
Appendix A: Digital LogicA-1

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Principles of Computer Architecture
Miles Murdocca and Vincent Heuring

Appendix A: Digital Logic

Appendix A: Digital LogicA-2

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Chapter Contents
A.1 Introduction
A.2 Combinational Logic
A.3 Truth Tables
A.4 Logic Gates
A.5 Properties of Boolean Algebra
A.6 The Sum-of-Products Form, and Logic Diagrams
A.7 The Product-of-Sums Form
A.8 Positive vs. Negative Logic
A.9 The Data Sheet
A.10 Digital Components
A.11 Sequential Logic
A.12 Design of Finite State Machines
A.13 Mealy vs. Moore Machines
A.14 Registers
A.15 Counters

Appendix A: Digital LogicA-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Combinational logic: a digital logic circuit in which logical deci-

sions are made based only on combinations of the inputs. e.g. an
adder.

• Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its inter-
nal state. e.g. a vending machine controller.

Appendix A: Digital LogicA-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Combinational
logic unit

. . .

i0
i1

in

. . .

f0
f1

fm

(i0, i1)
(i1, i3, i4)

(i9, in)

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.

• Inputs and outputs for a CLU normally have two distinct (binary)
values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.

• The outputs of a CLU are strictly functions of the inputs, and the
outputs are updated immediately after the inputs change. A set of
inputs i 0 – in are presented to the CLU, which produces a set of
outputs according to mapping functions f 0 – fm.

Appendix A: Digital LogicA-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

0
0

1

1

0
1

0

1

A B

0
1

1

0

Z

Inputs Output

Switch A Switch B

“Hot”

GND

Light Z

A Truth Table
• Developed in 1854 by George Boole.

• Further developed by Claude Shannon (Bell Labs).

• Outputs are computed for all possible input combinations (how
many input combinations are there?)

• Consider a room with two light switches. How must they work?

Appendix A: Digital LogicA-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Alternate Assignment of Outputs to
Switch Settings

• We can make the assignment of output values to input combi-
nations any way that we want to achieve the desired input-out-
put behavior.

0
0
1
1

0
1
0
1

A B

1
0
0
1

Z

Inputs Output

Appendix A: Digital LogicA-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Truth Tables Showing All Possible
Functions of Two Binary Variables

• The more fre-
quently used func-
tions have names:
AND, XOR, OR,
NOR, XOR, and
NAND. (Always
use upper case
spelling.)

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

A B False AND A B XOR OR

0

0

1

1

0

1

0

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

A B NOR XNOR A + B NAND True

AB AB

B A A + B

Inputs Outputs

Inputs Outputs

Appendix A: Digital LogicA-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and Their Symbols

• Logic symbols
shown for AND, OR,
buffer, and NOT
Boolean functions.

• Note the use of the
“inversion bubble.”

• (Be careful about
the “nose” of the
gate when drawing
AND vs. OR.)

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

AND

A
0
0
1
1

B
0
1
0
1

F
0
1
1
1

OR

A

B
F = A + B

A
0
1

F
0
1

Buffer

A
0
1

F
1
0

NOT (Inverter)

A F = A A F = A

Appendix A: Digital LogicA-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and their Symbols (cont’)

A

B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

NAND

A
0
0
1
1

B
0
1
0
1

F
1
0
0
0

NOR

A

B
F = A B F = A + B

A
0
0
1
1

B
0
1
0
1

F
0
1
1
0

Exclusive-OR (XOR)

A

B
F = A ⊕
 B

A
0
0
1
1

B
0
1
0
1

F
1
0
0
1

Exclusive-NOR (XNOR)

A

B
F = A ⊕
 B.

Appendix A: Digital LogicA-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Variations of Logic Gate Symbols

(a) 3 inputs (b) A Negated input (c) Complementary outputs

A
B
C

F = ABC

(a) (b)

A

B
F = A + B

(c)

A + B

A + BA

B

Appendix A: Digital LogicA-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Transistor Operation of Inverter

(a) Inverter showing power terminals; (b) transistor symbol; (c) tran-
sistor configured as an inverter; (d) inverter transfer function.

A A

GND = 0 V

VCC = +5 V

(a)

VCC

Base
Collector
Emitter

(b)

VCC

Vin

(c)

Vout

A

A

RL

(d)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0.20 0.4 0.6 0.8 1 1.2 1.4 1.6 21.8

VI–
Input Voltage–
V

V
O

–

O

u
tp

u
t

V
o

lta
g

e
–

V

OUTPUT VOLTAGE vs. INPUT VOLTAGE

VCC = 5 V

RL = 400 Ω

Appendix A: Digital LogicA-12

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Assignments of 0 and 1 to Voltages

(a)

0 V

+5 V

Logical 1

0.4 V

2.4 V

Logical 0

(b)

0 V

+5 V

Logical 1

Forbidden Range
0.8 V

2.0 V

Logical 0

Forbidden Range

Appendix A: Digital LogicA-13

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Transistor Operation of Logic Gates
VCC

V1

(a)

Vout

A

AB

V2

B
V1

A
V2

B

VCC

Vout
A + B

(b)

(a) NAND; (b) NOR

Appendix A: Digital LogicA-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Tri-State Buffers
• Outputs can be 0, 1, or “electrically disconnected.”

C
0
0
1
1

A
0
1
0
1

F
ø

ø

0
1

Tri-state buffer

C
0
0
1
1

A
0
1
0
1

F
0
1
ø

ø

Tri-state buffer, inverted control

A F = A C

C

A

C

F = A C

F = ø
 F = ø

or or

Appendix A: Digital LogicA-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Properties of Boolean Algebra

• Principle of
duality: The
dual of a
Boolean
function is
obtained by
replacing
AND with OR
and OR with
AND, 1s with
0s, and 0s
with 1s.

A B = B A

A (B + C) = A B + A C

1 A = A

A A = 0

0 A = 0

A A = A

A (B C) = (A B) C

A + B = B + A

A + B C = (A + B) (A + C)

0 + A = A

1 + A = 1

A + A = 1

A + A = A

A + (B + C) = (A + B) + C

Commutative

Distributive

Identity

Complement

Associative

A B = A + B A + B = A B DeMorgan’s Theorem

PropertyRelationship Dual

Zero and one theorems

Idempotence

A = A Involution

Consensus Theorem(A + B)(A+C)(B +C)

= (A + B)(A +C)

AB+ AC + BC

= AB + AC

A (A + B) = A A + A B = A Absorption Theorem

T
he

or
em

s
P

os
tu

la
te

s

Appendix A: Digital LogicA-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

A

B
F = A + B

A + B = A + B = A BDeMorgan’s theorem:

A

B
F = A B

Appendix A: Digital LogicA-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

All-NAND Implementation of OR
• NAND alone implements all other Boolean logic gates.

A

B
 A + B

A

B

 A + B

Appendix A: Digital LogicA-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sum-of-Products Form: The Majority
Function

• The SOP form for the 3-input majority function is:

M = ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = Σ (3, 5, 6, 7).
• Each of the 2 n terms are called minterms , ranging from 0 to 2 n - 1.
• Note relationship between minterm number and boolean value.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

A balance tips to the left or
right depending on whether
there are more 0’s or 1’s.

0-side 1-side

1

00

Minterm
Index

Appendix A: Digital LogicA-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Majority

• Gate count is
8, gate input
count is 19.

F

A B C

A B C

A B C

A B C

A B C

Appendix A: Digital LogicA-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Notation Used at Circuit Intersections

No connection

No connection

Connection

Connection

Appendix A: Digital LogicA-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

OR-AND Implementation of Majority

F

A B C

A + B + C

A + B + C

A + B + C

A + B + C

Appendix A: Digital LogicA-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate Logic: Positive vs. Negative Logic

Normal Convention: Postive Logic/Active High
Low Voltage = 0; High Voltage = 1

Alternative Convention sometimes used: Negative Logic/Active Low

Behavior in terms
of Electrical Levels

Two Alternative Interpretations
Positive Logic AND
Negative Logic OR

Dual Operations

Negative LogicPositive LogicVoltage Truth T able

F
low
low
low
high

F
0
0
0
1

F
1
1
1
0

A
low
low

high
high

B
low

high
low

high

B
0
1
0
1

A
0
0
1
1

A
1
1
0
0

B
1
0
1
0

F

Positive/Negative Logic Assignments
• Positive logic: logic 1 is represented by high voltage; logic 0 is

represented by low voltage.

• Negative logic: logic 0 is represented by high voltage; logic 1 is
represented by low voltage.

Appendix A: Digital LogicA-23

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Positive/Negative Logic Assignments
(Cont’)

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

A
1
1
0
0

B
1
0
1
0

F
1
1
1
0

A

B
F = A + B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

A
1
1
0
0

B
1
0
1
0

F
0
0
0
1

A

B
F = A B

A

B
F = A + B

Positive Logic Levels Negative Logic Levels

A
low
low
high
high

B
low
high
low
high

F
low
low
low
high

Voltage Levels

Physical
AND gate

A

B
F

Positive Logic Levels Negative Logic Levels

A
low
low
high
high

B
low
high
low
high

F
high
high
high
low

Voltage Levels

Physical
NAND gate

A

B
F

Appendix A: Digital LogicA-24

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Bubble Matching

x0 Positive
Logicx1

x0

x1

Negative
Logic

Positive logic

(a) (b)

Positive logic

Negative logic

Negative logic

x0 Negative
Logicx1

x0

x1

Negative
Logic

Negative logic

(c) (d)

Negative logic

Negative logic

Negative logic
Bubble mismatch Bubble match

Bubble match

Appendix A: Digital LogicA-25

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example
Data Sheet

SN7400 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

description

These devices contain four independent
2-input NAND gates.

package (top view)

1A
1B
1Y
2A
2B
2Y

GND

VCC

4B
4A
4Y
3B
3A
3Y

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A
1B 1Y

2A
2B 2Y

3A
3B 3Y

4A
4B 4Y

Y = A B

logic diagram (positive logic)

function table (each gate)

INPUTS
A B

OUTPUT
Y

H
L

X

H
X

L

L
H

H

VCC

schematic (each gate)

130 Ω1.6 kΩ4 kΩ

A

B

Y

GND

1 kΩ

recommended operating conditions

IOL	
Low-level output current

IOH	
High-level output current

VIL	
Low-level input voltage

VIH	
High-level input voltage

VCC	
Supply voltage

MIN

TA	
Operating free-air temperature

NOM MAX UNIT

4.75 5 5.25 V

2 V

0.8 V

–
 0.4 mA

16 mA

0 70 ˚
C

electrical characteristics over recommended operating free-air temperature range

ICCH	
VCC = MAX, VI = 0 V

IIL	
VCC = MAX, VI = 0.4 V

IIH	
VCC = MAX, VI = 2.4 V

VOL	
VCC = MIN, VIH = 2 V, IOL = 16 mA

VOH	
VCC = MIN, VIL = 0.8 V, IOH = –
 0.4 mA

MIN

ICCL	
VCC = MAX, VI = 4.5 V

TYP MAX UNIT

2.4 3.4

0.4

V

V

40 µ
A

–
 1.6 mA

8 mA

22 mA

0.2

4

12

absolute maximum ratings

Supply voltage, VCC
Input voltage:
Operating free-air temperature range:
Storage temperature range

7 V
5.5 V

0 ˚
C to 70 ˚
C
–
 65 ˚
C to 150 ˚
C

switching characteristics, VCC = 5 V, TA = 25˚
 C

tPHL

tPLH

MIN TYP MAX UNIT

11 22 ns

ns7 15

PARAMETER FROM (input) TO (output) TEST CONDITIONS

A or B Y
RL = 400 Ω
CL = 15 pF

• Simplified data
sheet for 7400
NAND gate,
adapted from Texas
Instruments TTL
Databook [Texas
Instruments, 1988]

Appendix A: Digital LogicA-26

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Digital Components
• High level digital circuit designs are normally created using col-

lections of logic gates referred to as components , rather than us-
ing individual logic gates.

• Levels of integration (numbers of gates) in an integrated circuit
(IC) can roughly be considered as:

• Small scale integration (SSI): 10-100 gates.
• Medium scale integration (MSI): 100 to 1000 gates.
• Large scale integration (LSI): 1000-10,000 logic gates.
• Very large scale integration (VLSI): 10,000-upward logic

gates.
• These levels are approximate, but the distinctions are useful

in comparing the relative complexity of circuits.

Appendix A: Digital LogicA-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplexer

0
0
1
1

0
1
0
1

A B

D0

D1

D2

D3

FD0

A

D1

D2

D3

B

F

00
01

10
11

F = A B D
0

+ A B D
1

+ A B D
2

+ A B D
3

D
at

a
In

pu
ts

Control Inputs

Appendix A: Digital LogicA-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of MUX

F

A B

D0

D1

D2

D3

Appendix A: Digital LogicA-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

MUX Implementation of Majority
• Principle: Use the 3 MUX control inputs to select (one at a time)

the 8 data inputs.

A C

F

000
001

010
011

B

100
101

110
111

0
0

0
1

0
1

1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

M

Appendix A: Digital LogicA-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

4-to-1 MUX Implements 3-Var Function
• Principle: Use the A and B inputs to select a pair of minterms.

The value applied to the MUX data input is selected from {0, 1,
C, C} to achieve the desired behavior of the minterm pair.

A B

F

00

01
10

11

0

1
C

C

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
1
1
0
1
1
0

F

0
0
0
0
1
1
1
1

A

0

1

C

C

Appendix A: Digital LogicA-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Demultiplexer

F0

A

F1

F2

F3

B

00

01
10

11

D

F 0 = D A B

F 1 = D A B

F 2 = D A B

F 3 = D A B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B

0
0
0
0
1
0
0
0

F0

0
0
0
0
0
1
0
0

F1

0
0
0
0
0
0
1
0

F2

0
0
0
0
0
0
0
1

F3

0
0
0
0
1
1
1
1

D

Appendix A: Digital LogicA-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of DEMUX

A B

F0

F1

F2

F3

D

Appendix A: Digital LogicA-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder

D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3 = A BD1 = A B D2 = A BD0 = A B

Enable

Enable = 1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable = 0

Appendix A: Digital LogicA-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of Decoder

A

B

D0

D1

D2

D3

Enable

Appendix A: Digital LogicA-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder Implementation of Majority
Function

A

C
M

000
001

010
011

B
100
101

110
111

• Note that the en-
able input is not
always present.
We use it when
discussing de-
coders for
memory.

Appendix A: Digital LogicA-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than A i+1

0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0

F0 F1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

A1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

A2

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A3

F0

F1

00
01

10
11

A0

A1

A2

A3

F0 = A0 A1 A3 + A0 A1 A2

F1 = A0 A2 A3 + A0 A1

Appendix A: Digital LogicA-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Priority
Encoder

F0
A1

A2

A3

F1

A0

Appendix A: Digital LogicA-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Programmable
Logic Array

F0

A B C

Fuses

F1

AND matrix

OR matrix

• A PLA is a
customizable AND
matrix followed by
a customizable
OR matrix.

• Black box view of
PLA:

A
B
C

PLA
F0

F1

Appendix A: Digital LogicA-39

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Simplified
Representation

of PLA
Implementation

of Majority
Function

F0

A B C

F1

(Majority)

A B C

A B C

A B C

A B C

(Unused)

Appendix A: Digital LogicA-40

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: Ripple-Carry Addition

Operand A
Operand B

0
0+

00

SumCarry
Out

0
1+

10

1
1+

01

Example:

Carry
Operand A

Operand B
Sum

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

+

Carry In 0 0

1
0+

10

0 0

0
0+

10

1

0
1+

01

1

1
0+

01

1

1
1+

11

1

Appendix A: Digital LogicA-41

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Full Adder

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Bi Ci

0
0
0
0
1
1
1
1

Ai

0
1
1
0
1
0
0
1

Si

0
0
0
1
0
1
1
1

Ci+1

Full
adder

Bi Ai

Ci

Ci+1

Si

Appendix A: Digital LogicA-42

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Four-Bit Ripple-Carry Adder
• Four full adders connected in a ripple-carry chain form a four-bit

ripple-carry adder.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Appendix A: Digital LogicA-43

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

PLA Realization
of Full Adder

Sum

A B Cin

Cout

Appendix A: Digital LogicA-44

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequential Logic
• The combinational logic circuits we have been studying so far

have no memory. The outputs always follow the inputs.

• There is a need for circuits with memory, which behave differ-
ently depending upon their previous state .

• An example is a vending machine, which must remember how
many and what kinds of coins have been inserted. The machine
should behave according to not only the current coin inserted,
but also upon how many and what kinds of coins have been in-
serted previously.

• These are referred to as finite state machines , because they can
have at most a finite number of states.

Appendix A: Digital LogicA-45

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Classical Model of a Finite State
Machine

• An FSM is com-
posed of a com-
binational logic
unit and delay
elements (called
flip-flops) in a
feedback path,
which maintains
state informa-
tion.

Synchronization
signal

Combinational
logic unit

. . .

. . .

Inputs Outputs

Delay elements (one per state bit)

. . .

D0Q0

DnQn

. . .

. . .

s0

sn

io

ik

fo

fm

State bits

Appendix A: Digital LogicA-46

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

NOR Gate with Lumped Delay

• The delay between input and output (which is lumped at the out-
put for the purpose of analysis) is at the basis of the functioning
of an important memory element, the flip-flop .

A

B
∆τ A + B

Timing Behavior

A + B

A

B

∆τ

0

1

0

1

0

1

Appendix A: Digital LogicA-47

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

S-R Flip-Flop
• The S-R flip-flop is an active high (positive logic) device.

S

R Q

Q

Timing Behavior

Q

S

R

∆τ

Q

2∆τ

∆τ

2∆τ

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

St Rt

0
0
0
0
1
1
1
1

Qt

0
0
1

(disallowed)
1
0
1

(disallowed)

Qi+1

Appendix A: Digital LogicA-48

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

NAND Implementation of S-R Flip-Flop

Q
S

R Q

Q
R

S Q

Q
S

R Q

S

R Q

Q

Appendix A: Digital LogicA-49

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Hazard

• It is desirable to be able to “turn off” the flip-flop so it does not
respond to such hazards.

S

R Q

Q
B

A

C

AB

Timing Behavior

Q

S

R

∆τ

Q

∆τ

2∆τ

A

B

C

AB
Glitch caused by
a hazard

Appendix A: Digital LogicA-50

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Clock Waveform: The Clock Paces
the System

• In a positive logic system, the “action” happens when the clock is
high, or positive. The low part of the clock cycle allows propaga-
tion between subcircuits, so their inputs settle at the correct value
when the clock next goes high.

Cycle time = 25ns

A
m

pl
itu

de

Time

Appendix A: Digital LogicA-51

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Scientific Prefixes
• For computer memory, 1K = 2 10 = 1024. For everything else, like

clock speeds, 1K = 1000, and likewise for 1M, 1G, etc.

m

µ

n

p

f

a

10–
3

10–
6

10–
9

10–
12

10–
15

10–
18

K

M

G

T

P

E

103

106

109

1012

1015

1018

Prefix Abbrev. Quantity

milli

micro

nano

pico

femto

atto

Kilo

Mega

Giga

Tera

Peta

Exa

Prefix Abbrev. Quantity

Appendix A: Digital LogicA-52

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Clocked S-R Flip-Flop

• The clock signal, CLK, enables the S and R inputs to the flip-flop.

Q

Q

S

CLK

R

Timing Behavior

Q

S

R

∆τ

Q

2∆τ

CLK

Appendix A: Digital LogicA-53

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Clocked D Flip-Flop
• The clocked D flip-flop, sometimes called a latch , has a potential

problem: If D changes while the clock is high, the output will also
change. The Master-Slave flip-flop (next slide) addresses this prob-
lem.

Q

Q

D

CLK

Circuit

D

Q

Q

C

Symbol

Timing Behavior

Q

D

∆τ

Q

2∆τ

CLK

2∆τ

∆τ

Appendix A: Digital LogicA-54

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Master-Slave Flip-Flop

Symbol

D

Q

Q

Circuit

D

CLK

D QM

C

D

QS

QS

C

Master Slave

Timing Behavior

QS

D

∆τ

QS

2∆τ

CLK

∆τ

2∆τ

QM

3∆τ 2∆τ

• The rising edge of the clock loads new data into the master,
while the slave continues to hold previous data. The falling
edge of the clock loads the new master data into the slave.

Appendix A: Digital LogicA-55

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Clocked J-K Flip-Flop
• The J-K flip-flop eliminates the disallowed S=R=1 problem of the S-R

flip-flop, because Q enables J while Q’ disables K, and vice-versa.

• However, there is still a problem. If J goes momentarily to 1 and
then back to 0 while the flip-flop is active and in the reset state, the
flip-flop will “catch” the 1. This is referred to as “1’s catching.”

• The J-K Master-Slave flip-flop (next slide) addresses this problem.

Q

Q
J

CLK

J

Q

Q

K

Circuit
Symbol

K

Appendix A: Digital LogicA-56

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Master-Slave J-K Flip-Flop

Q

Q
J

CLK

J

Q

Q

K

Circuit
Symbol

K

Appendix A: Digital LogicA-57

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Clocked T Flip-Flop
• The presence of a constant 1 at J and K means that the flip-flop

will change its state from 0 to 1 or 1 to 0 each time it is clocked
by the T (Toggle) input.

J

Q

Q

K

Circuit

Q

Q

Symbol

1

T T

Appendix A: Digital LogicA-58

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Negative Edge-Triggered D Flip-Flop
• When the clock is

high, the two input
latches output 0, so
the Main latch re-
mains in its previous
state, regardless of
changes in D.

• When the clock goes
high-to-low, values in
the two input latches
will affect the state of
the Main latch.

• While the clock is
low, D cannot affect
the Main latch.

Q

Q

CLK

D

R

S

Main latch

Stores D

Stores D

Appendix A: Digital LogicA-59

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: Modulo-4 Counter
• Counter has a clock input (CLK) and a RESET input.

• Counter has two output lines, which take on values of 00, 01, 10,
and 11 on subsequent clock cycles.

3-bit
Synchronous

Counter

0 0 0 0 1 0 1 1 0 0RESET q0

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

0 1 0 1 0

D

Q

Q

CLK

s0

s1

D

Q

Q

q1

s0

s1

Appendix A: Digital LogicA-60

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State
Transition

Diagram for
Mod-4

Counter

A B1/00

0/01

1/00

Output 00
state

Output 01
state

RESET

q1

C D

Output 10
state

Output 11
state

q0

0/10
1/00

0/00

0/11

1/00

Appendix A: Digital LogicA-61

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Table for Mod-4 Counter

Present state

Input RESET

0 1

A B/01 A/00
B C/10 A/00

Next state Output

C D/11 A/00
D A/00 A/00

Appendix A: Digital LogicA-62

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Assignment for Mod-4 Counter

Present
state (St)

Input RESET

0 1

A:00 01/01 00/00
B:01 10/10 00/00

C:10 11/11 00/00
D:11 00/00 00/00

Appendix A: Digital LogicA-63

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Truth Table for Mod-4 Counter

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

s1(t) s0(t)

0
0
0
0
1
1
1
1

RESET
r(t)

01
10
11
00
00
00
00
00

s1s0(t+1)

01
10
11
00
00
00
00
00

q1q0(t+1)

s1(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

s0(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q1(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q0(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

Appendix A: Digital LogicA-64

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Design for Mod-4 Counter

CLK

QD

Q

s1

QD

Q

s0

RESET

q1

q0

Appendix A: Digital LogicA-65

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Sequence Detector
• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.

• e.g. input sequence of 011011100 produces an output sequence
of 001111010.

• Assume input is a 1-bit serial line.

• Use D flip-flops and 8-to-1 Multiplexers.

• Start by constructing a state transition diagram (next slide).

Appendix A: Digital LogicA-66

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Appendix A: Digital LogicA-67

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

X

0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Appendix A: Digital LogicA-68

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

X
0 1

A: 000 001/0 010/0

Present state

Input

B: 001
C: 010
D: 011
E: 100

011/0 100/0
101/0 110/0
011/0 100/0
101/0 110/1

F: 101 011/0 100/1

S2S1S0 S2S1S0Z S2S1S0Z

G: 110 101/1 110/0

(a)

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

s0 x

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

s1

0
0
0
1
1
1
0
1
1
1
0
1
1
1
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

s2

(b)

0
1
1
0
0
1
1
0
0
1
1
0
0
1
d
d

1
0
1
0
1
0
1
0
1
0
1
0
1
0
d
d

0
0
0
0
0
0
0
0
0
1
0
1
1
0
d
d

zs0s1s2

Input and
state at
time t

Next state
and output at

time t+1

Appendix A: Digital LogicA-69

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector Logic Diagram

QD

Q
S2

000

001

010

011

100

101

110

111

0

x

1

x

1

x

1

0

QD

Q
S1

000

001

010

011

100

101

110

111

x

0

QD

Q
S0

000

001

010

011

100

101

110

1110

000

001

010

011

100

101

110

111

0

0

0

0

x

0

Z

xx

CLK

x

xx

x

xx

x

xx

xx

xx

xx

xx

xx

xx

x

xx

Appendix A: Digital LogicA-70

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Vending Machine
Controller

• Example: Design a finite state machine for a vending machine
controller that accepts nickels (5 cents each), dimes (10 cents
each), and quarters (25 cents each). When the value of the money
inserted equals or exceeds twenty cents, the machine vends the
item and returns change if any, and waits for next transaction.

• Implement with PLA and D flip-flops.

Appendix A: Digital LogicA-71

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

A B D

C

0 ¢
 5 ¢
 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

Appendix A: Digital LogicA-72

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Table and
State Assignment

N
00 01

A B/000 C/000

P.S.

Input

B
C
D

C/000 D/000
D/000 A/100
A/100 A/110

(a)

D
10

A/110
A/101
A/111
B/111

Q N

00 01

A:00 01/000 10/000

P.S.

Input

10/000 11/000
11/000 00/100
00/100 00/110

(b)

D

10

00/110
00/101
00/111
01/111

Q

B:01
C:10
D:11

s1s0

x1x0 x1x0 x1x0

z2z1z0s1s0 /

Appendix A: Digital LogicA-73

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

PLA Vending Machine Controller
s1 s0 x1 x0

s1 s0 z2 z1 z0

0

1

2

4

5

6

8

9

10

12

13

14

(c)

5 ×
 5
PLA

z1
z0

x1
x0

(a)

DQ
s0

DQ
s1

CLK

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
0
0
d
0
1
0
d
1
0
0
d
0
0
1
d

0
0
1
d
0
0
1
d
0
1
1
d
1
1
1
d

0
0
1
d
0
0
0
d
0
0
1
d
0
1
1
d

0
0
0
d
0
0
1
d
0
0
1
d
0
0
1
d

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

s1 s0 x1 x0

Present
state C oin

0
1
0
d
1
1
0
d
1
0
0
d
0
0
0
d

s1 s0 z2 z1 z0

N ext
state

D ispense
R eturn nickel

Base 10
equivalent

(b)

R eturn dim e

z2

Appendix A: Digital LogicA-74

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Moore Counter
• Mealy Model: Outputs are functions of Inputs and Present State.

• Previous FSM designs were Mealy Machines, in which next state
was computed from present state and inputs.

• Moore Model: Outputs are functions of Present State only.

QD

Q
S0

QD

Q
S1

CLK

0

1

00

01
10

11

00
01

10
11

x z0

z1

00 01

11 10

0 0

0 0

1

11

1

z0 z1 4-to-1
MUX

4-to-1
MUX

Appendix A: Digital LogicA-75

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Four-Bit Register
• Makes use of tri-state buffers so that multiple registers can gang

their outputs to common output lines.

D3

Q3

D2

Q2

D1

Q1

D0

Q0

WR

EN

QD

D3

Write (WR)

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

Appendix A: Digital LogicA-76

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Left-Right
Shift

Register
with

Parallel
Read and

Write

D3

Q3

D2

Q2

D1

Q1

D0

Q0

Shift right input
Shift right output

Shift right input
Shift left output

c0c1

Control Function
c0c1

0
0
1
1

0
1
0
1

No change
Shift left
Shift right
Parallel load

QD

D3

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

c0

c1

Shift right input

c0

c1

Shift right

output

Shift right

input

Shift left output

Appendix A: Digital LogicA-77

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Modulo-8 Counter
• Note the use of the T flip-flops, implemented as J-K’s. They are

used to toggle the input of the next flip-flop when its output is 1.

Enable (EN)

QJ

Q2

CLK
K

1 QJ

Q1

K

1 QJ

Q0

K

1

RESET

Q2 Q1 Q0

ENABLE

MOD(8) COUNTER

RESET

Timing Behavior

Q0

CLK

Q1

Q2

