CDA 4150 Lecture 4

Vector Processing
CRAY like machines

Amdahl’'s Law

-
Sequential Execution b{ - Parallel Execution
-
=
a=a+b+c

T, = Time Spent in Sequential Processing
T, = Time Spent in Parallel Processing
S, = Speedup
P = Number of Processors

Amdahl’'s Law (cont.)

T
g —_s
Y Tp
Tp=dg+@_§ﬁs
T
S — S
Y —
al, + (1 a)TS
S - 1

: 1-a)
P

s _ P
" Pa+(@1-a)

: : 1
lim,_, S, =lim,_ 1 1)
—+|1-— |
P P
lim,_ S, -1
(04

Amdahl’s Law (revisited)

Speedup = L = |lim p > «Sp = 1

1+£1—1ja “
P P

1
m Using a as a function of n, where a(n) = = then

p - p
Speedup = = limn 5« - P
1+ (p-Dea(n) 1+(p—1)%

An extension of Amdahl’s Law In terms of a
matrix multiplication equation (AX =Y).

ail
d21
dsi1
d41

di2
ad22
as2
A 42

di3
a23
as3
a43

di4
d24
aAs4
A 44

X1
X2
X3

X4

Y1 = a1iX1+ ai2X2 + d13X3 + ad14 X4

Y2 =az2iX1+ ad22X2+ ad23X3+ dz4X4

Y3 = as3iX1+ as32X2+ ad33X3+ ds34 X4

Y4 = A41X1+ ad42X2 + A43X3 + A44X4

A1
A2
A3
A4

Compute each vector element
In parallel by partitioning.

X1
X2
X3
X4

'

CPU CPU
A1 A 2
X X

CPU CPU
A 3 A 2
X X

R. M. Russell, “The CRAY-1 Computer
System”, CACM, vol. 21, pp. 63-72,
1978.

m Introduces CRAY-1 as a vector processing
Architecture

CRAY -1

Functional Units

MAIN MEMORY

(16-way interleaving)

64 elements
Vo FP ADD / SUB
V1
Vs FP MULT
| LOGICAL
Vi
PIPELINE
SCALAR
REGISTERS

Instruction Operation Function
sADDV mVi, V2, V3 mVi+—V2+ V3
mADDSV (add scalar | mV/1, Fo*, V2 mVi+— V2 + Fo
vector)
sMULTV mV1, V2, V3 mV1+—V2+ V3
mLV (load vector) a1 Ri1 mLoad V1 with memory
’ address location starting
at address [R1]
mSV (store vector) mR1, V1 mStore V1 into memory

starting at location [R1]

* Fo — a floating point number
NOTE: Each vector register (Rn) holds floating point numbers.

" S
Timing

m A pipeline machine can initiate several
instructions within 1 clock tick, which are then
being executed Iin parallel.

m Related Concepts:
- Convoys
- Chimes

Convoy

m The set of vector instructions that could
potentially begin execution together in one clock

period.
m Example:
LV V1, Rx — > Load vector X
MULTSV V2, Fo, Vi —— Vector scalar multiplication
LV V3, Ry — > Load vector X
ADDV V4,V2,V3 — Add
SV Ry, V4 — Storing results

Convoy

Note: MULTSV V2, Fo, V1 || LV V3, Ry
IS an example of a convoy, where 2 independent
Instructions are initiated within same chime.

LV V1, Rx Load vector X

MULTSV V2, Fo,Vi ~ Vector scalar multiplication
LV V3, Ry Load vector X

ADDV V4, V2, V3 Add

SV Ry, V4 Storing results

" I
Chime

m Not a specific amount of time, but rather a timing
concept representing the number of clock
periods required to complete a vector operation.

m CRAY-1 chime is 64 clock periods.

- Note: CRAY-1 clock cycle takes 12.5 ns.
5 chimes would take : 5*64 *12.5 = 4000 ns

"
Chime — Example #1

m How many chimes will the vector sequence take?

LV V1, RX — Load vector X

MULTSV V2, Fo, V1 — Vector scalar multiplication
LV V3, Ry — Load vector Y

ADDV V4, V2, V3 —— Add

SV Ry, V4 _, Store result

"
Chime - Example #1

B ANSWER: 4 chimes

1stchime : LV Vi1, Rx
2"d chime : MULTSV V2, Fo, V1 | LV V3, Ry

39 chime : ADDV V4, V2, V3
4th chime : SV Ry, V4

Note: MULTSV V2, Fo, V1 || LV V3, Ry
IS an example of a convoy, where 2 independent
Instructions are initiated within same chime.

Chime - Example #2

m CRAY-1
Forl — 1to 64
A[l] = 3.0 * A[l] + (2.0 + BJl]) * C[l]

m [0 execute this:

1stchime : Vo, A _— .
4 i Can Initiate operations
2"d chime: Vi~ B

Vs < 2.0+ V1 to use array values
Va «— 3.0* Vo J Immediately after they
3rd chime : Vs «— C have been loaded into

Ve «—— V3*Vs || Vector registers.
V7+<—Va+\Ve |

A4t chime : A ~— vz

Chaining

m Building dynamically a larger pipeline by

Increasing number of stages.

Vo

V1

V4

V3

3 stages

> + 1 Vs
>/\
[/ stages

Chaining — Example #1

m ForJ «— 1to 64

C[J] «— A[J] + B[J]
D[] ~— FI]* E[J]

END
1 64
A Vo
B V1

* No chaining - these
are independent!!

pat

" V4

E V2

F V3

:)

V5

Chaining — Example #2

m ForJ «— 1to64
C[J] «— A[J] * B[J]
D[J] — C[J]* E[J]
END

V2

V3

Latency
It takes 8 units to get
the result to here
1 64 \ /
A Vo T
Sl v e
B V1 /
] : -
Vo and V1 ADD TIME Result to
To functional V2

unit

More Chaining and Storing
Matrices

Thanks to Dusty Price

Sequential Approach...
\Z)
Vo
T ‘\
Vl > [‘/
V3
| add | | mul |
| |
8 9

64 Elements in sequence: T, =64 * (8 + 9) = 1088

" A
Using Pipeline Approach...

Vj >

Using pipelining it takes 8 units of
time to fill pipeline and produce

> V3 first result, each unit of time after
that produces another result

T, =8+63

Vq >

The multiplication pipeline takes 9
. V5 units of time to fill, and produces

another result after each additional
unit of time

|| TeEor6s

O\ Y

The combination of thetwo T, =T,, + T,, =8 + 63 + 9 + 63 = 143

time

Y
Y/

Using the chaining technique, we

now have one pipeline. This new

| 6 | 1 1 1 | 7 | 1 pipeline takes 17 units of time to
fill, and produces another result

after each unit of time.

T, =17 +63=80

Operation using Chaining T, =17 + 63 = 80

N
W In the three approaches...

Sequential: T, =17 * 64 =|1088

Pipelining: T,=8 + 63 + 9 + 63 =[143

Chaining: T.,=17+63 =180

Storing Matrixes for Parallel Access (Memory Interleaving)

Matrix

4 Memory Modules

M, M, M; M,
An Ay Ay Ay
A Ay Ay Ay
Aus Az Agg Ay
Au Ay Ay Ay

One column of the matrix can
be accessed in parallel.

|
STOOTNERARIIT Dy Cotumn...

4 Memory Modules

A A One Row can be accessed in
13 14| | parallel with this storage
technique.

'Somess both rows and columns fast...

Matrix

A12 A13 A14

4 Memory Modules

By using a skewed matrix
representation, we can now
access each row and each
column in parallel.

M, M, M; M,
Aul An Ag Ay
Au | Ay Ay

Az |Az| Az
Ag Ay Ay

"SomiBHES We need access to the main diagonal as well as rows and

columns...
Matrix 5 Memory Modules

M, M, M, M, M

! Ap A Ay
A - Ax Ay

Az, Ajy A,

A - An| A

At the cost of adding another memory module and wasted space,
we can now access the matrix in parallel by row, column, and
main diagonal.

"
Program Transformation

—

removes data
dependency

data
dependency

"
Scalar Expansion

—

removes data

data dependency

dependency

"
Loop Unrolling

/’
X[1] « A[1] * B[1]
X[2] < A[2] * B[2]

.X[n] <~ A[n] * B[n]

"
Loop Fusion or Jamming

