MIPS Architectural Approach

Load/store or register-register instruction set
* Only operate on data in registers
— Register operations affect the entire contents of register
* No partial register writes except for single-precision FP
« Only load/store instructions access memory
e True in all RISC instruction sets
¢ True in all instruction sets designed since 1980

Emphasis on efficient implementation
* Make the common case fast

— A system can be so simple that it obviously has no bugs, or
so complex that it has no obvious bugs. (adapted C. A. R.
Hoare)

implicity: provide primitives rather than solutions
» Simplicity favors regularity

CDA 4150 — MIPS ISA

MIPS Data Types

Bit String: sequence of bits of a particular length
« 8 bhits is a byte
* 16 bits is a half-word
* 32 bits is a word
* 64 bits is a double-word

Character
« supported as a byte (signed or unsigned)

Integers
e 2's Complement

Floating Point: M x 2E
* single precision

3 « double precision
) CDA 4150 — MIPS ISA

MIPS Storage Model
-
232 pytes of memory: accessible by loads/stores
31 x 32-bit GPRs (RO = 0) or integer multiply/divide
» why only 32 registers? Smaller is faster
PC: incremented by 4 for each instruction

» except for branch, j, jal
$0 0

o1 $f1 $f0
$31 .
$f30
PC—— $i31
Ihoi E FP registers are paired for double-precision.

T Specify the even register, which holds the
& less-significant word.

CDA 4150 — MIPS ISA

MIPS Computational Instructions

-
Arithmetic/Logical instructions

« Three operand format: result + two sources

« Operands: registers, 16-bit immediates

« Signed & unsigned arithmetic operations:
— Sign-extension for immediates

— Trapping of overflow for signed values
e Compare instructions

— Signed vs. unsigned: comparison is different
Integer multiply/divide
* Use HI/LO registers
Floating Point instructions
« Operate on floating point registers
e « Double and single precision
& « Typical: add, multiply, divide, subtract

CDA 4150 — MIPS ISA

MIPS Integer Arithmetic

add add $1,$2,$3 $1=%$2+$3
subtract sub $1,$2,$3 $1=%2-$3
add immediate addi $1,$2,100 $1 =$2 + 100
add unsigned addu $1,$2,$3 $1=%2+$3
subtract unsign subu $1,$2,$3 $1=%2-$3
add immunsign addiu $1,$2,100 $1=$2 + 100
set less than slt $1,$2,$3 $1=($2<$3)
set less than imm slti $1,$2,100 $1 =($2 < 100)
set less than uns sltu $1,$2,$3 $1= ($2<$3)
set |. t. imm. uns. sltiu $1,$2,100 $1 = ($2<100)

_—
3 operands; exceptions
3 operands; exceptions
+ constant; exceptions
3 operands; no exceptions
3 operands; no exceptions
+ constant; no exceptions
compare signed <
compare signed < constant
compare unsigned <
compare unsigned < const

Note: Immediates are sign-extended to form constant for arithmetic

operations

CDA 4150 — MIPS ISA

MIPS Multiply/Divide

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsign multu $2,$3 Hi, Lo = $2 x $3 64-bit unsigned prod.

divide div $2,$3 Lo =%$2 + $3,
Hi = $2 mod $3

divide unsign divu $2,$3 Lo =$2 + $3,
Hi = $2 mod $3

Move from Hi mfhi $1 $1 =Hi

Move from Lo mflo $1 $1=Lo

Rationale

* Deal with 64-bit result

Lo = quotient

Hi = remainder
Unsigned quotient
Unsigned remainder
Get copy of Hi

Get copy of Lo

« Simplify handling of instruction

Registers

+
/ CDA 4150 — MIPS ISA

MIPS Logical Instructions

—

Instruction Example Meaning Comment
and and $1,$2,$3 $1=%2 & $3 Logical AND
or or $1,$2,$3 $1=%2|$3 Logical OR
xor xor $1,$2,$3 $1 =32 "$3 Logical XOR
nor nor $1,$2,$3 $1=~($21$3) Logical NOR
and immediate andi $1,$2,10 $1=$2&10 Logical AND w. constant
or immediate ori $1,$2,10 $1=%$2]10 Logical OR w. constant
xor immediate xori $1, $2,10 $1 =%$2 110 Logical XOR w. constant
shift left log sll $1,$2,10 $1=%$2<<10 Shift left by constant
shift right log srl $1,$2,10 $1=%$2>>10 Shift right by constant
shift right arith ~ sra $1,$2,10 $1=%$2>>10 Shift right (sign extend)
shift left log var sllv $1,$2,$3 $1=%$2<<3$3 Shift left by variable
shift right log var srlv $1,$2, $3 $1=%$2>>%$3 Shift right by variable
shift right arith srav $1,$2, $3 $1 =$2>>$3 Shift right arith. by var

lui $1,40 $1=40<<16 Putimm in upper 16 bits

g d upper imm

CDA 4150 — MIPS ISA

MIPS Memory Access

All memory access through loads and stores

Aligned words, halfwords, and bytes

« A halfword or byte loaded from memory can be sign- or zero-
extended to form a word in the destination register

Floating-point loads/stores for FP registers

Single addressing mode (displacement or based)
16-bit sign-extended displacement (immediate field)

+ register

Registers

= memory address

In addition:

Data to load/
location to

store into

« Displacement = 0 uses register contents as address

&

CDA 4150 — MIPS ISA

* Register = 0 uses 16-bit displacement as address

MIPS Load/Store Instructions

Instruction Example

-
Meaning Comments

store word sw $3, 8($4)
store halfword sh $3, 6($2)

bits
store byte sb $2, 7($3)
store float sf $f2, 4($2)
load word Iw $1, 8($2)

load halfword |h $1, 6($3)
load half unsign Ihu $1, 6($3)

load byte Ib $1, 5($3)
load byte unsign Ibu $1, 5($3)
load float If F1, 4($3)

Mem[$4+8]=$3 Store word
Mem[$2+6]=$3 Stores only lower 16

Mem[$3+7]=$3 Stores only lowest byte
Mem[$2+4]=$f2 Store FP word

$1=Mem[8+$2] Load word
$1=Mem[6+$3] Load half; sign extend
$1=Mem[6+$3] Load half; zero extend
$1=Mem[5+$3] Load byte; sign extend
$1=Mem[5+$3] Load byte; zero extend
$f1=Mem[4+$3] Load FP register

+
. CDA 4150 — MIPS ISA

Forming a Memory Address

Let’s say you want to load a value from a fixed
location in memory, known at compile time

Address: 0x123450

lui $1, 0x12
addiu $1, $1, 0x3450
w $2, 0($1)

$1 = upper 16 bits of constant
add in lower 16 bits
perform the load

Not taking advantage of displacement capability

lui $1, 0x12
w $2, 0x3450($1)

$1 = upper 16 bits of constant
perform the load

+
. CDA 4150 — MIPS ISA

MIPS Branch/Jump Instructions

-
Two classes:
e Jumps
— Unconditional, not PC-relative

— For procedure call, unconditional control, switch statements,
simulating long branches

* Branches
— Conditional and PC relative
— For conditional control and PC-relative unconditional

Jumps

Instruction Example Meaning Comment

jump j 10000 PC = 40000 jump to address

jump register jir$31 PC =$31 jump to addr in register
jump and link jal 10000 $31 =PC + 4; Save PC next instruction

PC = 40000 jump to address

CDA 4150 — MIPS ISA

MIPS Branches

Conditional branch is compare-and-branch
» Conditions:
— Comparison against 0: equality, sign-test
— Comparison of two registers: equality only
— Remaining set of compare-and-branch take two instructions

Instruction Example Meaning
branch equal beq $1,$2,100 if ($1 == $2) PC=PC+4+400
branch noteq bne $1,$2,100 if ($1!=$2) PC=PC+4+400

branch I.t. 0 bltz $1,100 if (31 <0) PC =PC+4+400
branch g.t./eq 0 bgez $1,100 if ($1 >=0) PC = PC+4+400

+
. CDA 4150 — MIPS ISA

Programming Example: Searching

-
C source code:
count =0;
for (index=head; index<=n; index++)
if (dindex] == target) count ++;

MIPS assembly code, assuming:
+ countin $5, index in $6, head in $1, addr of C in $2, target in $3; nin $4
li $5,0 set count =0 (addiu $5, $0, 0)
nmove $6, $1 initial index (addu $6, $1, $0)
| oop: slt $9, $4, $6 $9=1 if n < index (index > n)
bne $9, $0, exi t if index>n goto exit |abel
sl | $7, $6, 2 mul tiply index by 4
addu $7, $7, $2 address of C [index]
| w $8, 0($7) C[index] = $8
bne $8, $3, next test if equal
addiu $5,%5,1 i ncrenent count
next: addiu $6,$6,1 i ncrenment i ndex
j | oop uncondi tional junmp to | oop

N
« Straightforward, but not best (smallest or fastest) code!
) CDA 4150 — MIPS ISA

HHHFHHFHFHEHHR

Stacks
Stacking of Subroutine Calls & Returns and Environments
A: A
CALL B
B: — ———| A|B
CALL C
c: —| A|B|C
RET
> Al B
| RET
> A

Stacks are a natural structure for procedure calls / local variables

Implementing the stack
e Common rules are needed across procedures

" + Recent machines use software convention
& * Some earlier machines use hardware mechanisms and instructions

CDA 4150 — MIPS ISA

Stack Frames

]
How is empty stack represented? Stacks can grow up or down:
Next inf. Inf.
Empty?
> grows grows Memory
c up down Addresses
Last b
SP| Full? a
0 0
Down/Next Empty (MIPS)
POP: Increment (SP) PUSH: Write to Mem(SP)
Read from Mem(SP) Decrement SP

Single elements are not usually pushed/popped. Instead an entire
stack frame may be pushed or popped in one

s increment/decrement.
& CDA 4150 — MIPS ISA

Stack Frame Layout
]
Higher Addresses Access arguments at
. fixed offset from FP.
Arguments in Allow variable number
reverse order of arguments.
—
Saved registers
including
old FP, SP Access local variables
and saved registers at
Local variables ;lxed é%osmve) offset
and temporaries I rom
SP -
Lower Addresses Arguments

for next procedure
Parameters are passed in registers; extras on stack

Compilers try to keep scalar variables in registers, not memory
g » Stack locations for spilling/saving on procedure calls

CDA 4150 — MIPS ISA

MIPS Addressing Mode/

Local scalar variables of a procedure stored in registers
» Spilled to stack frame
» Space allocated when compiled
« Loaded/stored into registers as needed

Global static scalar variables (single variables, not arrays)
» Allocated in a 64KB static area at compile time
» Addressed with a register pointing into area + offset

global scalars X

$p Offset (determined at link time)

& namic allocated in heap, reserved memory below stack

CDA 4150 — MIPS ISA

MIPS Address Map
UARRRRAETS
Stack
Stack and dynamic
l area grow towards
one another to
I maximize storage
Dynamic Data use before collision.
10000000, Static Data
Code
004000004

- Reserved
& CDA 4150 — MIPS ISA

MIPS Software Register Convention

$0 zero constant 0

$at reserved for assembler

5v0 expression evaluation &

Sv1 function results

$a0 arguments (caller saves)
$al
$a2
|$a3

0 N o o0~ W N - O

$t0 temporary: caller saves

[EnY
a1

| $t7

$s0 callee saves

IBs7
$t8 temporary (cont’d)
$t9

$k0 reserved for OS kernel

$k1

$gp global pointer
$sp stack pointer
$fp frame pointer

$ra Return Address (HW)

+
. CDA 4150 — MIPS ISA

MIPS Register Saving Convention

Preserved registers must be saved and restored by called procedure if modified
Unpreserved registers must be saved by caller if needed after call completes

+
. CDA 4150 — MIPS ISA

10

MIPS calling Convention

—
Caller
« Save caller-saved registers: $a0-$a3, $v0-$v1 $t0-$t9 if used
« Load arguments: first four in $a0-$a3, rest on stack
» Execute jal instruction

Callee
 Allocate memory in frame: $sp = $sp — frame size
» Save callee-saved registers $s0-$s7,%fp,%ra if used
» Create frame: $fp = $sp + frame size - 4

Return
» Place return value in $v0
« Restore any callee-saved registers
» Pop stack: $sp = $sp+frame size
* Return by jr $ra

g _
/ CDA 4150 — MIPS ISA

MIPS Calling Convention Steps

. EP | —" First four argumenP

Before call: [sp | passed in registers

Fp |
Callee Adjust SP
set-up:
step 1

Ep I
Callee o
set-up: old FP Save registers as needed

$s0-$s7

step 2
Callee P,
set-up: ra Adjust FP

Y old FP
step 3 r $s0-$s7
) CDA 4150 — MIPS ISA

11

MIPS Calling Convention Example

B
fact: slti $t0,%a0,2 ; test n < 2
beq $tO, $0, skip
l'i $vO0, 1 ; return val ue
int fact (int n) jr %ra ; return
{ skip: addiu $sp, $sp,-32 ; create frame
if (n <= 1) sw $ra, 20($sp) ; save $ra
sw $fp, 16($sp) ; save $fp
return (1); addi u $f p, $sp, 28 ; set $fp
el se sw $a0, 0($f p) ; save n
return(n*fact(n-1)); addi u $a0, $a0, - 1 ; n-1
} jal fact
lw $a0, O($f p) ; restore n
nmul t $v0, $v0, $a0 ; n*fact(n-1)
lw $ra, 20($sp) ; restore $ra
lw $fp, 16($sp) ; restore $fp

= addi u $sp, $sp, 32 ; pop stack
jr $ra ; return
) CDA 4150 — MIPS ISA

MIPS Instruction Encoding (I)

B
3 formats, all 32 bits in length

Fixed 6-bit opcode begins each instruction

ALU Format (also R format): one opcode

» Register-register ALU instructions
#bits: 6 5 5 5 5 6

Function code
» Detailed opcode: add, sub, or, and, ...

+
/ CDA 4150 — MIPS ISA

12

MIPS Instruction Encoding (II)
-
Immediate instruction format (I format)
» Loads/stores (incl. floating point) sign-extend imm
* Immediate instructions (e.g. addi, lui, etc.)
— Sign-extend immediate for arithmetic ops (even addu)
— Zero-extend for logical ops
» Branches sign-extend immediate and scale by 4
— Add displacement to PC+4

« Different opcode for each instruction
#bits: 6 5 5 16

First source Second source

) or base or result
register register
) CDA 4150 — MIPS ISA

MIPS Instruction Encoding (I1I)

]
Jump format (J format)
» Used for J, jal

» 26-bit offset is scaled by 4 to form 28 Isbs of new PC
— 4 msbs of new PC copied from current PC

#bits: 6 26

“pseudo-direct” jump
target address

+
/ CDA 4150 — MIPS ISA

13

MIPS IS5A Details (1)

—
Register 0 is always 0 (even if you try to write it)

Jump and link (jal) puts the return address (PC+8)
into the link register (R31)

All insts change all 32 bits of the dest register
* Including lui, Ib, Ih

All read all 32 bits of sources (and, sub, and, or, ...)

Data from sub-word loads extended as follows
* |bu, |hu, zero-extended
* Ib, Ih, sign-extended

+
. CDA 4150 — MIPS ISA

MIPS ISA Details (IT)

The MIPS architecture defines a
e Branch delay slot
— Instruction after branch is always executed
« Load delay slot
— Value returned from load cannot be used the next cycle

The reason for restrictions will be clear next week
Makes perfect sense for simple in-order pipelined machines

Architecture definition
« Every implementation must obey these rules
» Branch delay slot is a burden for the R10000+
* Load delay slot is unnecessary

+
. CDA 4150 — MIPS ISA

14

MIPS Summary

Reduced Instruction Set Computing (RISC) vs. Complex
Instruction Set Computing (CISC)
e Terms coined by Patterson and Ditzel (1980)
* Widely-used terms, poorly defined

— “A RISC processor is any with an instruction set defined after
1980”

Common attributes
» Fixed-length instructions

— Some embedded processors use variable length instructions
to reduce cost

Load/store architecture (for memory accesses)

« “Large” general-purpose register file (>=32)

« “Simple” operations that can be directly controlled
* One register is hardwired to 0

+
. CDA 4150 — MIPS ISA

15

