What Is Verilog?

= Hardware Description Language (HDL)

- Not a programming language! (more on this later)
= Describes digital systems

- Behavioral

- Structural
= How is this useful?

- Can’t draw gate-level schematics of complex systems — big
mess

« Gate-level simulation unnecessarily slow

- HDLs faster to simulate, and still provide:
- Synthesizable low-level implementation
- Hardware concurrency

r — Ease of use
FJI
’ CDA 4150 - Verilog

Synthesizable?

Synthesis || Technology

S|mL‘1‘Iator I Tool | Library
R 1
Gate-level ECE 475
Hardware A
Description Netlist
______________ e Architecture
Custom VLS|
Layout »| LVN Floorplanning

CDA 4150 - Verilog

Verilog vs. VHDL

« VHDL (VHSIC HDL)
- ADA-like syntax (ADA anyone?)
- Older, less expressive
= Verilog
- C-like syntax (C anyone?)
- Larger user community
- Not VHDL

7
" |
’ CDA 4150 - Verilog

HDL vs. Programming Language

= Repeat on every keystroke: “I'm... designing... hardware...”
= No variables (outlawed) — signals!

+ Regs (containers)

- Wires (connections)
= HDLs concurrent

« Which happens first?

assign a = ~b;
assign ¢ = d;
= Operators do not come for free — actual hardware!
7 Use '+, ‘-, ‘<<’ sparingly; never use *, */’
()]

CDA 4150 - Verilog

NAND Gate, Behavioral

module NAND (a,b,out);
input a;

input b;

output out;

assign out = ~(a&b);

a
b :Do—out

/a—o| |o—/b

endmodule

i
.
SV,

CDA 4150 -

out
endmodule a.{
|— b
;
L |
g/‘ CDA 4150 - Verilog
AND Gate, Behavioral
2D
module AND(x,y,out);
input x;
input y;
output out;
a—dq Jp—n
assign out = x&y; out

Verilog

AND Gate, Structural

module AND(x,y,out); b

input x;
input y;
output out;

wire z; /a _CI ID_ b

NAND MyNAND(.a(x), .b(y), .out(z)); out

assign out = ~z; a-—4
|—b

endmodule

7
" |
’ CDA 4150 - Verilog

Combinational Logic

= Done using assign statements
» LHS must be declared wire
» Cannot feed into reg — it's combinational!
= Typical operators
- &, M, '~ instantiate corresponding gates
« ‘'==", ‘1=’ instantiate comparators, return one bit
- Physical data types: ‘0’, ‘1°, ‘X’ (“don’t care”), ‘'z’ (*high
impedance”)

assign s = a“b”ci;
assign co = a&b|aé&ci|bé&ci;

" (What does this do?)
gj'l CDA 4150 - Verilog

Buses

= Can actually operate on multiple bits in parallel
- Correspondingly more hardware, of course
« Default bit width is 1

module AND (x,y,out); module ANDS8 (x,y,out);

input x; input [7:0] x;

input y; input [7:0] y;

output out; output [7:0] out;
assign out = x&y; assign out = x&y;

endmodule endmodule

7
" |
’ CDA 4150 - Verilog

Concatenation, Repetition

= Syntax: R{E1,E2,...,En}
+ Rrepetitions (default 1) of the concatenation of E1, E2, ..., En

reg[15:0] a;
reg[31:0] b;
wire[31:0] out;

assign out = {l6{a[l5]},al}l+b;

" (What does this do?)
%}! CDA 4150 - Verilog

Seguential Logic

= Finite State Machines (CDA 3103 anyone?)

CLK | | [[[[[|
D_] | [|
Q | I | | -

= Need event-driven simulation capability

»Need to trigger on edge — not value .
" '99 g vau (What s this?)
‘I CDA 4150 - Verilog

Seguential Logic

module DFF (d, q, clk);
input clk;

input d;

output q;

reg q;

always Q@ (posedge clk) begin
q <= "TICK d;
end
endmodule

= Can be negedge as well (and clk any other name)

= define TICK #2 (two Verilog time units) — clk period should
be >> 2

g:/r(a{q <= d; - Legal! Wrong!

CDA 4150 - Verilog

Seguential Logic

= Always use nonblocking assignment ‘<="in sequential always
blocks

= Always use ‘TICK before RHS in sequential always blocks
= Clock only signal in sensitivity list
= LHS must be declared reg

- cannot use wire — it's sequential logic!

= Hoist combinational logic outside of always blocks as much
.. as possible wire[31:0] d;
always @ (posedge clk) begin assign d = a&(32{b==c});
g <= ‘TICK a&(32{b==c});

end always @ (posedge clk) begin
q <= “TICK d;
end

Legal Preferred

7
" |
’ CDA 4150 - Verilog

Control Flow

= Can be used in always blocks
= Instantiates actual mux — not programming!

module DFF(d, r, q,clk);

input clk; input d; input r;
output q;

reg q;

always (@ (posedge clk) begin
if(r == 1’bl) begin
g <= "TICK 1’bO;
end
else begin
q <= "TICK d;
end
end

S’ endmodule (What does this do?)

CDA 4150 - Verilog

Combinational always Blocks

= Useful for complex combinational logic

= All RHS signals must appear on sensitivity list

= LHS must be assigned in every possible case
- otherwise implied sequential logic!

always @(sel or a) begin
if(sel == 2’'b0) begin

z = 1'b0;

end

else if(sel == 2’'bl) begin
z = aj;

end

end
’) (What does this do? Is it correct?)
‘I CDA 4150 - Verilog

Extra Haradware?

= Watch out for “programming” too much hardware

+ Fortunately synthesis tool (somewhat) smart — but don’t count
on it
always (@ (posedge clk) begin
if(i) begin
x <= "TICK a+b;
end
else if(j) begin
y <= "TICK a+b;
end
else begin
z <= "TICK a+b;
end

S (What is the generated hardware?)
|

CDA 4150 - Verilog

Extra Haradware?

= Watch out for “programming” too much hardware

« Fortunately synthesis tool (somewhat) smart — but don’t count
on it

always (@ (posedge clk) begin

if(i) begin _
x <= "TICK a+b; . 2\ X
fi :l) |
end .
else if(j) begin 611
<= "TICK a+b; 1 ra
Z b —L* A y
en) 1
else begin fi :D_
z <= "TICK a+b; /i]
end 1A z
| -

r clk
" |
’ CDA 4150 - Verilog

Verilog Is Not C/

= Verilog is concurrent, C is not

initial begin

a = 1'b0;
b = 1'b0;
end

always (@ (posedge clk) begin
a <= “TICK 1'bl;
b <= "TICK a;

end

g (Value of a and b after clock tick?)
|

CDA 4150 - Verilog

Other Useful Hardware Structures

= Register files/memories

7 [T
reg[31:0] regfilel[0:7]; (T T

e, (IO
wire r2b4;

regiter2]; D
eq2 41 D

assign reg2
assign r2b4

”
) \
g/‘ CDA 4150 - Verilog

Other Useful Hardware Structures

» Tri-state devices

reg[31:0] mem[0:7];
wire[31:0] a;

wire[31:0] d; -
wire rd; A -X x x

assign d = rd?mem[a] :32'bz; D e C} C} C

" What is this?
g/" CDA 4150 - Verilog

10

Last Remarks

= |t often helps to draw hardware diagrams first

= If stuck, think about what hardware does

= Use make clobber to clean up, or force a re-compile
= Use vcheck! (vcheck *.v)

7
" |
’ CDA 4150 - Verilog

11

