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An alternative to solve the matrix vector product in parallel are systolic arrays. The name sys-
tolic array was proposed by Kung and Leiserson to a network of processing elements that act
synchronously to solve specific problems. These networks of processing elements exploit pipelining,
parallel processing, and use simple and regular communication paths. At each computation step
the processing elements of the systolic array get data, either from another processing element(s)
or from outside the network, execute some computation, and pump data out either outside the
network or to another processing element(s). The name systolic was proposed by analogy with the
way the heart pumps blood through the circulatory system and the manner systolic array pumps
data in and out the processing elements.

The systolic array proposed by Kung and Leiserson, in the late seventies, to compute the band
matrix vector product is the one we will used through this work and we will refer to it as Kung’s
Systolic Array (KSA). The basic processing element of KSA is the Inner-Product-Step-Processor
(IPSP), which is depicted in Figure 1. An IPSP has three inputs ports and three output ports and
is defined as follows:

IPSP (a, x, y) → (a, x, y + a × x)

y + a * x

x x

y

a

a

Figure 1: data flow in a systolic processing element.

We will explain how a KSA with three processing elements computes the band matrix vector
product
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using the following recurrences:




y1
i = 0,

yk+1
i = yk

i + aik × xk,

yi = yn+1
i

As in KSA the matrix must enter the systolic array by diagonals the number of processing elements
required is equal to the number of diagonals w = 3 of matrix A. In Figure 2, we show how the
components of the vector x enter the systolic array from left to right, the components of the vector
y, initially zero, enter the systolic array from right to left, and the coefficients of the matrix A will
enter the systolic array, by diagonals, from top to bottom. At each step of the computation three
values enter in each IPSP, a computation is executed, each yi accumulates its partial result, and
three values are pumped out. This computation requires w steps to move the first component y1 to
the leftmost processing element and then, as the components of vector y enter the array every other
unit of time, 2n − 1 additional steps are necessary to pump out all the elements of the resulting
vector y for an overall of T (n) = w + 2n − 1. The first five steps of the of the computation are
shown in Figure 3, where it can be observed that each processing element of the systolic array is
working on the matrix vector product on every other unit of time.
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Figure 2: Kung’s Systolic array to compute a band matrix vector product.

Surprisingly, the same linear systolic array computes two matrix vector products simultaneously
in T (n) = w + 2n steps using perfect shuffling as a spatial data scheduling technique. Therefore,
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Figure 3: First five steps of the computation.

implementing two matrix vector product multiplication, Ax||Bz, on Kung’s systolic array is straight
forward. To carry out these matrix vector products the elements of x and z and the elements of the
matrices A and B must be arranged as illustrated in Figure 4. In this arrangement the components
of x and z are merged, using perfect shuffling, into a single array that we will refer to as the
carrier vector. The components of x are stored in the carrier vector in the odd locations and the
components of z in the even ones. similarly, each diagonal of matrix A is also merged with the
corresponding diagonal of matrix B using perfect shuffling.
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Figure 4: Systolic array to compute two matrix vector products in parallel.

We can simulate a classical bit using a state vectors; for instance, the values 0 and 1 of a classical
bit can be realized by a pair of mutually orthonormal state vectors:

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
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Where the symbols |0〉 and |1〉, are known as ket zero and ket one according to Dirac’s notation.

To move a state vector from one state to another we must use unitary transformations which are
represented by 2 × 2 matrices and we will refer to them as unitary operations or gates. As an
example, we show the unitary operations Identity(I), NOT(X) and Hadamard(H): The identity
gate just left the state vector as is:

I|0〉 =

[
1 0
0 1

] [
1
0

]
=

[
1
0

]
= |0〉

I|1〉 =

[
1 0
0 1

] [
0
1

]
=

[
0
1

]
= |1〉

the X gate flips |0〉 into |1〉 and vise versa:

X|0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉

X|1〉 =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉

and the Hadamard (H) gate turns |0〉 and |1〉 into a equally weighted superposition state. The H
gate is defined as

H = 1√
2

[
1 1
1 −1

]

and when it is applied to |0〉 and |1〉 we obtain the following superposition:

H|0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1
1

]

H|0〉 = 1√
2

[
1 1
1 −1

] [
0
1

]
=

[
1

−1

]

Using a systolic array with three processing elements and applying the techniques explained in
class, you have to show in powerpoint presentations all the steps of the following operations :

1) H|0〉‖H|1〉

The input to systolic arrays is a 1-Dimensional vector denoted the carrier vector; two different state
vectors |0〉 and |1〉 can be stored in the carrier vector by placing |0〉 in the odd locations and |1〉 in
the even locations of the carrier vector. For example:
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2) CNOT |10〉‖CNOT |11〉

To work with two state vector, this is the way you have to represent them in the carrier vector for
CNOT.
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where D = 0

The CNOT operation that you will use is:

CNOT =




1 0 0 0
0 1 1 0
0 0 1 0
0 0 1 1




Remember that you are using modulo-2 addition.

3) The SWAP operation is implemented with three cnot gates as shown in Figure 5

Using the three PE systolic array how many steps will it take to carry out SWAP:
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Figure 5: SWAP gate implemented with CNOTs.

a) Using pipelining
b) Sequentially

4) Assuming that three state vectors, |a〉, |b〉, and |c〉 are stored in a carrier vector as [a1, b1, c1,
a2, b2, c2] find out a 6 × 6 matrix that implements the Toffoli gate.

In an envelope you must turn in:

1.- A report indicating the number of steps taken by each computation.

2.- All the powerpoint presentations on a cd.
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