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Resolving Motion 
Correspondence for 

Densely Moving Points 

By C.J. Veenman, 
M.J.T. Reinders,

and E. Backer 

What are we going to do? Lecture plan

Describe a task in general
Describe a task more formally
Discuss problems and constraints
Discuss four algorithms to solve the task
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General problem statement

Given a number of points in frame k, we are to find matching points in frame k + 1

Possible problems: false measurements, missing measurements, occlusions, points leaving and 
entering the frame, acceleration 

Model constraints

We have to apply two important constraints:

• Individual points move smoothly from time instance to time instance. 

• Total set of points move smoothly from time instance to time instance. 

Based on these two constrains, two motion models are defined:

• Individual motion model. 

• Combined motion model. 
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Formal problem definition

There are M points, moving around in a 3-D world. We use index i to enumerate points

There are n frames. Typically we denote current frame with letter k 

At each frame k there is a set Xk of mk measurements xk
j of point positions. Measurements are 

typically enumerated with index letter j

The measurements xk
j are vectors representing 2-D coordinates in a 2-D space, with 

dimensions Sw (width) and Sh (height). The number of measurements, mk, can be either 
smaller (occlusion) or larger (false measurements) than M.

At first two frames, all M points are identified among measurements.

The task is to return a set of M tracks that represent motion of the M points using the 
movements between first two frames as initial motion characteristics. 

A point track Ti is an ordered list of corresponding measurements: (x1
j1, x2

j2 … xn
jn)

A track that has been formed up to frame k is called a track head and is denoted as Tk
i

It is assumed that points do not enter or leave the scene

Tracks example for two points
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Motion models: individual and combined 
motion

There are two kinds of motion models: Individual motion model and Combined motion model. 

The individual motion model represents the motion of individual points. Acceleration information 
is not used thus the motion vector of a point can be estimated from only two consecutive 
measurements. On the basis of the motion vector and the individual motion model, the position of 
the point at the next time instance can be predicted. The measurement that is closest to this 
prediction can then be selected as corresponding measurement.

The combined motion model defines the motion smoothness constraint for the complete set of 
points. We use it to ensure that the average deviation from the individual motion models is 
minimal.

The ‘costs’: 

Individual motion models introduce the notion of ‘cost’, that is, the cost ck
ij of assigning 

measurement j to track i for frame k. The lower the cost, the better the match, so costs can be 
thought of as ‘deviations’ from the best prediction.

Individual motion models: smooth motion

The smooth motion model introduced by Sethi and Jain assumes that the velocity magnitude 
and direction change gradually.
The cost ck

ij of assigning measurement j to track i can be evaluated by this formula:

The lower the cost, the better new measurement matches point motion. Ideally, cost is 0
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Individual motion models: proximal uniformity

The proximal uniformity model by Rangarajan and Shah assumes little motion in addition to 
constant speed.
The cost ck

ij of assigning measurement j to track i can be evaluated by this formula:

The lower the cost, the better new measurement matches point motion. Ideally, cost is 0

Combined motion models: average deviation

This is a simple combined model which usually is realistic. It accounts for the average 
deviation from the optimal track according to the individual model

Quantitatively, we use the generalized mean, which has a z parameter to differentiate between 
emphasis on large and small deviations from the optimal individual track

Lower deviation Ck means better match between assigned measurements and point tracks. 
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Combined motion models: average deviation 
conditioned by competition and alternatives

In this combined model measurements are assigned to that track head that gives low deviation 
from the optimal track, while both the other tracks are less attractive for this measurement and 
the other measurements are less attractive for this track.

Ra(i) represents the average cost of alternatives for Tk
i and Rc (j) the average cost for 

competitors of xk+1
j

Additional constraints

Some additional constraints can be used in algorithms:

Dmax and Dmin – define the biggest and the lowest possible values for motion vector length

Smax – defines the biggest possible deviation from individual motion model, imposes 
maximum possible cap on individual motion cost ck

ij
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Algorithms

We discuss the following algorithms:

Salari and Sethi, PAMI, 1990
Rangarajan and Shah, 1991
Chetverikov and Verestoy, 1999
Veenman, Reinders and Backer, PAMI, 2001

The goal of all algorithms is to assign measurements xk
j to tracks i while minimizing combined 

motion Ck

Salari and Sethi algorithm, PAMI, 1990

One of oldest algorithms. 
It uses smooth motion model and average deviation model 

For each new frame k:

Step 1 (initial). Assign nearest neighboring measurements to each track. Thus, to each track i, 
we assign measurement xk

j most close to measurement xk-1
i out of pool of unassigned 

measurements xk. 
Conflicts are not important on this step.

Step 2 (iterative). Compare all assignments against each other, calculate ‘gain’ function. If 
gain is positive, swap assigned measurements. Continue until no more swapping is done. 
Gain function for assignment pair (i, p) and (j, q) is defined as: 

So, if cost of assignments (i, p) and (j, q) is higher than cost of assignments (i, q) and (j, p) 
then we swap p and q. When no more swapping is possible, all costs are optimized.
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Salari and Sethi algorithm, PAMI, 1990

The drawbacks:

Iterative process is not guaranteed to converge, especially with densely moving points! 

If tracks are wrong at the start, exchanges in the remainder of the track will mostly be 
useless.

Algorithm assumes a fixed number of points to be tracked and does not support 
occlusions or detection errors.

If, at any frame k, we have less measurements than tracks, some tracks are lost. To solve 
this problem, phantom points are introduced that serve as replacements of missing 
measurements. By imposing the maximum allowed local smoothness criterion and a 
maximum speed, missed measurements are recognized and filled in with phantom points.

Rangarajan and Shah algorithm, 1991

It uses the proximal uniformity individual motion model and conditioned combined 
motion model.
This algorithm does not constrain the individual point motion. It does not have maximum 
speed constraint dmax or smoothness constraint smax parameters.
To assign points and to find the minimum of the combined motion model, non-iterative 
algorithm is used. 

For each new measurement xk+1
j  , for each track head Tk

i :

IF
on average all other track heads have a larger deviation with respect to xk+1

j 
and
on average all other measurements have a worse criterion with respect to Tk

i
THEN
we assign measurement xk+1

j to track Tk
i

This approach selects a measurement with reasonably low individual deviation from the 
optimal motion. 
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Rangarajan and Shah algorithm, 1991

The algorithm selects that assignment pair (i, j) that maximizes R’a(i) + R’c(j) among all 
minimal track head extensions, where R’a(i) and R’c(j) are derived from definition for 
conditioned combined motion model:

Then, an optimal assignment pair g(Xt, Xm) is repeatedly selected in the following way:

where Xt is the set of track head indices that have not yet been assigned a measurement, and 
Xm is the set of measurement indices that have not yet been assigned to a track head.

After an assignment has been found, the track head and measurement are removed from the 
respective index sets Xt and Xm. 

The algorithm accumulates the assignment costs, and eventually stops when Xt is empty.

Rangarajan and Shah algorithm, 1991

Missing measurements: 

Some measurements can be missing, by occlusion or otherwise. 

In this case, because there is a lack of measurements at tk+1, the problem is not which 
measurement should be assigned to which track head, but which track head should be 
assigned to which measurement. 

When all track head assignments Tk
i to measurements xk

j are found, it is clear for which 
tracks a measurement is missing. The algorithm directly fills in these points with 
extrapolated points.
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Chetverikov and Verestoy, 1999

It uses the smooth individual motion model and conditioned combined motion model 

1) The algorithm extends track heads Tk
i by first collecting all candidate measurements xk+1

j in 
the circle with radius dmax around xk

j whose criterion does not exceed smax.

2) The candidate measurements are considered in optimal criterion order with respect to the 
track head.

3) Then, for each measurement all competing track heads are collected. The candidate 
measurement will be rejected if it is the best alternative for any of the competing track 
heads.

4) When there are no candidates left, the track head will not be connected. Remaining 
unconnected track parts, caused by occlusion or otherwise, are handled in a post-processing 
step,

Chetverikov and Verestoy, 1999

This algorithm can be summarized as follows:

Let Xa(i) be the set of alternative track head extensions for track head Tk
i as defined below:

where each measurement xk+1
j has a set of competing track heads Xc (j) according to:

The algorithm selects a measurement from Xa(i) for a track head from Xt according to:

This leads to the approximation of minimal combined motion criteria.
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Veenman, Reinders and Backer, PAMI, 2001

Authors of this article proposed their own algorithm based on graph theory:

1) Costs ck
ij are calculated for all combinations of points i and measurements j.

2) Then, bipartite weighted graph is constructed where points i represent the first set of 
vertices and measurements j represent the second

3) Costs ck
ij are assigned as weights to all edges 

4) Edges that violate maximum speed constraint dmax are removed

5) Then, Hungarian algorithm is applied to this graph that results in minimal cost 
assignment. All edges except resulting in minimal cost are pruned

Performance graphs

(a) Track error as a function of increasingly dense point sets.
(b) Track error as a function of the mean velocity.
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Experiment: Tracking seeds on a rotating dish

S&S: dmax = 42 p/s; 25 errors, 7.4 s C&V: dmax = 42 p/s; 18 errors, 44 s graph: dmax = 42 p/s; 0 errors, 90 ms


