Cache Memory

Today's high performance microprocessors operate at speeds that far outpace even the fastest of the memory bus architectures that are commonly available.  The most common technique used to match the speed of the memory system to that of the processor is caching.  A memory cache interposes a block of fast memory (commonly high speed static RAM) between the processor and the main memory of the computer.  At any given moment in time, the cache contains a copy of a portion of the contents of the main memory.  A special circuit, called a cache controller, attempts to keep the cache filled with the data or instructions that the processor is most likely to need next.  If the information that the processor requests is held in the cache, it can be sent to the processor without a wait state.  This fastest possible operation is called a cache hit.  If the requested data is not in the cache, it must be retrieved from the ordinary RAM at whatever speed is possible from the memory subsystem.  This is called a cache miss.

Figure 7 illustrates the relationship between the cache and the main memory.  Main memory consists of up to 2n addressable words, with each word having a unique n-bit address.  For mapping purposes, this memory is considered to consist of a number of fixed-length blocks of K words each.  Thus, there are M = 2n/ K blocks.  The cache consists of C lines of K words each, and the number of lines is considerably less than the number of main memory blocks (C << M).  At any time, some subset of the blocks of main memory resides in the lines in the cache.  If a word in a block of memory is read, that block is transferred to one of the lines of the cache.  Since there are more blocks than lines, an individual line cannot be uniquely and permanently dedicated to a particular block.  Therefore, each line includes a tag that identifies which particular block of main memory is currently occupying that line of cache.  The tag is usually a portion (number of bits) of the main memory address (described later).

When the processor generates a RA (retrieve address) for a word to be read, this word will either be in the cache (cache hit) or not (cache miss).  In the event of a cache hit the word is simply delivered to the processor.  Otherwise, the block containing the RA is loaded into the cache, and the word is delivered to the processor.  In modern cache configurations, the loading of the cache and delivering the contents of the RA to the processor will occur in parallel.  This typical modern cache organization is illustrated in Figure 8.  In this configuration the cache connects to the processor via data, control, and address lines, which are attached to the system bus from which main memory is accessed.  When a cache hit occurs, the data and address buffers are disabled and communication is
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Figure 7 – Cache/Main Memory Structure
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Figure 8 – Typical Cache Organization

only between the processor and the cache, with no system bus traffic.  When a cache miss occurs, the RA is loaded onto the system bus (by the cache controller) and the data is returned through the data buffer to both the cache and the processor in parallel.  Another common arrangement (although becoming less and less common for reasons will see later) is to physically impose the cache between the processor and the main memory for all data, address and control lines.  In this case on a cache miss, the contents of the RA is first loaded into the cache and then transferred by the cache controller from the cache to the processor.

Not all cache memories are created equal with line size, overall size, logical arrangement (mapping functions), location, replacement algorithms, write policies, and number of caches being some of the parameters which govern the performance of a cache memory system.  In the next several pages we will look at each of these parameters separately.

Cache Size

A major factor in determining how successful the cache memory will be is how much information it can contain.  The larger the cache the more information it will hold, and the more likely a processor request will produce a cache hit.  At the two extremes are a cache which is the same size as the main memory and thus duplicates its entire contents (in which case you wouldn't need the DRAM at all) and every request is a cache hit.  The other end of the scale is a cache consisting of a single byte (assuming a byte addressable machine) which would virtually guarantee that every request was a cache miss.  In general you would like the cache to be small enough so that the overall average cost/bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone.  There are several other reasons to minimize the size of the cache. (1) The larger the cache, the larger the number of gates involved in addressing the cache.  The result is that large caches tend to be slightly slower than small ones – even when using the same IC technology and put into the same place on the chip.  Cache size is also limited by the available space on the chip.

Typical cache sizes today range from 1K words to several mega-words.  Multitasking systems tend to favor 256 K words as nearly optimal size for main memory cache.  The only real disadvantage of a larger cache is the cost.  Faster SRAM chips cost more than DRAM chips and add to the overall cost of the system.  Approximately 7% of the total cost of a PC in today's market (as of 10/19/2000) is in the memory subsystem.  Some manufacturers have scalable cache systems, which allow you to add SRAM as you can afford it.  The performance of the cache is very sensitive to the nature of the work-load, making it impossible to arrive at a single “optimum” cache size.

Cache Level
Cache memory is typically described by its logical and electrical proximity to the microprocessor's core design.  At one time, there was only a single level of caching.  Newer microprocessors such as AMD's K6-3, K7 and Intel's Pentium III designs offer three levels of caching.

L1 (or Level 1) cache is often called the primary cache.  It is usually the smallest cache and the one electrically closest to the microprocessor's core logic and may be built in to the processor itself (it is in the AMD and Intel designs mentioned above).  It operates at the same clock speed as the processor.  Current microprocessors have L1 caches that range in size from 16 KB to 128 KB in size.

L2 (or Level 2) cache is often called the secondary cache.  At one time all secondary caches were separate from the microprocessor and linked the processor to the memory system.  Modern microprocessors have subsumed the L2 cache and placed it directly on the chip with the processor logic.  This trend began with the Pentium Pro and has continued with Intel's line of microprocessors as well as many others (note that with the Pentium II and beyond however, the L2 cache is not on the microprocessor chip but in the same module with the microprocessor).  Level 2 caches can operate any where in the range from core logic speed to the speed of the memory system, with the faster obviously being the better.  In the Pentium II for example, the L2 cache operates at one-half the speed of the core logic.

Level 3 cache is – will typically be (and so far in all implementation is) external to the microprocessor and operates at the same speed as the RAM memory, but is fast enough to not impose wait states on the processor.

Why Cache?

Cache is primarily used as a buffer between fast processors and slow memory subsystems.  The problem with memory systems is illustrated by the following example.  Assume that we have a main memory system composed of 70 nsec, 4 MB SRAM chips.  Assuming that the address bus drivers at the processor have a 40 nsec delay and bus propagation requires 10 nsec, then the request arrives at the memory module 50 nsec after the request was issued.  With board select decoder chip time typically adding another 20 nsec and potentially another 30 nsec required to send the select signal to the memory chip (board to chip driver delay), and of course another 20 nsec delay at that board for decoding.  The memory request has now reached the correct memory module 120 nsec after the processor issued the initial request.

The memory module has a 70 nsec access time.  This will mean that 190 nsec after the initial request the memory will have placed valid data on the memory modules output.  With the 30 nsec chip-to-board driver delay, valid data will reach the data bus drivers 220 nsec after the request.  The memory bus drivers and bus propagation will take the same 50 nsec in this direction (sending the data to the processor) that it took to issue the request.  Thus 270 nsec have elapsed since the processor issued the request.  This is considerably longer than the chips 70 nsec access time!

While cache acts as a buffer between main memory and the processor, for it to be truly effective - the ratio of cache hits to cache misses must be predominantly in favor of cache hits.  Typical cache hit time requires 1-2 clock cycles.  Typical cache miss time requires a few 10's of clock cycles to bring in the required data from main memory.  A main memory miss, however, incurs a terrible penalty for the processor.  A main memory miss will typically run from the hundreds of thousands of clock cycles to several million clock cycles (depending upon processor speed and secondary storage speed).  As a result of this, cache miss rates in the neighborhood of 1-2% are tolerable, but main memory misses must be 0.001% or less or the system will suffer serious performance degradation.

Cache Performance

Quantifying the performance of a cache system is difficult since its performance varies with the demands of the software.  For example, a small utility program may fit entirely inside the internal cache of the microprocessor so that every request for data from the program would be a cache hit.  However, the same cache system might suffer a cache miss with virtually every request when the processor is multitasking several Windows application.

The most common means of designating the performance of a PC's memory system is by listing the number of clock cycles required for each access to transfer a line of memory.  For example, 80486 memory systems required four transfers to read or write an entire line of memory.  (recall a line of memory describes the smallest chunk of memory which can be read or written - on most 486 or better machines a line consists of 4 double-words or 16 bytes.)   Thus the performance of this system is described as a sequence of four numbers.  The best possible performance would be represented by (1, 1, 1, 1) which would represent one clock cycle for each double word.  Burst mode of Pentium class processors require two clock cycles for the first transfer (one to set the address and one to read or write the data), so the best performance in practice is (2, 1, 1, 1).  Many systems are substantially slower, some operating at rates (6, 4, 4, 4).  Since current processors all require a line at a time from memory the total of these numbers is the important figure, with five the current optimum and many operating at more than 20 cycles per line transferred.

Cache Mapping

The logical configuration of the cache system involves how the cache is physically arranged, how it is addressed, and how the processor determines if the information requested is in the cache or not.  There are three basic choices for how the cache itself is arranged.  They are direct mapped, fully associative, and n-way set associative.   We will look at each configuration separately.

Direct Mapped Cache:  divides the cache into small units, called lines (corresponding to the lines in the Intel memory line of four double words - allowing for addressing in the 16-byte multiples (128 bits) covered earlier), each of which is identified by an index bit.  Main memory is then divided into blocks the same size as the cache, and the lines in the cache correspond to the locations within such a memory block.  Each line can be drawn from a different memory block, but only from the location corresponding to the location in the cache.  Which block the line is drawn from is identified by a special tag.  The cache controller can determine if a given byte is in the cache simply by checking the tag for a given index value.  Direct mapped cache has a problem if a program regularly moves between addresses with the same indexes in different blocks of memory.  In this situation the cache must be continually refreshed, which translates into cache misses.  Although such swapping is rare in a single-tasking system, in multi-tasking systems it can occur quite often and thus slow down a direct-mapped cache.  Figure 9 illustrates a direct mapped cache example.  In Figure 9 the main memory is byte addressable and consists of 213 = 8192 blocks (each block = 8 bytes) arranged in a 256 block x 32 block array.  This means that a main memory block address requires 13 bits and a main memory byte address requires (8192 blocks x 8 bytes/block = 65536 bytes = 216) 16 bits.  The 256 x 32  memory is mapped to a cache which consists of 256 lines (each 8 bytes wide = 1 block). 

Cache tags

tag    valid

	30
	1

	9
	1

	1
	1

	
	(

	
	(

	
	(

	
	(

	
	(

	1
	1


Tag memory

= 5 bits + 

Valid bit





The Cache

line       block

	0
	7680

	1
	2305

	2
	258

	3
	(

	(
	(

	(
	(

	(
	(

	254
	(

	255
	511


Cache Memory

1 line = 8 bytes


Main Memory Block Numbers (one cache line = 8 bytes)

	0
	256
	512
	(
	(
	(
	7680
	7936

	1
	257
	513
	
	2305
	
	7681
	7937

	2
	258
	514
	
	
	
	7682
	7938

	(
	
	
	
	
	
	
	

	(
	
	
	
	
	
	
	

	(
	
	
	
	
	
	
	

	(
	
	
	
	
	
	
	

	(
	
	
	
	
	
	
	

	255
	511
	767
	
	
	
	
	8191


   0           1           2           (          9           (        30        31              Tag  numbers


            Cache address 



MM address 

Figure 9 – Direct Mapped Cache System


Notice in Figure 9 that no two main memory blocks with the same tag map into the same cache line.  If this were the case, it would not be possible to uniquely identify which main memory block was occupying the cache line. Columns in the main memory array contain 256 blocks (rows) and therefore 8 bits (28 = 256) are required to uniquely identify the row in the main memory – this is the group number to which a cache line belongs.  Each row in the main memory grid contains 32 blocks (columns) and therefore 5 bits (25 = 32) are required to uniquely identify the column in the main memory address – this is the tag number of any current line in the cache.  Finally, since each block contains 8 bytes, to uniquely identify a specific byte within a block will require 3 bits (23 = 8) to select the byte which was addressed by the CPU.  The cache controller must keep track of which main memory block is currently occupying a specific cache line.   Consider the specific examples shown below:

Example 1 :  Address mapping with a direct mapped cache.

Suppose the CPU has generated the RA = (2060)10 = (080C)16 = (0000100000001100)2.  An RA of (2060)10 will be located in block 257 (block 256 contains byte addresses 2048 – 2055, block 257 contains byte addresses [2056, 2057. 2058, 2059, 2060, 2061, 2062, 2063], block 258 contains byte addresses 2064 – 2071, and so on (all in decimal).  Byte address (2060)10 then is located in block 257 and is therefore in main memory column number 1 and row number 1 (group #1, tag #1).  Note that the five MSB of the binary representation of the RA are: 00001 which indicates a tag = 1, the next eight bits represent the group number and are 00000001 which indicates a group = 1.  Finally, the RA is the fourth byte (starting from byte 0) within block 257, so the three LSB of the address are: 100 which indicates byte address (offset) within the block of 4.

Example 2 :  Address mapping with a direct mapped cache.

Suppose the CPU has generated the RA = (2029)10 = (07ED)16 = (0000011111101101)2.  An RA of (2029)10 will be located in block 253 (block 253 contains byte addresses 2024, 2025, 2026, 2027, 2028, 2029, 2030, and 2031  (all in decimal).  Byte address (2029)10 is therefore in main memory column number 0 and row number 253 (group #253, tag #0).  Note that the five MSB of the binary representation of the RA are: 00000 which indicates a tag = 0, the next eight bits represent the group number and are 11111101 which indicates a group = 253.  Finally, the RA is the fifth byte (starting from byte 0) within block 253, so the three LSB of the address are: 101 which indicates byte address (offset) within the block of 5.

Example 3 :  Address mapping with a direct mapped cache.

Suppose the CPU has generated the RA = (32567)10 = (7F37)16 = (0111111100110111)2.  An RA of (32567)10 will be located in row (group#) 230 (since (11100110)2 = (230)10), and  column (tag#) 15 (since (01111)2 = (15)10).  Byte address (32567)10 is therefore in main memory column number 15 and row number 230 (group #230, tag #15) with a byte offset within the block of (111)2 = (7)10.   Note that the block address of the block containing byte address (32567)10 is obtained by using the 13 MSB of the RA, which gives: (0111111100110)2 = (4070)10.  Block 4070 contains byte addresses 32560 thru 32567, so the RA is in byte offset 7 of block 4070.

Fully Associative Cache: allows for each line of the cache to correspond to (or be associated with) any part of the main memory.  Lines of bytes from diverse locations throughout main memory can be piled into the cache.  The cache controller must now check the address of every line in the cache to determine if a given memory address is currently resident in the cache.  This is not done using common searching techniques but rather through the use of associative memory (also called Content Addressable Memory (CAM)).  CAM basically allows the entire tag memory to be searched in parallel.  Unlike typical RAM, CAM associates logic with each memory cell in the memory.  A single clock cycle will allow all of the memory cells in the CAM to check the contents of their cell and compare the value with a mask register used to specify the search pattern.  Thus access to the CAM is based upon content not address as with ordinary RAM.  CAMs are considerably more expensive in terms of gates than ordinary access by address memories (RAMs) and this limits their use (at least with current technologies) to relatively small memory systems such as cache. 

Using Figure 10 (see next page) as an example, we see that for the fully associative cache, there is only a tag field within the cache address and the group number has been dropped.  Any main memory block can now map into any cache line.  The cache controller will need to uniquely identify every main memory block which will require 13 bits (213 = 8192) since there are 8192 blocks in the main memory.  As before, within the block, 3 bits will be required to uniquely identify a particular byte within a specific block.  Since any cache line can hold any main memory block at any time, the cache controller needs to have fast access to the contents of the cache (i.e. – looking up what’s in the cache) – this is where the CAM comes into play.  The entire contents of the cache can be compared simultaneously with the CAM.  A cache hit is indicated when one of the CAM cells contents matches the search address.  If none of the CAM cells contents matches the search address then a cache miss has occurred and the proper block from main memory will need to be loaded into one of the cache lines.  At this point the cache controller will invoke the algorithm which will select which cache line is to be replaced to make room for the new incoming block.  We will look at these line replacement algorithms in a later section.
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Figure 10 – Fully Associative Cache Mapping


Example 4 :  Address mapping with a fully associative cache.

Suppose the CPU has generated the RA = (61458)10 = (F012)16 = (1111000000010010)2.  An RA of (61458)10 will be located in main memory block  7682 (since (1111000000010)2 = (7682)10).  Main memory block 7682 will contain byte addresses 61456 thru 61463.  Byte address (61458)10 is therefore in main memory block 7682 with a byte offset within the block of (010)2 = (2)10.   Note that the block address of the main memory block containing byte address (61458)10  requires the 13 MSB of the RA. 

Set Associative Cache: is basically a compromise between the easy control of the direct mapped cache and the less restrictive mapping of the fully associative cache.  In the set associative cache the total cache memory is divided into smaller direct-mapped areas.  The cache is then described in terms of the number of ways in which it is divided.  For example, a four-way set associative cache is basically the equivalent of four smaller direct-mapped caches.  Although this technique resolves the problem of moving between blocks with the same tag number, it is also more complex which increases the cost of the cache.  Also, the more "ways" there are to the cache, the longer the cache controller will take to determine if a given request is a cache hit or a miss.  Most PC manufacturers have determined that a four-way set associative cache seems to be the optimal compromise between performance and complexity.  Figure 11 illustrates a 2-way set-associative cache mapping organization.
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Figure 11 – 2-way Set Associative Cache Mapping

Recall that the definition of a set is a collection of items without duplication.  The N-way set associative cache organization divides the total cache memory into n distinct lines (think of the direct mapped case with n times as much cache memory).  For now, let’s restrict our discussion to the 2-way set associative cache organization shown in Figure 11.  As was the case with the direct mapped cache, the two-way set associative cache organization divides the main memory into rows (now called sets, but called groups in the direct mapped cache) and columns (tags).  The number of cache lines that will be available will be equal to the two times the number of groups (rows) in the main memory.  For each main memory group, the cache is capable of holding two different main memory blocks (columns within the specific row) simultaneously.  [A four-way set associative cache could hold up to four main memory blocks from the same group simultaneously, while an eight-way set associative cache would be capable of holding up to eight main memory blocks from the same group simultaneously, and so on.]  

Whenever the CPU issues an RA the cache controller for the 2-way set associative cache will need to check the contents of two different cache lines for the particular group to which the RA belongs.  Once again, the use of CAM will allow the contents of both cache lines to be checked in parallel (the four-way organization would require checking the contents of four cache lines simultaneously, and so on).  If one of the two cache lines contains the RA, a cache hit occurs, otherwise a cache miss occurs and one of the two cache lines belonging to that group will need to be selected for replacement.

Example 5 :  Address mapping with a 2-way set associative cache.

Suppose the CPU has generated the RA = (18444)10 = (480C)16 = (0100100000001100)2.  An RA of (18444)10 will be located in row (set#) number 1 (since (00000001)2 = (1)10), and  column (tag#) number 9 (since (01001)2 = (9)10).  Byte address (18444)10 is therefore in main memory column number 9 and row number 1 (set #1, tag #9) with a byte offset within the block of (100)2 = (4)10.   Note that the block address of the block containing byte address (18444)10 is obtained by using the 13 tag+set bits of the RA, which gives: (0100100000001)2 = (2305)10.  Block 2305 contains byte addresses 18400 thru 18401, so the RA is in byte offset  4 of block 2305.  In Figure 11 – this block is currently in the cache in line 2 of cache set #1, so a cache hit will be registered for this RA.
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Figure 12 – 4-way Set Associative Cache Mapping

Figure 12 illustrates a 4-way set associative cache mapping.  Note that the only difference between the 2-way and the 4-way mapping is the additional cache lines available and the additional tag memory required by the 4-way organization.  The advantage that the 4-way mapping has over the 2-way mapping is that twice as many lines (4 instead of 2) from the same set of main memory blocks can be loaded into the cache simultaneously.  

By far the most popular cache organization is the 2-way set associative mapping.  The hit to miss ratio for the 2-way set associative mapping is significantly better than for a direct mapped cache.  The 4-way set associative mapping provides a slight improvement in the hit to miss ratio but at the expense of an additional space requirement.  It is this space requirement that typically precludes its use in most desktop systems today where space on many of the chips is at a premium.  Most designers have decided that the additional improvements the 4-way mapping can provide are not justified in terms of the space expense.

Advanced Cache Techniques

There have been many different techniques used to enhance the performance of cache memories.  Many different hybrid organization have been proposed and some implemented.  Sector mapping is one that is fairly commonly used and is based upon the set associative mapping but rather than mapping main memory blocks, main memory sectors are mapped (this organization tends to be more closely tied to the hardware than to the OS).  Another of these techniques is to utilize special memory for the cache.  Highlights of this technique are discussed below. 

Burst Mode Caches
Pentium class processors are the current standard of high performance microprocessors and thus require the fastest possible caches to minimize waiting on these high-throughput processors.  One technique for speeding up the cache is to operate in a burst mode.  Just like in main memory, burst mode in a cache eliminates the need to send a separate address for each memory read or write operation.  Instead, the cache (just like the main memory) reads or writes a contiguous sequence of addresses in a quick burst.  Depending upon whether the system is reading or writing, operation in burst mode can cut cache access time just over 50%.  The largest improvement occurs when performing write operations in a burst.  Ordinary static RAM chips do not have fast enough response times to support cache operations in burst mode.  As a result, two special types of SRAM have been developed to support burst mode cache operations.

Synchronous Burst SRAM: uses an internal clock to count up to each new address after each memory operation.  Since the chip automatically increments the address, it doesn't require the processor to send it the next address (assuming sequential addressing).  Since this type of cache chip must run in lock-step with the processor the timing constraints on the chip are critical for fast, error-free operation.  This causes the Synchronous Burst SRAM to be inherently more expensive than conventional asynchronous cache designs.

Pipelined Burst SRAM: The very tight timing constraints of Synchronous Burst SRAM not only make it more expensive but also more difficult to manufacture (kind of goes without saying though, doesn't it).  Pipelined Burst SRAM achieves the same level of performance but without the need for a synchronous internal clock.  This type of cache chip includes an internal register that holds the next chunk of data in the sequence to be read.  While the register holds this value, the chip continues to run internally and accesses the next address to load the pipeline.  As soon as the processor reads the output register, the pipeline can unload the data from the next address and place this data into the register to be ready for the next read operation.  Since the pipeline in the chip keeps a supply of data always ready, this form of memory can run as fast as the processor requires data, limited only by the access time of the pipeline register.

Table 1 summarizes the improvement of burst mode cache compared to non-burst mode cache for different types of requests to the cache.

	Cycle Type
	Non-Burst Mode Cache
	Burst Mode Cache
	Improvement

	burst read
	(3, 2, 2, 2)
	(3, 1, 1, 1)
	33%

	burst write
	(4, 3, 3, 3)
	(3, 1, 1, 1)
	54%

	single read
	3
	3
	none

	single write
	4
	3
	25%

	back-to-back

burst read
	(3,2,2,2)(3,2,2,2)
	(3,1,1,1)(3,1,1,1)
	33%


Table 1 - Non-Burst and Burst Mode Cache Performance

Cache Line Replacement Algorithms

When a new line is loaded into the cache, one of the existing lines must be replaced.  (Before the line can actually be replaced a check must be made to determine if the line has been changed since it entered the cache – see the section below on cache write policies for more details.)  For direct mapped caches, there is only one possible line that can be used for any main memory block within the same group, thus there is no choice to be made.  With the fully associative and set associative mappings, a replacement algorithm is needed as there is a choice to be made and the criteria upon which the replacement is made must be well defined.  To achieve high-speed, the replacement algorithm must be implemented in hardware.  A large number of algorithms are possible and many have been implemented.  Four of the most common cache line replacement algorithms are: (1) LRU (Least Recently Used) in which the cache line that was last referenced in the most distant past is selected for replacement, (2) FIFO (First In- First Out) in which the cache line from the set that was loaded in the most distant past is selected for replacement, (3) LFU (Least Frequently Used) in which the cache line that has been referenced the fewest number of times is selected for replacement, and (4) random selection of the cache line to be replaced.  For most applications, the LRU tends to provide the best performance.  For a 2-way set associative mapping, the LRU algorithm is easily implemented in hardware by adding a single bit (commonly called a use bit) to each cache line.  Whenever a cache line is referenced its use bit is set to 1 and the use bit of the other cache line in the same set is set to 0.  The line selected for replacement at any specific time is the line whose use bit is currently 0.  The principle of the locality of reference means that a recently used cache line is more likely to be referenced again, LRU tends to give the best performance.  The FIFO replacement policy is again easily implemented in hardware by the cache lines as queues.  The LRU replacement algorithm is implemented by associating with each cache line a counter which increments on every reference to the line.  Whenever a line needs to be replaced, the line with the smallest counter value is selected, as it will be the cache line that has experienced the fewest references.  While it may seem that the random selection of a cache line to replace would be a poor replacement line selection method, in reality it performs only slightly worse than any of the other three algorithms that we mentioned.  The reason for this is easy to see if you consider a 2-way set associative cache.  Since there are only two cache lines per set, any replacement algorithm must select one of the two, therefore the random selection method has a 50-50 chance of selecting the same one that the LRU algorithm would select yet the random algorithm has no overhead (i.e., there wouldn’t be any use bit).

Cache Write Policies

Before a cache line can be replaced, it is necessary to determine if the line has been modified since its arrival in the cache.  Recall that the contents of the main memory block and the cache line that corresponds to that block are essentially copies of each other and should therefore look the same.  The question, then becomes, how to keep the two copies of the same data, the same?  If cache line X has not been modified since its arrival in the cache and it has been selected for replacement, then writing its contents back into the main memory block the line corresponds to is not required prior to removing it from the cache, the incoming cache line can simply overwrite the existing cache memory.  On the other hand, if the cache line has been modified since its arrival in the cache, this indicates that at least one write operation has been performed on the cache line and thus the corresponding main memory block must be updated.

There are many different possible strategies that can be employed to ensure that the cache and main memory contents look the same.  There are, however, two major problems to consider: (1) more than one device may have access to the main memory (DMA – Direct Memory Access devices such as I/O modules) and (2) in multi-processor systems in which each processor has its own local cache, the cache may contain different values for the same main memory address in the different processors (the line may be altered in one of the processors but not the others nor main memory).  Handling these two problems will be discussed below.

Different types of cache designs will handle writes to memory in different ways.  Most cache systems make no attempt to speed up write operations.  Assuming a cache hit (a write hit), typically, they will push write operations through the cache immediately, writing both to the cache and main memory (with its normal wait-state delays) at the same time.  This technique is called a write-through cache.  This is a safe technique since it guarantees that the main memory and the cache are always in agreement with respect to the values in the memory.  Most Intel microprocessors use a write-through cache design.

A faster alternative is the write-back cache (sometimes called a posted write cache), which allows the processor to write changes to the cache and then immediately resume processing (it does not handle the write to the main memory).  The cache controller will eventually write the changed data back into main memory when it finds the time to do so (this will commonly occur only when the cache line is selected for replacement due to a cache miss).  The main problem with this technique is that there will be times when the contents of the cache and the main memory are not in agreement as to the value that a particular memory location holds.  This is the cache coherency problem as is an active research topic.  The cache coherency becomes an issue, for example, when a hard disk is read and information is transferred into the main memory through the DMA system which does not involve the processor.  The cache controller must constantly monitor the changes made in the main memory and ensure that the contents of the cache properly track these changes to the main memory.  There are many techniques which have been employed to allow the cache controller to "snoop" the memory system - but once again, these add complexity and expense.  In the PC environment there are special cache controller chips that can be added which basically handle all the responsibilities for supervising the cache system.

If a write operation has been requested and a cache miss results, again one of two options for handling the write miss can be employed.  The line may be brought into the cache, and then updated (written) which is termed a write-allocate policy, or the block may be updated directly in main memory and not brought into the cache which is termed a write(no allocate policy.  Typically, write-through caches will employ a write-no allocate policy while write-back caches will utilize a write-allocate policy.

In a bus architecture in which more than one device (typically processors) has a cache and the main memory is shared, the cache coherency problem becomes acute.  If the data in one cache is altered, this invalidates not only the corresponding word in main memory, but also that same word in every other cache in which a copy of that word is currently resident.  Even if a write-through policy is used, other caches may contain invalid data.  To maintain the cache coherency in this environment more elaborate schemes will be necessary such as:

· Bus snoopers with write-through:  Each cache controller will “snoop” the address lines (watch the address bus) to detect write operations to memory by other bus masters (devices currently having control or use of the bus).  If another bus master writes to an address in the shared memory that resides in the snooper’s cache, the cache controller must invalidate its cache entry.  This strategy requires that all cache controllers on the same bus use a write-through policy.

· Hardware transparency:  Additional hardware is utilized to ensure that all updates to main memory via cache are reflected in all caches.  Thus, if one processor modifies a word in its cache, this update is written to main memory.  In addition, any matching words in other caches are similarly updated.
· Non-cacheable memory: Only a portion of the main memory is shared by more than one processor, and this is designated as non-cacheable.  In such a system, all accesses to shared memory are cache misses, because the shared memory is never copied into the cache.  The non-cacheable memory is identified using chip-select logic or high-order address bits.
Line Size

Another element in the design of a cache system is that of the line size.  When a block of data is retrieved from main memory and placed in the cache, not only the requested word is loaded but also some number of adjacent words (those in the same block) are retrieved.  As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality.  However, as the block becomes even bigger the hit ratio will begin to decrease because the probability of using the newly fetched information will be less than the probability of reusing the information that has been replaced.  Two specific effects need to be considered:

· Larger blocks reduce the number of blocks that will fit into the cache.  Because each fetch overwrites older cache contents, a small number of blocks in the cache will result in data being overwritten shortly after it has been loaded.

· As a block becomes larger, each additional word is farther from the requested word, and is therefore less likely to be needed in the near future (principle of locality).

The relationship between block size and the hit ratio is complex and depends heavily on the locality characteristics of a particular program.  No definitive optimum value has been found.  A size from two to eight words seems, in practice, to work reasonably close to optimum.

Number of Caches

When cache systems were first introduced, the typical system had a single cache.  More recently, the use of multiple caches has become the norm.  There are two aspects to the number of caches that are important, namely the number of levels of caching that are employed and whether the cache is unified or split.

As logic density has increased, it has become standard to have some cache on the same chip as the processor.  This on-chip cache is designated the L1 or Level 1 cache.  The L1 cache is reachable by the processor without external bus activity and therefore contributes to execution speed-up, minimization of bus traffic by the processor, and increased overall system performance.  The on-chip cache leaves open the question of whether off-chip cache is still required?  Typically the answer is yes, and most modern systems include both on-chip and external caches.  The most common implementations are two-level systems with an L1 on-chip cache and an L2 external cache.  As we have seen the L2 cache is commonly implemented with SRAM which is typically fast enough to match the bus speeds and allow L1 cache misses to be handled by the L2 cache using a zero-wait state transaction, the fastest possible type of bus transfer.  While it is very difficult to determine quantitatively the improvement a two-level cache represents compared to a single level cache, studies have shown that, in general, the second level does provide a performance improvement.

When on-chip cache first appeared, many designs consisted of a single cache that held both data and instructions simultaneously.  This design is called a unified cache.  Contemporary systems will commonly split the L1 cache into two separate caches (both still considered L1 caches): one dedicated to instructions for the processor and the other dedicated to the data on which the instructions will operate.  This approach is called a split cache (also sometimes referred to as the Harvard architecture).

There are several potential advantages of a unified cache:

· For a given cache size, a unified cache has a higher hit rate than split caches because it balances the load between instructions and data fetched automatically.  That is, if an execution pattern involves many more instruction fetches than data fetches, then the cache will tend to fill up with instructions increasing the probability that a cache hit will occur.  If the execution pattern consists of more data fetches than instruction fetches, then the cache will tend to fill with data which again increases the probability that a cache hit will occur since the probability of a request for data is higher than the probability of a request for an instruction.

· Only one cache needs to be designed and implemented.

Despite the obvious advantages, the trend is toward split caches, particularly in superscalar machines such as the Pentiums and Athlons.  The key advantage provided by the split cache is that cache contention between the instruction processor and the execution units is eliminated.  This is very important in any system that relies on the pipelining of instructions.  Recall from our discussions on processors that, typically, the processor fetches instructions ahead of time to keep the pipeline filled with instructions to be executed.  If a unified cache were used, when an execution unit performs a memory access to load or store data, the request will be submitted to the unified cache.  If, at the same time, the instruction prefetcher issues a read request to the unified cache for an instruction, that request will be blocked so that the unified cache can service the execution unit first, enabling it to complete the currently executing instruction.  This cache contention can degrade performance by interfering with efficient use of the instruction pipeline.  The split cache structure overcomes this difficulty. 

In the case of the Pentium, recall that the L1 cache is split into two caches called the I-cache (for Instruction-cache) and the D-cache (for Data-cache).  Thus, at the L1-level the Pentium uses the Harvard architecture even though it does not employ this architecture in the L2 cache which is a unified cache.  RISC machines that are based on the Harvard architecture split the caches based upon the assumption that the operating system separates code and data in main memory.  The Pentium processors do not make this assumption, therefore no attempt is made to separate the instructions from the data and both will appear in both the I cache and the D cache.  The reason for splitting the cache in the Pentium is solely to eliminate the cache contention problem.

Errors in Memory

Our last section of notes concerning memory deals with the detection and correction of errors that occur during operations on semiconductor memory.  In general, an error detection/correction scheme enhances the reliability of the memory at the expense of added complexity.  As we will see this added complexity comes primarily in two forms: time and space.  The time aspect relates to the overhead in time that is required to perform the error detection/correction scheme; we will see more details on this later.  The space aspect relates to the amount of additional logic and memory required to implement the error detection/correction scheme.   For example, the IBM 30xx implementations utilize a scheme that requires and additional 8 bits for every 64 bits of actual main memory.  This means that the actual size of the memory is about 12% greater than is apparent to the user and represents a significant space constraint in the memory that must be incorporated.  Similarly, Digital VAX systems employ a technique which requires an additional 7 bits for each 32 bits of memory.  This represents approximately a 22% overhead for implementing the error detection/correction scheme.  A number of contemporary DRAM chips require an additional 9 bits for the error detection/correction scheme for every 128 bits of data, which represents roughly a 7% space overhead.  In this section we will examine the different types of errors that occur in memory and some of the techniques that are employed to detect and correct these errors.

Intel Pentium II Cache Structure:   The Intel Pentium II chip has separate instruction and data caches.  Each of the I and D caches are two-way, set-associative structures.  Each is 8K = 213 bytes in size.  Each cache line is 32 bytes, requiring a 5-bit byte field.  This means that there are 213((2 ( 25) = 27 sets, which requires a 7 bit set or group field.  Since addresses are 32 bytes long this means that the tag field must be 32-12 = 20 bits wide.
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