11 bits 52 bits
Exponent Fraction

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

Chapter 2: Data Representation \

IEEE-754 Floating Point Formats




\Principles of Computer Architecture by M. Murdocca and V. Heuring

// 2-28 Chapter 2: Data Representation \
IEEE-754 Examples
Value Bit Pattern
Sign Exponent Fraction

(@ +1.101 x 2° 0 1000 0100 101 0000 0000 0000 0000 0000
(b) -1.01011 x 2-126 1 0000 0001 010 1100 0000 0000 0000 0000
(c) +1.0 x 2127 0 1111 1110 000 0000 0000 0000 0000 0000
(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000
(e -0 1 0000 0000 000 0000 0000 0000 0000 0000
) +00 0 1111 1111 000 0000 0000 0000 0000 0000
(9) +2-128 0 0000 0000 010 0000 0000 0000 0000 0000
(h) +NaN 0 1111 1111 011 0111 0000 0000 0000 0000
(i) +2-128 0O 01101111111 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000

© 1999 M. Murdocca and V. Heuringjj




[ 2-29 Chapter 2: Data Representation \

IEEE-754 Conversion Example

* Represent -12.625 4, in single precision IEEE-754 format.
« Step #1. Convert to target base. -12.625 ,,=-1100.101,
* Step #2: Normalize. -1100.101 , = -1.100101, x 23

« Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Expo-
nent is in excess 127 (not excess 128!), so exponent Is repre-
sented as the unsigned integer 3 + 127 = 130. Leading 1 of
significand is hidden, so final bit pattern is:

1 1000 0010 . 1001 0100 O0O00 0000 0000 000

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//




/f 2-30

« According to
the General Ac-
counting Office
of the U.S. Gov- ﬁ!i%ation
ernment, a loss
of precision in
converting 24-

o _ Search action
bit integers into locates missile
- : somewhere
24-Dbit floating —ithi™ beern

point numbers

was responsible
for the failure of Missile
a Patriot anti-

Effect of Loss of Precision

Chapter 2: Data Representation \

Missile
outside of
range gate

Range
Gate

Area

missile battery.

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring//




/[ 2-31

 ASCIl is a 7-bit code, com-

ASCII Character Code

Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring

. . 00 NUL[10 DLE[20 SP [30 O [40 @ [50 P [60 - [70 p
monly stored in 8-bit 01 SOH|[11 DC1 |21 ! [3L 1 |41 A |51 Q |61 a |71 q
02 STX [12DC2|22 " |32 2 |42 B |52 R |62 b |72 r
bytes. 03 ETX |13 DC3 |23 # |33 3 |43 C |53 S |63 ¢c |73 s
04 EOT |14 DC4 |24 $ |34 4 |44 D |54 T |64 d |74 t
WAN 05 ENQ|15 NAK|25 % |35 5 |45 E [55 U |65 e |75 u
e “A"Isat 41l 16° To convert 06 ACK|16 SYN|26 & |36 6 |46 F |56 V |66 f |76 v
07 BEL |17 ETB |27 ' |37 7 |47 G |57 W |67 g |77 w
upper case letters to 08 BS |18 CAN|28 ( |38 8 |48 H |58 X |68 h |78 x
09 HT |19 EM |29 ) |39 9 |49 | [59 Y |69 i |79 vy
lower case |e'['[el’S, add OALF |[1ASUB|2A * [3A : [4A J |5A Z |6A j |7A 2
s OBVT |IBESC|2B + [3B ; [4B K [5B [ [6B k |7B {
20... Thus “a”’ is at 41 + OCFF |ICFS |[2C 3 < |4c L |[5C \ |6C | |7C |
16 16 ODCR |1DGS |2D - |30 = (4D M |5D | |6D m |7D }
20. . =01 OESO |1IERS |2E . [3E > |4 N |5E ~ |6E n |[7E =~
16 16° OFSI [1IFUS |2F / |3F 2 |4 O |5F _ |6F o |7F DEL
[1 ” .
e The character “5” at posi- NUL Nul FF Form feed CAN Cancel
. . . SOH Start of heading CR Carriagereturn EM  End of medium
tion 35 1 Is different than STX Start of text SO Shift out SUB Substitute
6 ETX End of text Sl Shiftin ESC Escape
the number 5 TO convert EOT End of transmisson DLE Datalink escape FS  File separator
h b . ENQ Enquiry DC1 Device control 1 GS Group separator
- ACK Acknowledge DC2 Device control 2 RS  Record separator
c araCter numDbers Into BEL Bsdll DC3 Device control 3 US  Unit separator
- - BS Backspace DC4 Device control 4 SP  Space
number numbers’ SUb HT Horizontal tab NAK Negative acknowledge DEL Delete
. _ — LF  Linefeed SYN Synchronousidlie
tract 30 16" 3516 30]_6 = 2. VT Vertica tab ETB End of transmission block

© 1999 M. Murdocca and V. Heuringjj




[ 2-32 Chapter 2: Data Representation \

00 NUL[20 DS [40 SP [60 — |80 AO co { [EO \
EBCDIC 01 SOH |21 SOS |41 61 / |8 a |Al ~ |C1 A |EL

02 STX |22 FS |42 62 82 b |[A2 s |C2 B |E2 S

03 ETX |23 43 63 83 ¢ [A3 t |C3 C |E3 T

h 04 PF |24 BYP |44 64 84 d |A4 u |C4 D |E4 U

C araCter 05 HT |25 LF |45 65 85 e |[A5 v |C5 E |E5 V

06 LC |26 ETB |46 66 86 f |A6 w |C6 F |E6 W

07 DEL |27 ESC |47 67 87 g |A7 x |C7T G |E7T X

COde 08 28 48 68 88 h |[A8 y |C8 H |E8 Y

09 29 49 69 89 i |A9 z |C9 | |E9 Z
0OA SMM|2A SM |4A ¢ |[6A * |8A AA CA EA
. i _hi 0B VT |2B CU2 |4B 6B , |8B AB CB EB
EBCDIC is an 8-bit OC FF | 2C AC < |6C % |8C AC cC EC
code. ODCR |2DENQ|4D ( |[6D _ |8D AD CD ED
OE SO |2E ACK|4E + |6E > |8E AE CE EE
OF S |2FBEL |4F | |6F 2 |8F AF CF EF

10 DLE | 30 50 & |70 90 BO DO } |FO O

11 DC1 | 31 51 71 91 | |B1 DI J |F1 1

12 DC2 | 32 SYN|52 72 92 k |B2 D2 K |F2 2

13 TM | 33 53 73 93 | |B3 D3 L |F3 3

f o 14 RES |34 PN |54 74 94 m |B4 D4 M |F4 4

DELREUT BEMEmE R o(zoE 2N

acKkspace gl €C 0

SOH S 0 SM caMeds  &117 IL |37 EOT |57 77 97 p |B7 D7 P |F7 7

ENQ  Enquiry LC LowerCase ~ CU 18 CAN |38 58 78 9% q |BS D8 Q |F8 8

BYP Bypaes CR CoropsRean 17 19 EM | 39 59 79 9 r |B9 D9 R |F9 9

CAN Cancdl EM End of Medium EQ 1A CC | 3A 5A L [7TA : |9A BA DA FA |
Sl Shiftin TM Tape Mark NAIB CU1 3B CU3|5B $ |7B # |9B BB DB FB
20, Shift Out S P etor S ICIFS |3CDC4 (5C - |7C @ |9C BC DC FC
SUB  Substitute HT Horizontal Tab IG 1D IGS | 3D NAK| 5D ) 7 9D BD DD FD
N NewLine UC Ut 18 1E IRs |3E 5 : |7E = |9E BE DE FE
IF IUS |3F SUB |5F -~ |[7F " |9F BF DF FF

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj




[/ 2-33

Unicode
Character
Code

» Unicode is a 16-
bit code.

Chapter 2: Data Representation \

0000 NUL | 0020 SP |0040 @ | 0060 0080 Ctrl | 00AO NBS|00CO A |00E0 a
0001 SOH | 0021 ! |(0041 A |0061 a |008L Citrl | 00AL1 00C1 A |O0E1 &
0002 STX (0022 " |0042 B |0062 b |0082 Ctrl [00A2 ¢ |00C2 A |OOE2 &
0003 ETX [0023 # |0043 C |0063 c |0083 Ctrl [00A3 £ |00C3 A |OOE3 &
0004 EOT |0024 $ |0044 D |0064 d |0084 Ctrl |00A4 © |00C4 A |O0OE4 &
0005 ENQ | 0025 % |0045 E |0065 e |0085 Ctrl |00A5 ¥ |00C5 A |00E5 &
0006 ACK| 0026 & |0046 F |0066 f |0086 Ctrl |00A6 T |00C6 A& |OOE6 @
0007 BEL (0027 ' |[0047 G |0067 g |0087 Ctrl |OOA7 § |00C7 C |OOE7 ¢
0008 BS |[0028 ( |0048 H [0068 h [0088 Ctrl [00A8 " |[00C8 E |OOE8 &
0009 HT | 0029 ) |0049 | 0069 i 0089 Ctrl [00A9 © [00C9 E |[OOE9 é
OOOA LF |002A * |[O004A J | O006A j 008A Ctrl | 00AA 2 |00CA E |OOEA &
000B VT [002B + (004B K |006B k |008B Ctrl |0OOAB « |00CB E |OOEB &
000OC FF |002C ~ |004C L |006C | 008C Ctrl | 00AC -~ |00CC | 00EC i
OOODCR |002D - |004D M |006D m |008D Ctrl | 0OAD — |00CD i |OOED i
OO0E SO |002E . |O04E N |OO6E n |OOSE Ctrl |[0OAE ® |O00CE 1 |OOEE 1
000F Sl 002F / |004F O |006F o |OO08F Ctrl | OOAF — |OOCF | |OQOEF i
0010 DLE|0030 O |0050 P |0070 p |0090 Ctrl |00BO ° |00DO D |O0FO ¢
0011 DC1 |0031 1 |0051 Q |0071 qgq |0091 Ctrl [0OB1 + |00OD1 N |OOF1L n
0012 DC2 {0032 2 |0052 R [0072 r |0092 Ctrl [O0OB2 2 |00D2 O |OOF2 o
0013 DC3 ({0033 3 [0053 S |0073 s |0093 Ctrl [00B3 3 |00D3 O |O0OF3 6
0014 DC4 | 0034 4 |(0054 T |0074 t |0094 Ctrl |00B4 ~ ooD4 O |O0OF4 &
0015 NAK|0035 5 [0055 U [0075 u |0095 Ctrl [00B5 p |00D5 O |O0OF5 &
0016 SYN|0036 6 |0056 V |0076 v |009 Ctrl |00B6 § |00D6 O |OQOF6 O
0017 ETB | 0037 7 |0057 W |0077 w |0097 Ctrl |[00B7 00D7 x | OOF7 =
0018 CAN| 0038 8 |0058 X |0078 x |0098 Ctrl [0OB8 , |00D8 @ |O00F8 @
0019 EM [0039 9 [0059 Y |0079 y |0099 Ctrl [OOB9 * |00D9 U |OOF9 U
001A SUB [003A : |O005A Z |007A z |O09A Ctrl [OOBA ° |00DA U | OOFA G
001B ESC |[003B ; |[005B [ |007B { |O09B Ctrl [0OOBB » |[00DB U |OOFB 0
00ICFS |003C < |[005C \ |007C | |009C Ctrl |0OBC /4 |00DC U |O0OFC
001D GS |003D = |005D ] 007D } 009D Ctrl | 00BD /2 |00DD Y |OOFD b
001IE RS |003E > |O0O5E ~ |OO7E ~ |OO9E Ctrl | OOBE 3/4 |OODE y |OOFE p
001F US |003F ? |O005F _ | O007F DEL | O09F Ctrl | 0OBF ¢ |OODF g |OOFF
NUL Null SOH Start of heading CAN Cancel SP Space

STX Start of text EOT End of transmission EM Endof medium DEL Delete
ETX End of text DC1 Devicecontrol 1 SUB Substitute Ctrl  Control
ENQ Enquiry DC2 Device control 2 ESC Escape FF  Formfeed
ACK Acknowledge DC3 Device control 3 FS  Fileseparator CR Carriagereturn
BEL Bdl DC4 Device control 4 GS Group separator SO Shift out
BS Backspace NAK  Negative acknowledge RS Record separator Sl Shiftin

HT Horizontal tab NBS Non-breaking space US  Unit separator DLE Datalink escape
LF Linefeed ETB End of transmission block SYN Synchronousidle VT  Vertical tab

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj




