Programmability with increased performance? New strategies to
attain this goal include two approaches to data flow architecture:
data flow multiprocessors and the cell block architecture. '

The aichitects of supercomputers must meet three
chalienges if the next generation of machines is to find
productive large-scale application to the important prob-
lems of cemputational physics. First, they must achieve
high performance at acceptable cost. Instruction execu-
tion rates of a billion floating-point operations each sec-

ond are in demand, whereas current architectures require -

intricate programming to attain a fraction of their poten-
tial, at best around one tenth of the goal. Brute force ap-
proaches to increase the speed of corventional architec-
tures have reached their limit and fail to take advaitage of
tiie major recent advances in semiconductor device tech-
nology. Second, they must exploit the potential of LSI
technology. Novel architectures are needed which use
large numbers but only a few different types of parts, each
with a high logic-to-pin ratio. In a supercomputer, most
of these parts must be productive most of the time; hence
the need to exploit concurrency of computation on a mas-
sive scale. Third, it must be possible to program super-
computers to exploit their performance potential. This
has proven to be an enormous problem, even in the case of
computations for which reasonably straightforward For-
tran programs exist. Thus present supercomputer archi-
tectures have exacerbated rather than resolved the soft-
ware Crisis. '

It appears that the objectives of improving program-
mability and increasing performance are in conflict, and
new approaches are necessary. However, any major de-
parture from conventional architectures based on sequen-
tial program execution requires that the whole process of
program design, structure, and compilation be redone
along new lines. One architecture under considerationis a
multiprocessor machine made of hundreds of intercom-
municating microcomputer processing elements. This
architecture has attracted wide interest, but has many
drawbacks; even if the processing elements had full float-

48 X 0018-9162/80/1100-0048300.75 < 1980 IEEE

Data Flow Supercomputers

Jack B. Dennis
MIT Laboratory for Computer Science

#billion instructions per second performance. For sucha

ing-point capability and ran at a million instructions
second, at least one thousand would be required toa

number of processing elements there is no known wa;
permitting access to a shared memory without .
performance degradation. Similarly, no known wa
arranging conventional microprocessors for synchronifg-
tion or message passing allows efficient operation while
exploiting fine grain parallelism in an application. d
finally, there is no programming language or methodo:
logy that supports mapping application codes onto such
multiprocessor in a way that achieves high perform)
Language-based computer design can ensure the |
grammability of a radical architecture. In a langua
based design the computer is a hardware interpreter f
specific base language, and programs to be runon thesy®
tem must be expressed in this language.! Because fu
supercomputers must support massive concurrenc
achieve a significant increase in performance, a base
guage for supercomputers must allow expression of
currency of program execution on a large scale. Since!
ventional languages such as Fortran are based onag
state model of computer operation, these langu:
unsuitable for the next generation of superc:om[mtél's
will eventually be abandoned for large-scale sCi¢
computation. At present, functional or applicati
gramming languages and data flow models of compys
tion are the only known foundation appropria fﬂ
percomputer base language. Two prograr{lmiﬂ
guages have been designed recently in respghse"
need for an applicative progiamming language
for scientific numerical computation: ID, develo
vine,? and Val, designed at MIT.3# _
Data flow architectures offer a possible solutio
problem of efficiently exploiting concurrency of
tation on a large scale, and they are compatib

- Miller.!0 In fz

modern concep!
should not suffc
ramming that
highty parallel ¢
Thedata flow
of lookiny at ins
mS"‘ﬂ?\ LSRN
ton. In a datu fl
execution when
concept of contt
have program lo
activated instruc
of a data flow
once. Thus, hig
consequence of
The idea o1 e
in recent years -
anticipated per?!
ageneral level o
data-driven cor
design of practis
ress in at least a
Several processt
have been built
planned. Mosi.
data flow comt
ticn KnOwn 3s ¢
from work of

language-based
the base langua
gram graphs s¢
tween system ar
ming language
define and
plements the
language impl
language prog
graphs.

The techniqt
grams into dat;
used in conven
paths of data d
programming |
be designed so
dependence ar
parallelism. T
restricted tran

guments of a p
ficulty not on

: Lodern concepts of program structure. Therefore, they
should not suffer so much from the difficulties of pro-

mming that ‘have hampered other approaches to
pighly parallel computation.

- The data flow concept is a fundamentally different way
of fookiir: at instruction execution in machine-level pro-
grams'*“ alternative to sequential instruction execu-
gon. In 2 Jata flow computer, an instruction is ready for
execution when its operands have arrived. There is no
concept of control flow, and data flow computers do not
pave program location counters. A consequence of data-
sctivated instruction execution is that many instructions
ofadata flow program may be available for execution at
once. Thus, highly concurrent computation is a natural
consequence of the data flow concept.

" The icea of data-driven computation is old,5¢ but only

anticipated performance and the capability of supporting
ageneral level of user language been developed. Work on
data-driven concepts of program structure and on the
design of practical data-driven computers is now in prog-
ress in at least a dozen laboratories in the US and Europe.
Several processors with data-driven instruction execution
have been built, and more hardware projects are being
plannec. Most of this work on architectural concepts for
data fli-~ computation is based on a program representa-
tion known as data flow program graphs’ which evolved
from work of Rodriguez,’ Adams,® and Karp and
“Miller.!0 In fact, data flow computers are a form of
‘language-based architecture in which program graphs are
‘the base language. As shown in Figure 1, data flow pro-
gram graphs serve as a formally specified interface be-
tween svstem architecture onone hand and user program-
‘ming language on the other. The architect’s task is to
define .nd realize a computer system that faithfully im-
plements the formal behavior of program graphs; the
“language implementer’s task is to translate source
language programs into their equivalent as program
: graphs.

The techniques used to translate source language pro-
grams into data flow graphs!! are similar to the methods
- used in conventional optimizing compilers to analyze the
; paths of data dependency in source programs. High-level
programming languages for data flow computation should
| be designed so it is easy for the translator to identify data
dependence and generate program graphs that expose
parallelism. The primary sources of difficulty are un-
restricted transfer of control and the “‘side effects’’
resulting from assignmienttoa global variable or input ar-
guments of a procedure. Removal of these sources of dif-
ﬁculty not only makes concurrency easy to identify, it
dlso improves program structure. Programs are more
moduiar, and are easier to understand and verify. Theim-
plications of data flow for language designers are dis-
cussed by Ackerman. 2
- This article presents two architectures from the variety
of schemes devised to support computations expressed as

‘amples, and show how they are represented as collections
f activity templates. Next we describe the basic instruc-

on-handling mechanism used in most current projectsto

November 1980

ata flow graphs. First we explain data flow graphs by ex- .

\ .
build prototype data flow systems. Then we develop the

two contrasting architectures and discuss the reasons for
their differences—in particular the different approaches
to communicating information between parts of a data
flow machine.

Data flow programs

A data flow program graph is made up of actors con-
nected by arcs. One kind of actor is the operator shownin
Figure 2, drawn as a circle with a function symbol written
inside—in this case +, indicating addition. An operator
also has input arcs and output arcs which carry tokens
bearing values. The arcs define paths over which values

~from one actor are conveyed by tokens to other actors.

in recen: rears have architectural schemes with attractive“g Tokens are placed on and removed from the arcs ofapro-

~-gram graph according to firing rules, which are illustrated
foran operator in Figure}. To beenabled, tokens must be
present on each input arc, and there must be no token on
any output arc of the actor. Any enabled actor may be
fired. In the case of an operator, this means removing one
token from each input arc, applying the specified func-
tion to the values carried by those tokens, and placing
tokens. labeled with the result value on the output arcs.

Figure 3. Firing rule: (a) before; (b) after.

49

el

Figure 5. An activity template.

Operators may be connected as shown in Figure 4t0
form program graphs. Here, presenting tokens bearing
values for x and y at the two inputs will enable computa-
tion of the value

z=(x+) *(x=))

by the program graph, placing a token carrying the result
value on output arc 2. ‘

Another representation for data flow programs—one
much closer to the machine language used in prototype
data flow computers—is useful in understg“nding the
working of these machines. In this scheme) a data flow

program.is-a collection of activity ‘ggmplgté‘s,(each cor- .

responding to one or more actors of a data flow program

graph. "An activity template corresponding to the plus
operator (Figure 2) is shown in Figure 5. There are four
fields: an operation code specifying the operation to be
performed; two receivers, which are places waiting to be
filled in with operand values; and destination fields (in
this cgse one), which specify what is to be done with the
result of the operation on the operands.

¥"An instruction of a data flow program is the fixed por-
tion of an activity template. It consists of the operation
code and the destinations; that is,

instruction:

<opcode, destinations >

Figure 6 shows how activity templates are joined torepre-
sent a program graph, specifically the composition of op-
erators in Figure 4. Each destination field specifies a tar-
get receiver by giving the address of some activity tem-
plate and an input integer specifying which receiver of the
template is the target; that is,

.~ destination:

< address, input >

Figure 6. Configuration of activit
gram graph of Figure 4.

Program structures for conditionals and iteration are
illustrated in Figures 7 and 8. These use two new data flow
actors, switch and merge, which control the routing of da-
ta values. The switch actor sends a data‘mlgwitmﬁ

MW,MM' ” .
output tomatchatrueor false boolean controlinput. The
merge actor forwardsadata value fromits TorF input ac-

ook~ At

cording to its boolean input va

lue. The conditional pro-

gram graph and implementation in Figure 7 represent

A -
computation of

y:=(Fx>3 THEN x+2 ELSE x—1)*4

and the program graph and implementation in Figure 8
represent the iterative computation '

- T

WHILE x>0 DO = x—3

Execution of a machine program consisting of activity
templates is viewed as follows. The contents of a template
activated by the presence of an operand value in each re-
ceiver take the form

operation packet:

<opcode, operands, destinations >
Such a packet specifies one result packet of the form

result packet:

< value, destination >

({or each destination field of the templ@ Generation of
result packet, in turn, causes the value to be placed in th
receiver designated by its destination field.

Note that this view of data flow computation does not.
explicitly honor the rule of program graphs that tokens

must be absent from the output arcs of an actor for it 1038

fire. Yet there are situations where it is attractive to usé
program graph in pipelined fashion, as illustrated in Fi
_ure9a. Here, one computation by the graph has produc
\:he value 6 on arc z while a new computation represent

PR

y templates for the pro-’

Figuse 3. An iterative sct

Lk

Figure 9. Pipelining in

Nove:nber 1980

ferXias

Figur

e . A conditional schema(a) andits imblementation (b).

ure 9. Pipelining in a data flow progr:

am (a) and its im plementation (b).

byinput values Sand 3 onarcs xand yisready to begi;’ro
faithfully implement this computation, the add inStruc-
tion must not be reactivated until its previous result has
been used by the multiply instruction. This constraint is
enforced through use of acknowledge signals generated
by specially marked designations () in an activity tem-
plate. Acknowledge signals, in general, are sent to the
templates that supply operand values to the activity tem-
plate in question (Figure 9b). The enabling rule now re-
quires that all receivers contain values, and the required
number of acknowledge signals have been received. This
number (if nonzero) is written adjacent to the opcode of
an activity template.

The basic mechanism

The basic instruction execution mechanism used in sev-
eral current data flow projects is illustrated in Figure 10.
The data flow program describing the computation to be
performed is held as a collection of activity templates in
the activity store. Each activity template has a unique ad-
dress which is entered in the instruction queue unit (a
FIFO buffer store) when the instruction is ready for exe-
cution. The fetch unit takes an instruction address from
the instruction queue and reads the activity template from
the activity store, forms it ,mLoWan&pg}rﬂgg_ignﬂpggket, and
passes it on to the operation unit. The operation unit per-
forms the operation specified by the operation code on
the operand values, generating one result packet for each
destination field of the operation packet. The update unit
receives result packets and enters the values they carry in-
to operand fields of activity templates as specified by their
destination fields. The update unit also tests whether all
operand and acknowledge packets required to activate

OPERATION
UNIT(S)

INSTRUCTION
QUEUE -

UPDATE

ACTIVITY
STORE

Figure 10. Basic instruction execution mechanism.

_ tion of the same scheme. 13

the destination instruction have been received and, if §
enters the instruction address in-the instruction queye
During program execution, the number of entries in t
instruction queue measures the degree of concurrend
present in the program. The basic mechanism of Figure
can exploit this potential to a limited but significant dg
greet once the fetch unit has sent an operation packe
to the operation unit, it may immediately read anothere¢
try from the instruction queue without waiting for thej
struction previously fetched to be completely processed
Thus a continuous stream of operation ackets may fl
from the fétchunit to the OPeration I
struction queue is not empty.

This mechanism is aptly called a circular pipeline—g
tivity controlled by the flow of informarion packets tr
verses the ring of units leftwise. A number of packets ma
be flowing simultaneously in different parts of the ring on
behalf of different instructions in concurrent executio;
Thus the ring operates as a pipeline system with all of its
units actively processing packets at once. The degree of
concurrency possible is limited by the number of units on
the ring and the degree of pipelining within each unit. Ad-
ditional concurrency may be exploited by splitting any
unit in the ring into several units which can be allocated to
concurrent activities. Ultimately, the level of concurrency
is limited by the capacity of the data paths connecting the
units of the ring. This basic mechanism is essentially that
implemented in a prototype data flow processing element
byilt by a group at the Texas Instruments Company.!3

“The same mechanism, elaborated to handle data flow
procedures, was described earlier by Rumbaugh, !4 and a
new project at Manchester University uses another varia-

The data flow multiprocessor

The level of concurrency exploited may be increased
enormously by connecting many processing elements of
the form we have described to form a data flow multipro-
cessor system. Figure 11a shows many processing ele-
ments connected through a communication system, and
Figure 11b shows how each processing element relates to
the communication system LThe data flow program is dl-
vided into parts which are distributed over the processmg
elements. [The activity stores of the processing elements
collectively realize a single large address space, so the a
dress field of a destination may select uniquely any activi-
ty templatein the system. Each processing element sends
result packet through the communication netwark if its
destination address specifies a nonlocal activity template,
and to its own update unit otherwise.

The communication network is responsible for deli
ing each result packet received to the processing eleme!
that holds the target activity template. This networl
called a routing network, transmits each packet arriv
at an input port to the output specified by informat
contained in the packet. The requirements of a routin,
network for a data flow multiprocessor differ in two im
portant ways from those of a processor/memory swi
for a conventional multiprocessor system. First, inforr

tion flow in a routing network is in one direction—an im

Theres.

 eralcell bl

unils Piy ..
of the mact
riate func:
per of funct
be sma“ (fO"
tonal unit
tration netw
The relati.
and the basic
when one cont
grucledv As sh
clude storage fo
dresses of enab.
ceive result pa
These control 1
fetch and updat
plock differs frc
in that the cell
there is no short
sor instructions

Discussion:

In the cell bl
sult packet fron
easy (or equall
view) regardles
within the entir
programmer n:
might run slow!
structions in th
randorm: zllocat
quate.

In the data
tween two inst
tions are alloca
program may r
tered to minimi
and each clust
Since it will be
the communic:
cessor will be si
tion network i:
cost reduction
fort is a matter
cation, the tect
under consider
Althoughth
flow processos
logic complexi
Switching net»
Cms, their gre

mediate reply from the target unit to the originating unit is
. notrequired. Second, since each processing element holds
many enabled instructions ready for processing, some
delay can be tolerated in transmission of result packets
without slowing down the overall rate of computation.
The crossbar switch in conventional muluprocessor
systems meets Tequirements Tor ifitfiediate response “and
small delay by providing for signal paths from any input
to any output. These paths are established on request and
maintained until a reply completes a processor/memory
transaction. This arrangement is needlessly expensive for

a data ﬂow multiprocessor;-and a Tumber of dltérnative

network structures have been proposed. The ring form of
communication network is used in many comm“ﬁet-
WOTKS;” ifid hias been used by Texas Instruments to couple
four processing elements in their prototype data flow
computer. The drawback of the ring is that delay grows
linearly with size, and there is a fixed bound on capacity.

Several groups have proposed tree-structured networks
for communicating among processing elements.!6.17.18
Here, the drawback is that traffic density at the root node
may be unacceptably high. Advantages of the tree are that
the worst case distance between leaves grows only aslog, N
(for a binary tree), and many pairs of nodes are connected
by short paths.

The packet routing network shown in Figure 12 is a
structure currently attracting much attention. A routing
network with N input and N output ports may be as-
sembled from (N/2) log,(V) units, each of whichisa2x2
router. A 2 x 2 router receives packets at two input ports
and transmits each received packet at one of its output
ports according to an address bit contained in the packet.
Packets are handled first come, first served, and both out-
put ports may be active concurrently. Delay through an
Nx N network increases as log, N, and capacity rises
nearly linearly with N. This form of routing network is de-
scribed in Leung!® and Tripathi and Lipovski.2? Several

related structures have been analyzed for capacxty and de-
la ay. 21

The cell block architecture

In a data flow multiprocessor (Figure 11), we noted the
problem of partitioning the instructions of a program
among the processing elements to concentrate communi-
cation among instructions held in the same processing ele-
ment. This is advantageous because the time to transport
a result packet to a nonlocal processor through the rout-
ing network will be longer (perhaps much longer).than the
time to forward a result locally.

At MIT, an architecture has been proposed in response
to an opposing view: each instruction is equally accessible
to result packets generated by any other instruction,
regardless of where they reside in the machine.??23 The
structure of this machine is shown in Figure 13. The heart
of this architecture is a large set of instruction cells, each
of which holds one activity template of a data flow pro-
gram. Result packets arrive at instruction cells from the
distribution network. Each instruction cell sends an op-
eration packet to the arbitration network when ¢ all
ands and sxgnals have been recelved The-function of the

November 1980

COMMUNI -
CATION
NETWORK
SYSTEM

OPERATION
UNIT(S)

COMMUNI-}:
CATION
SYSTEM

ACTIVITY
STORE

Flgure 11. Data flow multiprocessor: (a) connection of many process-
ing elements through a communication system; (b) relationship of
each PE to the communication system.

Figure 12. Routing network structure.

DISTRI-
BUTION
NETWORK

CELL

INSTRUCTION : OPERATION

SECTION

DISTRI-
BUTION
NETWORK

ACTIVITY
STORE

ARBI-
TRATION

()

NETWORK

\s
CELLB \C‘KS

ARBI-

TRATION
NETWORK

operation section is to execute instructions and to for-
ward result packets to target instructions by way of the
distribution network.

The design in Figure 13 is impractical if the instruction
cells are fabricated as individual physical units, since the
number of devices and interconnections would be enor-
mous. A more attractive structure is obtained if the in-
struction cells are grouped into blocks and each block re-
alized as a single device. Such an instruction cell block has
a single input port for result packets and a single output
port for operation packets. Thus one cell block unit re-

. places many instruction cells and the associated portion

of the distribution network. Moreover, a byte-serial for-
mat for result and Gperation packets further reduces the -
number of interconnections between cell blocks and other
units.

COMPUTER

p
F: 1he resulting structure is shownin Figure 14fv§j1ere, sev-
4 K,lce“ blocks arg served by a shared group of functional
§ gsPo P,.The arbitration network ineach section
| dthe machine passes each operation packet to theappro-
.1 functional unit according to its opcode. The num-
o Of fun-tional unit types insucha machir’i’épis likely to
xsmaﬂ (-our, for example), or just one universal func-
§ sonal unit type might be provided, in which case the arbi-
aation network becomes trivial.
The relationship between the cell block architecture
: the basic mechanism described earlier becomes clear
g ghen one considers how a cell block unit would be con-
3 guctc'd- As shown'in Figure 15, 2 chgll block would in-
8 Judestorage for activity templates, a‘)p‘uffer store for ad-
§ gresses of znabled instructions, and ‘control units to re-
& xive resuit packets and transmit operation packets.
% These corisol units are functionally equivalent_to the
tch and update units of the basic mechanism. The cell
§ nock differs from the basic data flow processing element
% i that the cell block contains no functional units, and
f ere is no shortcut for result packets destined for succes-
; sor instructions held in the same cell block.

1 piscussion and conclusions

3 Inthecail block architecture, communication of a re-
& alpacket fromone instruction to its successor is equally
§ asy (or equally difficult, depending on your point of
¥ view) regardless of how the two instructions are placed
% within the entire activity store of the machine. Thus the
- programmer need not be concerned that his program
might run slowly due to-an unfortunate distribution ofin-
i} sructions in the activity store address space. In fact, a
- random zilocation of instructions may prove to be ade-
quate.
] In the cata flow multiprocessor, communication be-
@ tveen two instructions is much quicker if these instruc-
tions are allocated to the same processing element. Thusa
g8 program may run much faster if its instructions are clus-
2 tered to minimize communication traffic between clusters
“and each cluster is allocated to one processing element.
Since it will be handling significantly less packet traffic,
the communication network of the data flow multipro-
0}5501' wiii be simpler and less expensive than the distribu-
tion network in the cell block architecture. Whether the
oost reduction justifies the additional programming ef-
5‘? is a matter of debate, contingent on the area of appli-

er consideration. _

Although the routing networks in the two forms of data
processor have a much more favorable growth of
v?'complexity (N log N) with increasing size than the
itching networks of conventional multiprocessor sys-
heir growth is still more than linear. Moreover, in
uggested physical structures for N x N routing net-
k§, the complexity as measured by total wire length
s as O(NV?). This fact shows that interconnection
plexity still places limits on the size of practical multi-
ystems which support universal intercommunica-
f we need still larger systems, it appears we must set-
r arrangements of units that only support com-

mber 1980

on, the technology of abrication, and the time frame

Reader Service Number 9 »

munication with immediate neighbors.

The advantage data flow architectures have over other
approaches to?i{gh—performance computation is that the
scheduling an synchronization of concurrent activities
are built in at the hardware level, enabling each instruc-
tion execution to be treated as an independent concurrent
action. This allows efficient fine grain parailelism, which
is precluded when the synchronization and scheduling
functions are realized in software or microcode. Further-
more, there are well-defined rules for translating high-
level programs into data flow machine code._

Whiat are the prospects for data flow supercomputers?
Machines based on either of the two architectures pre-
sented in this paper could be built today. A machine hav-
ingupto 512 processing elements Or celi blocks seems fea-
sible. For example, a4 X 4 router for packets, each sent as
a series of 8-bit bytes, could be fabricated asa 100-pin LSI
device, and fewer than one thousand of these devices
could interconnect 512 processing elements or cell blocks.
If each processing unit could operate at two million in-
structions per second, the goal of abillion instructions per
second would be achieved.

Yet there are problems to be solved and issues to be ad-
dressed. It is difficult to see how data flow computers
could support programs written in Fortran without re-
strictions on and careful tailoring of the code. Study is
just beginning on applicative languages like Val and
ID.24.25 These promise solutions to the problems of map-

-

TERMINALS FROM TRANSNET

PURCHASE | 12-24 MONTH FULL 36 MONTH
PLAN OWNERSHIP PLAN |LEASE PLAN

- PURCHASE PER MONTH

DESCRIPTION ™ PRICE 12 MOS. 24 MOS. 36 MOS.
LA36 DECwritertl $1.695 $162 S 90 $ 61
LA34 DECwriter IV -, 1,095 105 59 40
LA34 DECwriter IV Forms Ct:.. 1,285 124 69" 47
LA120 DECwriter il KSR ... 2495 239 140 90
LA180 DECprinter1 2085 200 117 75
VT100 CRT DECscope 1895 182 101 68
VT132 CRT DECscope 2,205 220 122 83
DT80/1 DATAMEDIA CRT ... 1,995 191 106 72
TI745 Portable Terminal 1,595 183 85 57
T1765 Bubble Memory Terminal 2,595 249 146 94
Ti810 RO Printer 1,895 182 101 68
TI820 KSR Printer T 9185 210 117 79
T1825 KSR Printer 1,695 153 85 57
ADM3A CRT Terminal 875 84 47 32
ADM31 CRT Terminal 1,450 139. 78 53
_ADM42 CRT Terminal 2195 210 117 79
QUME Letter Quality KSR ... 3,205 316 176 119
QUME Letter Quality RO ... 2,805 278 155 105
HAZELTINE 1420 CRT 945 91 51 34
HAZELTINE 1500 CRT 1,195 115 64 43
HAZELTINE 1552 CRT 1,295 124 69 47

Hewlett-Packard 2621A CRT . 1,495 144 80 54

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
10% PURCHASE OPTION AFTER 36 MONTHS

. ACOUSTIC COUPLERS e MODEMS ¢ THERMAL PAPER -
RIBBONS e INTERFACE MODULES e FLOPPY DISK UNITS

PROMPT DELIVERY ¢ EFFICIENT SERVICE

. 7 RA NSN ET CORPORATION

1945 ROUTE 22 201-688-7800
UNION, N.J. 07083 TWX 710-985-5485

Hewlett-Packard 2621P CRT . 2,650 254 142 96

ACCESSORIES AND PERIPHERAL EQUIPMENT .

ping high-level programs into machine-level programs
that effectively utilize machine resources, but much re-
mains to be done. Creative research is needed to handle
data structures in a manner consistent with principles of
data flow computation. These are among the problems
under study in our data flow project at MIT. B

Acknowledgment

This paper is based on research supported by the
Lawrence Livermore National Laboratory of the Univer-
sity of California under contract 8545403.

References

1. J.B. Dennis, “‘On the Design and Specification of a Com-
mon Base Language,”’
mata, Polytechnic Press, Polytechnic Institute of Brook-
lyn, Apr. 1971, pp. 47-74.

2. Arvind, K.P. Gostelow, and W. Plouffe, An Asynchro-
nous Programming Language and Computing Machine,
Dept. of Information and Computer Science, University of
California, Irvine, Technical Report 114a, Dec. 1978, 97
pp.

3. W.B. Ackerman and J.B. Dennis, VAL: A Value Oriented

Algorithmic Language, Preliminary Reference Manual,
Laboratory for Computer Science, MIT, Technical Report
TR-218, June 1979, 80 pp.

4. J.R. McGraw, Data Flow Computing: The VAL Lan-
guage, submitted for publication.

5. R.R. Seeber and A.B. Lindquist, ‘‘Associative Logic for
Highly Parallel Systems,”” AFIPS Conf. Proc, 1963, pp.
489-493.

6. R.M. Shapiro, H. Saint, and D.L. Presberg, Representa-
tion of Algorithms as Cyclic Partial Orderings, Applied
Data Research, Wakefield, Mass., Report CA 7112-2711,
Dec. 1971.

7. J.B. Dennis, ‘‘First Version of a Data Flow Procedure
Language,” Lecture Notes in Computer Sci., Vol. 19,
Springer-Verlag, 1974, pp. 362-376.

8. J.E. Rodriguez, A Graph Model for Parallel Computa-
tion, Laboratory for Computer Science, MIT, Technical
Report TR-64, Sept. 1969, 120 pp.

9. D.A. Adams, A Computation Model With Data Flow Se-
quencing, Computer Science Dept., School of Humanities
and Sciences, Stanford University, Technical Report CS
117, Dec. 1968, 130 pp.

10. R.M. Karp and R.E. Miller, ‘‘Properties of a Model for
Parallel Computations: Determinacy, Termination,
Queueing,” SIAM J. Applied Math., Vol. 14, Nov. 1966,
pp. 1390-1411.

11. J.D. Brock and L.B. Montz, ‘‘Translation and Optimiza-
tion of Data Flow Programs,’’ Proc. 1979 Int’l Conf. on
Parallel Processing, Bellaire, Mich., Aug. 1979, pp. 46-54.

12. W.B. Ackerman, ‘‘Data Flow Languages,’’ AFIPS Conf.

Proc., Vol. 48, 1979 NCC, New York, June 1979, pp.
1087- 1095

13. M. Cornish, private communication, Texas Instruments
Corp., Austin, Tex.

14 J.E. Rumbaugh, ‘A Data Flow Multiprocessor,’’ IEEE

" Trans. Computers Vol. C-26, No. 2, Feb.

1977, pp.
138-146. :

Proc. Symp. Computers and Auto--

19.

20.

21.

22.

23.

¥

24.

25.

E s

>

specification of advanced computer hardware for timesh
and was responsible for the development of one of the carll
timeshared computer installations.

Dennis received his DSc degree in electrical engmeermg
MIT in 1958. Heis a member of Eta Kappa Nu, Tau Beta P
Sigma Xi, and is a fellow of the IEEE.

————

/—————

Load t
overhead.
task alloca

I. Watson and J. Gurd, ‘‘A Prototype Data Flow Com:
puter With Token Labelling,”” AFIPS Conf. Proc., 1
NCC, New York, June 1979 Pp. 623-628.

A. Davis, ‘A Data Flow Evaluatxon System Based On me
Concept of Recursive Locality,”” AFIPS Conf. Proc, » Vol
48, 1979 NCC, New York, June 1979, pp. 1079- 1086

A. Despain and D. Patterson, ‘‘X-Tree: A Tree Structured
Multi-Processor Computer Architecture,” Proc. Fifth Ap
nual Symp. Computer Architecture, Apr. 1978, Pp.
144-150. S

R.M. Keller, G. Lindstrom, and S.S. Patil, “A Loosdy.
Coupled Applicative Multi-processing System,”” AFIps
Conf. Proc., 1979 NCC, New York, June 1979, pp
613-622. :

C. Leung, On a Design Methodology for Packet Com-
munication Architectures Based on a Hardware Destgn
Language, submitted for publication.

A.R. Tripathi and G.J. Lopovski, ‘‘Packet watchmg in
Banyan Networks,’’ Proc. Sixth Annual Symp. Compum
Architecture, Apr. 1979, pp. 160-167.

G.A. Boughton, Routing Networks in Packet Co
munication Architectures, MS Thesis, Dept. of Electrical
Engineering and Computer Science, MIT, June 1978, 93
pp.

J.B. Dennis and D.P. Misunas, ‘‘A Preliminary Architec-
ture for a Basic Data-Flow Processor,’” Proc. Second An-
nual Symp. Computer Architecture, Houston, Tex., Jan, -
1975, pp. 126-132.

J.B. Dennis, C.K.C. Leung, and D.P. Misunas, A Highly
Parallel Processor Using a Data Flow Machine Language,
Laboratory for Computer Science, MIT, €SG Mema
134-1, June 1979, 33 pp.

Arvind and R.E. Bryant, ‘“‘Design Considerations for a~
Partial Differential Equation Machine,’’ Proc. Computer
Information Exchange Meeting, leermore Calif., Sept
1979, pp. 94-102.

L. Montz, Safety and Optimization Transformation /or =
Data Flow Programs, MS Thesis, MIT, Dept. of Electrical -
Engineering and Computer Science, Feb. 1980, 77 pp.

The advent ¢
processors has m
| reality in today’s
ty, flexibility, a1
makes it attracti
distributed proc
implerented in
plicati~ns range
processing load i
¢y to high-speed
ly fast processin
vironment. But,
cessing has prot
become part 0f
system designer:
A serious pr¢
- caused by the s¢
Cessor environn
crease linearly
That is, we expt
number of proc
modules being
{excluding the
would expect t
performance s
ly experienc

s Jack B. Dennis, professor of elect
~ engineering and computer science at Ml'f
| leads the Computation Structures Gro

MIT’s Laboratory for Computer Saejl\
which is developing language-based
puter system architectures that exploi
levels of coneurrency through use
flow prmcxples Associated with
laboratory since its inception in 1963
Project MAC, Dennis assisted

ke the “actuai
nultiple proce:|
the first few a
ughput ac
tional processc

