
CDA 4150 – MIPS ISA

��������	
����
�����������	

Load/store or register-register instruction set
• Only operate on data in registers

– Register operations affect the entire contents of register
• No partial register writes except for single-precision FP

• Only load/store instructions access memory
• True in all RISC instruction sets
• True in all instruction sets designed since 1980

Emphasis on efficient implementation
• Make the common case fast

– A system can be so simple that it obviously has no bugs, or
so complex that it has no obvious bugs. (adapted C. A. R.
Hoare)

Simplicity: provide primitives rather than solutions
• Simplicity favors regularity

CDA 4150 – MIPS ISA

������ ����� � ���

Bit String: sequence of bits of a particular length
• 8 bits is a byte
• 16 bits is a half-word
• 32 bits is a word
• 64 bits is a double-word

Character
• supported as a byte (signed or unsigned)

Integers
• 2's Complement

Floating Point: M x 2E

• single precision
• double precision

CDA 4150 – MIPS ISA

����������� ����� ��

232 bytes of memory: accessible by loads/stores
31 x 32-bit GPRs (R0 = 0) or integer multiply/divide

• why only 32 registers? Smaller is faster

PC: incremented by 4 for each instruction
• except for branch, j, jal

0$0
$1
°
°
°
$31
PC
lo
hi

$f0$f1

°
°
°

$f31 $f30

FP registers are paired for double-precision.
Specify the even register, which holds the
less-significant word.

CDA 4150 – MIPS ISA

������ �� �
���
�� ����� � ��
��
�� �

Arithmetic/Logical instructions
• Three operand format: result + two sources
• Operands: registers, 16-bit immediates
• Signed & unsigned arithmetic operations:

– Sign-extension for immediates
– Trapping of overflow for signed values

• Compare instructions
– Signed vs. unsigned: comparison is different

Integer multiply/divide
• Use HI/LO registers

Floating Point instructions
• Operate on floating point registers
• Double and single precision
• Typical: add, multiply, divide, subtract

CDA 4150 – MIPS ISA

������� ��� �����
�	� ��
�

add add $1,$2,$3 $1 = $2 + $3 3 operands; exceptions

subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exceptions

add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exceptions

add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions

subtract unsign subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions

add imm unsign addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions

set less than slt $1,$2,$3 $1 = ($2 < $3) compare signed <

set less than imm slti $1,$2,100 $1 = ($2 < 100) compare signed < constant

set less than uns sltu $1,$2,$3 $1 = ($2 < $3) compare unsigned <

set l. t. imm. uns. sltiu $1,$2,100 $1 = ($2 < 100) compare unsigned < const

Note: Immediates are sign-extended to form constant for arithmetic
operations

CDA 4150 – MIPS ISA

������
��
��� � �
�
� �

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsign multu $2,$3 Hi, Lo = $2 x $3 64-bit unsigned prod.
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient

Hi = $2 mod $3 Hi = remainder
divide unsign divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient

Hi = $2 mod $3 Unsigned remainder
Move from Hi mfhi $1 $1 = Hi Get copy of Hi
Move from Lo mflo $1 $1 = Lo Get copy of Lo

Rationale
• Deal with 64-bit result
• Simplify handling of instruction

Registers
HI

LO

A
d

d

CDA 4150 – MIPS ISA

������ ��
������ � ��
��
�� �

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 Logical AND
or or $1,$2,$3 $1 = $2 | $3 Logical OR
xor xor $1,$2,$3 $1 = $2 ^$3 Logical XOR
nor nor $1,$2,$3 $1 = ~($2 |$3) Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND w. constant
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR w. constant
xor immediate xori $1, $2,10 $1 = $2 ^10 Logical XOR w. constant
shift left log sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right log srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arith sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
shift left log var sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
shift right log var srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
shift right arith srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by var
load upper imm lui $1,40 $1 = 40 << 16 Put imm in upper 16 bits

CDA 4150 – MIPS ISA

�������� ��� ������ �

All memory access through loads and stores

Aligned words, halfwords, and bytes
• A halfword or byte loaded from memory can be sign- or zero-

extended to form a word in the destination register

Floating-point loads/stores for FP registers

Single addressing mode (displacement or based)
16-bit sign-extended displacement (immediate field)

+ register

= memory address

In addition:
• Displacement = 0 uses register contents as address
• Register = 0 uses 16-bit displacement as address

Registers

+

Memory
Data to load/
location to
store into

CDA 4150 – MIPS ISA

������ ��� � �������� � ��
��
�� �

Instruction Example Meaning Comments
store word sw $3, 8($4) Mem[$4+8]=$3 Store word
store halfword sh $3, 6($2) Mem[$2+6]=$3 Stores only lower 16

bits
store byte sb $2, 7($3) Mem[$3+7]=$3 Stores only lowest byte
store float sf $f2, 4($2) Mem[$2+4]=$f2 Store FP word

load word lw $1, 8($2) $1=Mem[8+$2] Load word
load halfword lh $1, 6($3) $1=Mem[6+$3] Load half; sign extend
load half unsign lhu $1, 6($3) $1=Mem[6+$3] Load half; zero extend
load byte lb $1, 5($3) $1=Mem[5+$3] Load byte; sign extend
load byte unsign lbu $1, 5($3) $1=Mem[5+$3] Load byte; zero extend
load float lf F1, 4($3) $f1=Mem[4+$3] Load FP register

CDA 4150 – MIPS ISA

� ���
� � ������ ��� ��� � ��� �

Let’s say you want to load a value from a fixed
location in memory, known at compile time
Address: 0x123450

lui $1, 0x12 # $1 = upper 16 bits of constant
addiu $1, $1, 0x3450 # add in lower 16 bits
lw $2, 0($1) # perform the load

Not taking advantage of displacement capability
lui $1, 0x12 # $1 = upper 16 bits of constant
lw $2, 0x3450($1) # perform the load

CDA 4150 – MIPS ISA

������ ��� �	�
� ���� � ��
��
�� �

Two classes:
• Jumps

– Unconditional, not PC-relative
– For procedure call, unconditional control, switch statements,

simulating long branches
• Branches

– Conditional and PC relative
– For conditional control and PC-relative unconditional

Jumps
Instruction Example Meaning Comment
jump j 10000 PC = 40000 jump to address

jump register jr $31 PC = $31 jump to addr in register

jump and link jal 10000 $31 = PC + 4; Save PC next instruction

PC = 40000 jump to address

CDA 4150 – MIPS ISA

������ ��� �	��

Conditional branch is compare-and-branch
• Conditions:

– Comparison against 0: equality, sign-test
– Comparison of two registers: equality only
– Remaining set of compare-and-branch take two instructions

Instruction Example Meaning
branch equal beq $1,$2,100 if ($1 == $2) PC=PC+4+400
branch not eq bne $1,$2,100 if ($1 != $2) PC=PC+4+400

branch l.t. 0 bltz $1,100 if ($1 < 0) PC = PC+4+400
branch g.t./eq 0 bgez $1,100 if ($1 >= 0) PC = PC+4+400

CDA 4150 – MIPS ISA

���� ��� �
� � �! " �� ���# ������	
� �

C source code:
count=0;
for (index=head; index<=n; index++)

if (C[index] == target) count ++;

MIPS assembly code, assuming:
• count in $5, index in $6, head in $1, addr of C in $2, target in $3; n in $4

li $5,0 # set count =0 (addiu $5,$0,0)
move $6,$1 # initial index (addu $6,$1,$0)

loop: slt $9,$4,$6 # $9=1 if n < index (index > n)
bne $9,$0,exit # if index>n goto exit label
sll $7,$6,2 # multiply index by 4
addu $7,$7,$2 # address of C [index]
lw $8,0($7) # C[index] = $8
bne $8,$3,next # test if equal
addiu $5,$5,1 # increment count

next: addiu $6,$6,1 # increment index
j loop # unconditional jump to loop

exit:

• Straightforward, but not best (smallest or fastest) code!

CDA 4150 – MIPS ISA

����$ �
Stacking of Subroutine Calls & Returns and Environments

Stacks are a natural structure for procedure calls / local variables

Implementing the stack
• Common rules are needed across procedures
• Recent machines use software convention
• Some earlier machines use hardware mechanisms and instructions

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

CDA 4150 – MIPS ISA

����$ �� ��� ��

Down/Next Empty (MIPS)

POP: Increment (SP) PUSH: Write to Mem(SP)

Read from Mem(SP) Decrement SP

Single elements are not usually pushed/popped. Instead an entire
stack frame may be pushed or popped in one
increment/decrement.

Stacks can grow up or down:

a
b
c

0

inf. Inf.

0

Memory
Addresses

SP

Next
Empty?

Last
Full?

How is empty stack represented?

grows
up

grows
down

CDA 4150 – MIPS ISA

����$ �� ��� ��� �� �
�

Parameters are passed in registers; extras on stack

Compilers try to keep scalar variables in registers, not memory
• Stack locations for spilling/saving on procedure calls

Arguments in
reverse order

Saved registers
including
old FP, SP

Local variables
and temporaries

SP

Access local variables
and saved registers at
fixed (positive) offset
from SP

Higher Addresses

Lower Addresses

Access arguments at
fixed offset from FP.
Allow variable number
of arguments.

Arguments
for next procedure

FP

CDA 4150 – MIPS ISA

������� � ��� �
� � ���� ��

Local scalar variables of a procedure stored in registers
• Spilled to stack frame
• Space allocated when compiled
• Loaded/stored into registers as needed

Global static scalar variables (single variables, not arrays)
• Allocated in a 64KB static area at compile time
• Addressed with a register pointing into area + offset

Dynamic allocated in heap, reserved memory below stack

global scalars

$gp

x

Offset (determined at link time)

CDA 4150 – MIPS ISA

������� � ��� � ����
7fffffff16

1000000016

Reserved

Code

Static Data

Dynamic Data

Stack

Stack and dynamic
area grow towards
one another to
maximize storage
use before collision.

0040000016

CDA 4150 – MIPS ISA

�������% �& ����' ��
� ����� �� � �� �
��

16 $s0 callee saves

. . .

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp global pointer

29 $sp stack pointer

30 $fp frame pointer

31 $ra Return Address (HW)

0 $0 zero constant 0

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments (caller saves)

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

. . .

15 $t7

CDA 4150 – MIPS ISA

�����' ��
� �������
� � �� �� � �� �
��

Preserved registers must be saved and restored by called procedure if modified
Unpreserved registers must be saved by caller if needed after call completes

Preserved on Call Not Preserved on Call

Saved Registers
($s0..$s7)

Argument Registers
($a0..$a3)

Stack Pointer
($sp)

Return Value Regs
($v0..$v1)

Frame Pointer
($fp)

Temporaries
($t0..$t9)

Return Address
($ra)

Global Pointer
($gp)

CDA 4150 – MIPS ISA

������ ���
� � �� �� � �� �
��

Caller
• Save caller-saved registers: $a0–$a3, $v0-$v1 $t0-$t9 if used
• Load arguments: first four in $a0–$a3, rest on stack
• Execute jal instruction

Callee
• Allocate memory in frame: $sp = $sp – frame size
• Save callee-saved registers $s0–$s7,$fp,$ra if used
• Create frame: $fp = $sp + frame size - 4

Return
• Place return value in $v0
• Restore any callee-saved registers
• Pop stack: $sp = $sp+frame size
• Return by jr $ra

Only required to do what is needed!

CDA 4150 – MIPS ISA

������ ���
� � �� �� � �� �
�� ������
FP

SP

ra
old FP

$s0-$s7

FP

SP
ra

First four arguments
passed in registersBefore call:

Callee
set-up:
step 1

FP

SP
ra

Callee
set-up:
step 2

ra
old FP

$s0-$s7

FP

SP
ra

Callee
set-up:
step 3

Adjust SP

Save registers as needed

Adjust FP

CDA 4150 – MIPS ISA

������ ���
� � �� �� � �� �
�� �! " �� ���

fact: slti $t0,$a0,2 ; test n < 2
beq $t0,$0,skip
li $v0,1 ; return value

jr $ra ; return

skip: addiu $sp,$sp,-32 ; create frame

sw $ra,20($sp) ; save $ra

sw $fp,16($sp) ; save $fp

addiu $fp,$sp,28 ; set $fp

sw $a0,0($fp) ; save n

addiu $a0,$a0,-1 ; n-1

jal fact

lw $a0,0($fp) ; restore n

mult $v0,$v0,$a0 ; n*fact(n-1)

lw $ra,20($sp) ; restore $ra

lw $fp,16($sp) ; restore $fp

addiu $sp,$sp,32 ; pop stack

jr $ra ; return

int fact (int n)

{

if (n <= 1)

return (1);

else

return(n*fact(n-1));

}

CDA 4150 – MIPS ISA

������� � ��
��
�� �! � ���
� � �(�)

3 formats, all 32 bits in length

Fixed 6-bit opcode begins each instruction

ALU Format (also R format): one opcode
• Register-register ALU instructions

Function code
• Detailed opcode: add, sub, or, and, …

funcrs rt rd saopcode=0

65 5 56 5#bits:

CDA 4150 – MIPS ISA

������� � ��
��
�� �! � ���
� � �(��)

Immediate instruction format (I format)
• Loads/stores (incl. floating point) sign-extend imm
• Immediate instructions (e.g. addi, lui, etc.)

– Sign-extend immediate for arithmetic ops (even addu)
– Zero-extend for logical ops

• Branches sign-extend immediate and scale by 4
– Add displacement to PC+4

• Different opcode for each instruction

rs rt immediateopcode

5 166 5#bits:

First source
or base
register

Second source
or result
register

CDA 4150 – MIPS ISA

������� � ��
��
�� �! � ���
� � �(���)

Jump format (J format)
• Used for j, jal
• 26-bit offset is scaled by 4 to form 28 lsbs of new PC

– 4 msbs of new PC copied from current PC

jump targetopcode

266#bits:

“pseudo-direct” jump
target address

CDA 4150 – MIPS ISA

���������� ���
�� �(�)

Register 0 is always 0 (even if you try to write it)

Jump and link (jal) puts the return address (PC+8)
into the link register (R31)

All insts change all 32 bits of the dest register
• Including lui, lb, lh

All read all 32 bits of sources (and, sub, and, or, …)

Data from sub-word loads extended as follows
• lbu, lhu, zero-extended
• lb, lh, sign-extended

CDA 4150 – MIPS ISA

���������� ���
�� �(��)

The MIPS architecture defines a
• Branch delay slot

– Instruction after branch is always executed
• Load delay slot

– Value returned from load cannot be used the next cycle

The reason for restrictions will be clear next week

Makes perfect sense for simple in-order pipelined machines

Architecture definition
• Every implementation must obey these rules
• Branch delay slot is a burden for the R10000+
• Load delay slot is unnecessary

CDA 4150 – MIPS ISA

������
� � ���

Reduced Instruction Set Computing (RISC) vs. Complex
Instruction Set Computing (CISC)
• Terms coined by Patterson and Ditzel (1980)
• Widely-used terms, poorly defined

– “A RISC processor is any with an instruction set defined after
1980”

Common attributes
• Fixed-length instructions

– Some embedded processors use variable length instructions
to reduce cost

• Load/store architecture (for memory accesses)
• “Large” general-purpose register file (>=32)
• “Simple” operations that can be directly controlled
• One register is hardwired to 0

