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Introduction
Modelling of images and observations
Pattern theoretic tracking
Learning
– Learn mixture centers (exemplars)
– Learn kernel parameters (observational likelihood)
– Learn dynamic model (transition probabilities)

Practical tracking
Results
– Human motion using curve based exemplars
– Mouth using exemplars from raw image

Conclusions
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Introduction

Metric Mixture, M2

– Combine exemplars in metric space with probabilistic 
treatments

– Models easily created directly from training set
– Dynamic model to deal with occlusion

Problems with other probabilistic approaches
– Complex models
– Training required for each object to be tracked
– Difficult to fully automate

Pattern Theoretic Tracking - Notation
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Train images: { , ,..., }
Class is defined by a set of exemplars: { , 1,2,..., }
Geometrical transformation: ,  (known in advance)
Pattern theoretic tracking
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Metric Functions

True metric function
– All constraints

Distance function
– Without 3 and 4
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Modelling of Images and Observations

Patches
– Image sub-region
– Shuffle distance function

Distance with the most similar pixel in its neighborhood

Curves
– Edge maps
– Chamfer distance function

Distance to the nearest pixel in the binary images
See next slide!
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Probabilistic Modelling of Images and 
Observations

Distance 
image – dI

Exemplar - TOriginal 
image

Feature 
image - I
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Curves with Chamfer distance

Pattern Theoretic Tracking

xTz α≈

Geometrical 
Transform:

- Translation
- Affine
- Projective…

Observation Exemplar
(from a training set):

- Intensity images
- Feature images
(edges, corners…)

“patches”

“curves”
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Pattern Theoretic Tracking

x1:

x2:

x3:

x4:

Exemplars 
xk (k=1…K)

z:

Given Image

Geometric 
Transform  
Tα (α A)

Tα1
Tα2
Tα3

{ }kx~1) - A set of K Exemplars.

2) - Distribution of observations   
around – Likelihood: 
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3) - Prior about dependency 
between states – Dynamics: 
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Pattern Theoretic Tracking - Learning
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1) Find “central” exemplar -
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2) “Align” other images to z0 -

mm

mm

zTx

zzT
1

0
1 ),(minarg

−

−

=

=

α

αα
ρα

Goal - given M images (zm), 
find K exemplars:

zm xm
m=1…M

Learning Mixture Centers
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3) Find K “distinct” exemplars -

4) Cluster the rest by minimal
distance -
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5) Find new representatives -
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Learning Mixture Centers
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1) Using a “validation set” find distances 
between images and their exemplars:

22~(..) dχσρ

2) Approx. distances as chi-square:

(to find σ and d)

[ ](..)exp1)|( λρ−∝
Z

Xzp

3) Then the observation likelihood is:

Learning Kernel Parameters

22
1;
σ

λσ =∝ dZ

Learning Dynamics

Learn a Markov matrix       for                  by histogramming
transitions
Run a first order auto-regressive process (ARP) for

, with coefficients calculated using the Yule-
Walker algorithm

M 1( | )t tp k k −

1( | )t tp α α −
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Practical Tracking

Forward algorithm
–

Results are chosen by
–
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Results

Tracking human motion
– Based on contour edges
– Dynamics learned on 5 sequences of 100 frames each

Exemplars Same person, motion not 
seen in training sequence
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Results

Tracking human motion
– Based on contour edges
– Dynamics learned on 5 sequences of 100 frames each

Different person Different person with occlusion 
(power of dynamic model)

Results

Tracking person’s mouth motion
– Based on raw pixel values
– Training sequence was 210 frames captured at 30Hz
– Exemplar set was 30 (K=30)

Left image show test sequence
Right image show maximum a posteriori 

Using L2 distance Using shuffle distance
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Results

Tracking ballerina
– Larger exemplar sets (K=300)

Conclusions

Metric Mixture (M2) Model
– Easier to fully automate learning
– Avoid explicit parametric models to describe target objects

Generality
– Metrics can be chosen without significant restrictions

Temporal fusion of information for occlusion recovery
– Bayesian networks
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