
Parallel Architectures
MICHAEL J. FLYNN AND KEVIN W. RUDD

Stanford University ^flynn@Umunhum.Stanford.edu&; ^kevin@Umunhum.Stanford.edu&

PARALLEL ARCHITECTURES

Parallel or concurrent operation has
many different forms within a computer
system. Using a model based on the
different streams used in the computa-
tion process, we represent some of the
different kinds of parallelism available.
A stream is a sequence of objects such
as data, or of actions such as instruc-
tions. Each stream is independent of all
other streams, and each element of a
stream can consist of one or more ob-
jects or actions. We thus have four com-
binations that describe most familiar
parallel architectures:

(1) SISD: single instruction, single data
stream. This is the traditional uni-
processor [Figure 1(a)].

(2) SIMD: single instruction, multiple
data stream. This includes vector
processors as well as massively par-
allel processors [Figure 1(b)].

(3) MISD: multiple instruction, single
data stream. These are typically
systolic arrays [Figure 1(c)].

(4) MIMD: multiple instruction, multi-
ple data stream. This includes tradi-
tional multiprocessors as well as the
newer networks of workstations
[Figure 1(d)].

Each of these combinations character-
izes a class of architectures and a corre-
sponding type of parallelism.

SISD

The SISD class of processor architecture
is the most familiar class and has the
least obvious concurrency of any of the
models, yet a good deal of concurrency
can be present. Pipelining is a straight-
forward approach that is based on con-

currently performing different phases of
processing an instruction. This does not
achieve concurrency of execution (with
multiple actions being taken on objects)
but does achieve a concurrency of pro-
cessing—an improvement in efficiency
upon which almost all processors de-
pend today.
Techniques that exploit concurrency

of execution, often called instruction-
level parallelism (ILP), are also com-
mon. Two architectures that exploit ILP
are superscalar and VLIW (very long
instruction word). These techniques
schedule different operations to execute
concurrently based on analyzing the de-
pendencies between the operations
within the instruction stream—dynami-
cally at run time in a superscalar pro-
cessor and statically at compile time in
a VLIW processor. Both ILP approaches
trade off adaptability against complex-
ity—the superscalar processor is adapt-
able but complex whereas the VLIW
processor is not adaptable but simple.
Both superscalar and VLIW use the
same compiler techniques to achieve
high performance.
The current trend for SISD processors

is towards superscalar designs in order
to exploit available ILP as well as exist-
ing object code. In the marketplace
there are few VLIW designs, due to code
compatibility issues, although advances
in compiler technology may cause this
to change. However, research in all as-
pects of ILP is fundamental to the de-
velopment of improved architectures in
all classes because of the frequent use of
SISD architectures as the processor ele-
ments in most implementations.

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



SIMD

The SIMD class of processor architec-
ture includes both array and vector pro-
cessors. This processor is a natural re-
sponse to the use of certain regular data
structures such as vectors and matrices.
Two different architectures, array pro-
cessors and vector processors, have been
developed to address these structures.
An array processor has many proces-

sor elements operating in parallel on
many data elements. A vector processor
has a single processor element that op-
erates in sequence on many data ele-
ments. Both types of processors use a
single operation to perform many ac-
tions. An array processor depends on
the massive size of the data sets to
achieve its efficiency (and thus is often
referred to as a massively parallel pro-
cessor), with a typical array processor

consisting of hundreds to tens of thou-
sands of relatively simple processors op-
erating together. A vector processor de-
pends on the same regularity of action
as an array processor but on smaller
data sets and relies on extreme pipelin-
ing and high clock rates to reduce the
overall latency of the operation.
There have not been a significant

number of array architectures devel-
oped due to a limited application base
and market requirement. There has
been a trend towards more and more
complex processor elements due to in-
creases in chip density, and recent ar-
ray architectures blur the distinction
between SIMD and MIMD configura-
tions. On the other hand, many differ-
ent kinds of vector processors have de-
veloped dramatically through the years.
Starting with simple memory-based vec-

Figure 1. The stream model.

68 • Michael J. Flynn and Kevin W. Rudd

ACM Computing Surveys, Vol. 28, No. 1, March 1996



tor processors, modern vector processors
have developed into high-performance
multiprocessors capable of addressing
both SIMD and MIMD parallelism.

MISD

Although it is easy to both envision and
design MISD processors, there has been
little interest in this type of parallel
architecture. The reason, so far anyway,
is that no ready programming con-
structs easily map programs into the
MISD organization.
Abstractly, the MISD is a pipeline of

multiple independently executing func-
tional units operating on a single
stream of data, forwarding results from
one functional unit to the next. On the
microarchitecture level, this is exactly
what the vector processor does. How-
ever, in the vector pipeline the opera-
tions are simply fragments of an assem-
bly-level operation, as distinct from
being a complete operation in them-
selves. Surprisingly, some of the earli-
est attempts at computers in the 1940s
could be seen as the MISD concept.
They used plug boards for programs,
where data in the form of a punched
card was introduced into the first stage
of a multistage processor. A sequential
series of actions was taken in which the
intermediate results were forwarded
from stage to stage until at the final
stage a result was punched into a new
card.

MIMD

The MIMD class of parallel architecture
is the most familiar and possibly most
basic form of parallel processor: it con-
sists of multiple interconnected proces-
sor elements. Unlike the SIMD proces-
sor, each processor element executes
completely independently (although
typically the same program). Although
there is no requirement that all proces-
sor elements be identical, most MIMD
configurations are homogeneous with
all processor elements identical.
When communications between pro-

cessor elements are performed through
a shared memory address space (either
global or distributed between processor
elements, called distributed shared
memory to distinguish it from distrib-
uted memory), two significant problems
arise. The first is mainlining memory
consistency—the programmer-visible
ordering effects of memory references
both within a processor element and
between different processor elements.
The second is maintaining cache coher-
ency—the programmer-invisible mecha-
nism to ensure that all processor ele-
ments see the same value for a given
memory location. The memory consis-
tency problem is usually solved through
a combination of hardware and software
techniques. The cache coherency prob-
lem is usually solved exclusively
through hardware techniques.
There have been many configurations

of MIMD processors that have ranged
from the traditional processor described
in this section to loosely coupled proces-
sors based on networking commodity
workstations through a local area net-
work. These configurations differ pri-
marily in the interconnection network
between processor elements that range
from on-chip arbitration between multi-
ple processor elements on one chip to
wide-area networks between continents,
the tradeoffs being between the latency
of communications and the size limita-
tions on the system.

LOOKING FORWARD

We are celebrating the first 50 years of
electronic digital computers—the past,
as it were, is history, and it is instruc-
tive to change our perspective and to
look forward and consider not what has
been done but what must be done. Just
as in the past there will be larger,
faster, more complex computers with
more memory, more storage, and more
complications. We cannot expect that
processors will be limited to the “sim-
ple” uniprocessors, multiprocessors, ar-
ray processors, and vector processors we
have today. We cannot expect that the

Parallel Architectures • 69

ACM Computing Surveys, Vol. 28, No. 1, March 1996



programming environments will be lim-
ited to the simple imperative program-
ming languages and tools that we have
today.
As before, we can expect that memory

cost (on a per-bit basis) will continue its
decline so that systems will contain
larger and larger memory spaces. We
are already seeing this effect in the
latest processor designs that have dou-
bled the “standard” address size, yield-
ing an increase from 4,294,967,296 ad-
dresses (with 32 bits) to 18,446,744,073,
709,551,616 addresses (with 64 bits).
We can expect that interconnection net-
works will continue to grow in both
scale and performance. The growth in
the Internet in the last few years is
phenomenal and the increase in the use
of optics in the interconnection network
has made this increase at least feasible.
However, we cannot expect that the

ease of programming these improved
configurations will advance—as the
available parallelism of computer sys-
tems increases, exploiting this parallel-
ism becomes the limiting factor. There
are two aspects of this problem: finding
large degrees of parallelism (typically
an algorithmic or partitioning problem)
and efficiently managing the available
parallelism to achieve high performance
(typically a scheduling or placement
problem). Of course, all the solutions to
these problems must ensure that cor-
rectness is satisfied. It does not matter
how fast the program runs if it does not
produce the correct result. Solving these
problems will require many develop-
ments and changes, few of which are
foreseeable.
Although not satisfying, we can cer-

tainly say that programming para-
digms, compiler techniques, algorithm
designs, and operating systems are all
fair game, but these are likely only
pieces of the puzzle. Indeed, broad new
approaches to the representation of
physical problems may be required. The
good news from all this is that there is
no dearth of work to be done in this
area. Although improvements can cer-
tainly be made to a single processor

element, the performance benefits of
these improvements are complementary
and at this point are nowhere near the
scale of performance available through
exploiting parallelism. Clearly, provid-
ing parallelism of order n is much easier
than increasing the execution rate (for
example, the clock speed) by a factor of n.
The continued drive for higher- and

higher-performance systems thus leads
us to one simple conclusion: the future
is parallel. The first electronic comput-
ers provided a speedup of 10,000 com-
pared to the mechanical computers of 50
years ago. The challenge for the future
is to realize parallel processors that pro-
vide a similar speedup over a broad
range of applications. There is much
work to be done here. . .let us be on with
it!

REFERENCES

There are thousands of references deal-
ing with the many aspects of parallel
architectures. These references com-
prise only a very small subset of acces-
sible publications, but provide the inter-
ested reader with jumping-off points for
further exploration.
FLYNN, M. J. 1995. Computer Architecture:

Pipelined and Parallel Processor Design.
Jones and Bartlett, Boston.

HOCKNEY, R. W. AND JESSHOPE, C. R. 1988.
Parallel Computers 2: Architecture, Program-
ming and Algorithms, 2nd ed. Adam Hilger,
Bristol.

HOCKNEY, R. W. AND JESSHOPE, C. R. 1981.
Parallel Computers: Architecture, Programming
and Algorithms. Adam Hilger, Bristol.

HWANG, K. 1993. Advanced Computer Architec-
ture: Parallelism, Scalability, Programmabil-
ity. McGraw-Hill, New York.

IBBETT, R. N. AND TOPHAM, N. P. 1989a.
Architecture of High Performance Computers,
Vol. I. Uniprocessors and Vector Processors.
Springer-Verlag, New York.

IBBETT, R. N. AND TOPHAM, N. P. 1989b.
Architecture of High Performance Computers,
Vol. II. Array Processors and Multiprocessor
Systems. Springer-Verlag, New York.

KUHN, R. H. AND PADUA, D. A. EDS. 1981.
Tutorial on Parallel Processing. IEEE Com-
puter Society Press, Los Alamitos, CA.

WOLFE, M. J. 1996. High Performance Compil-
ers for Parallel Computing. Addison-Wesley,
Reading, MA.

70 • Michael J. Flynn and Kevin W. Rudd

ACM Computing Surveys, Vol. 28, No. 1, March 1996


