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Problem Statement

m Given a set of sequential images, reliably track features
across the sequence, while monitoring the quality of each
feature
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Paper Overview

= Feature Selection
Fundamental definition of the Harris corner method
= Tracking System
Anandan’s Approach limited to only a pure translation model
= Ability to monitor the goodness of a feature throughout tracking
process
Anandan’s approach using full affine parameters (deformation and

translation) to measure the dissimilarity between first and the current
frame

Keep/Abandon features based on dissimilarity measure

= Detect occlusions, disocclusions, and features that do not have real-
world correspondence

= Constraint: Inter-frame displacement is small
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Terminology

= Qcclusions

Shape to Detect Shape not occluded Shape is occluded

= Disocclusions:
Areas occluded in original reference frame but visible in current view

Detect “J” Detected “J” Disocclusion More Disocclusion
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Terminology

= Non-real world points

Given Sequence

Antenna and mirror support bar create a feature which does not correlate to a real-

world feature

= Feature Detection is unable to discern depth
= Need to monitor features to track reliably
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Feature Selection

m  Many feature selection options being debated in early 1990’s
Most measure the amount of texturedness or cornerness in a window
Windows with high spatial frequency content
High standard deviation on the spatial intensity profile
Presence of zero crossings of the Laplacian of the image intensity
Regions where second-order derivatives are above a threshold
Corner detection
Even a window rich in texture can be a poor point to track

= Non real-world point, occlusion/disocclusion, reflective surface, shadows,
etc.

Tracking based solely on one of the above methods will most likely be
unsuccessful and error-prone

= Paper proposes a fundamental definition for feature quality
i.e. Harris Corner Method
= Used for initial feature selection, not for further tracking




Basic Harris Corner Method

Given an image

Smooth image with Gaussian Filter

Compute derivatives {g,} and {g,} for smoothed image
Option: Smooth derivative images {g,} and {g,}

For each pixel in the image space, compute the gradient
moment matrix, using the n x m neighborhood of pixels
(window) around current pixel.

o H DN =

gr 9,9,

M =“WZdedy where, Z = 9,9, g§

W = window (neighborhood) =nxm =i.e. 5 x5,
25 x 25, etc. m=25

w =1, OR a 2D Gaussian weighting scheme X L X
For each pixel location in neighborhood

ORI M = n m n m
2299w oW
i i
Feature Selection
6. Compute the two Eigen values for the gradient moment Y Y Texturedness
matrix M * 2
. Two requirements must be upheld for the matrix M Small | Small Constant intensity
1. Above the Noise Level profile (nothing)
. Both Eigen values must be large Small | Large | Unidirectional texture
pattern
2. Well-Conditioned (edge)
. Eigen values cannot differ by several orders of magnitude Large | Small | Unidirectional texture
pattern
7. Select the minimum Eigen value (edge)
Large | Large Corner, salt-and-
min (/7'1‘ /12) > Z’rhreshold pepper texture,
(texture can be
Smaller Eigen value meets noise-level-criterion tracked reliably)

Well-conditioned because intensity variations are bounded by
image intensity range (i.e. 0-255).

8. Store the minimum Eigen value for each pixel in the image

9. Apply a type of Non-Maximum Suppression to the Eigen
values

10. Threshold Suppressed Eigen value space to reduce amount

of detected interest points

Alternative Computation to 6,7:
R =det(M) + k trace(M)? > Threshold
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What is Next?

m Feature Selection used for initial detection only
m How to Track?
m Affine Motion Model

Last Semester Project: Anandan’s Approach

-0

—
numerous
iterations
Starting Image Warped Image Goal Image
Inter-frame displacement is relatively small Rotated and
Brightness constancy constraint Enlarged
Uses

= Image registration
= Mosaics/Panoramic views
= Morphing technology
= Tracking (uses pure translation of affine motion model)
= Measuring quality of tracked feature (complete affine model)
Authors apply Anandan’s approach to neighborhood around features
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Affine Motion Model

m Affine model for one pixel

[ J —
(x”,y") /(u,v usx=x
vay'-y

[ )
(x.y)
image at time t image at time t+1
Affine motion: Affine motion parameters:

u(xy)=ax+ay+h {a,a,b,a,a,b,}

V(X,y)=a,x+a,y+h,

Affine Transformation:

X"-X=ax+a,y+b y'-y=a,x+a,y+b,
x"=(a,+1)x+a,y+b, y"=a,x+(a,+1)y+b,
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Affine Motion Model

m Affine model handles translation, rotation, rigid rotation and translation,
affine, and shear

K ore

translation rotation rigid shear affine
[SPEED I
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as positive a; negative a;&a, posmve a, & a, negative
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Affine Motion Model

V(X y)=a,x+a,y+b, v(xy)| [0 0 0 x y 1

where, 5 X i) u(x,y)
X_M & {V(x'y)}
aT:[a:L a, b a a bz] u(x):X(x)a

X¥lo 50 xy 1

a
a2
u(x,y):a1x+a2y+b1_>{u(x,y)}:[x y 100 O} b,
&
a4
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Affine Motion Model

m Optical Flow Equation

u T
Ixu+lyv:—lt—>[|X |y]{ :|:_It — Al U=—|t

\"
m Energy Functional

E(u)=3 (1, +A1"u) E(@)=2(1 +AITXa)

W

m Minimize energy by taking derivative and setting it equal
to zero
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Affine Motion Model

E(a)= (1, +Al"Xa)

oE
- 2;(AITX)T (1, +A1"Xa) =0

D XTAIAL +) XTAIAITXa=0
w

W

XTAIAI" Xa==>) XTAIAI
t

w W
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Affine Motion Model

D XTAIAITXa=-> XTAIAI
W W

- N
K L

_ -1
K6x6a6x1 - L6x1 — a=KL

m Update previous a with new a
Concatenation procedure

m lteratively solve for affine parameters a until updates do
not change or some iteration limit is reached
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Affine Motion Model

m Author’'s method similar to Anandan’s
Affine Motion
d d d

_ D: XX Xy X
o =Dx+d dd d

yX yy dy

equivalent to: “ = A & X + bl
i CLv] o la a Ly [b,

Affine Transformation

= A point x in the first image, |, moves to a point Ax+d in the second
image J, where A=1+ D and 1 is the 2 x 2 identity matrix

J(Ax+d)=1(x) ()
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Tracking

m Given two images | and J
m Tracking means computing D and d
Quality of computation depends on
Size of feature window
Texturedness inside the feature window
Amount of camera/object motion between frames

When window is small, or when inter-frame motion is small,
D is harder to estimate

Variations of motion within window are small
D is not reliable
However, small windows are preferred for tracking
Less likely to straddle depth discontinuity
Therefore, a pure translational model is used for tracking
D is assumed to be zero

o=d
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Two Models of Image Motion

1. Affine Model (D + d)
2. Pure Translation Model (d)

m Use Pure Translation for tracking
Higher reliability
Higher accuracy
Inter-frame motion tends to be small
Less computations

m  Use Affine Motion to monitor quality of features
Between first and current frame
Not computed every frame! Every nt" frame
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Computing Image Motion

m Both motion models measure dissimilarity between
frames

Find an A and d that minimizes this dissimilarity

Increasing number of iterations for model can improve dissimilarity
parameter

dissimilarity,

P =”W[J (Ax+d)-1 (x)]zw(x)dx (3)

W = window (neighborhood) =n xm =i.e. 5x 5, 25 x 25, etc.
w =1, OR a 2D Gaussian weighting scheme

m To minimize (3), take derivative and set equal to zero
m Linearize result by a truncated Taylor series
Due to this truncation, method must be solved iteratively
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Computing Image Motion

m Linearization yields,
TexsZex1 = Qo1 (5) Dismiarty”

where z is comprised of affine
parameters, D and d

' =[d, d, d, d, d d]

and a is the error vector, [ xg,

This method of calculation

_ 3 Y9, requires two images and
a_”Wp(X) J(X)] Y9, W(X)dx is therefore not used

10
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Computing Image Motion

m T can be computed from one image

T=] IWRJT \gw(x)dx (6)

22

x’g;  x’g,0, xyg;  xyg,9, ,

x’9,9, X0, Xyg,9, Xyg, 7 _ g9 9.9,
Yo, x99, Yol ¥9.9, 9,9, 9,
Xyg,9, Xy9; y°9,9, VYO,

U=

2

VT :[ Xg;  X9,9, Y9; ygxgy} D and d interaction in matrix V

.. errors in D seep into d

X9,9, X9, Yy9,9, Y9,

|
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Computing Image Motion

m For Pure Translation Model

Zd =@ (7) Pure Translation Dissimilarity

gf gxgy dX
9,9, 9 d

m Same Z used to compute Eigen values in corner detector

m Derivation by Stan Birchfield (developed KLT program)
Derivation of Kanade-Lucas-Tomasi Tracking Equation (1997)
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Tracking
Pure Translation

Dissimilarity
m  Not all features are good to track & some features are only good to track for a while
m Dissimilarity indicates possible change in feature (becomes a bad feature)
m  Typical video spans a large number of frames

= Pure translational model good for inter-frame tracking
Pure translation dissimilarity measure not good across a large number of frames

Affine dissimilarity better measures the quality of features across frame range
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Example 1: Woody Allen’s Manhattan ' ;
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Sign mostly translates, but does increase size by 15%
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Crosses (+) = Example 1

Dashed line = Pure Translation

Solid Line = Affine Transformation
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Example 2: Woody Allen’s Manhattan

1st frame 5th frame 15" frame

15

' # Tracked
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frame
Circles (O) = Example 2
Dashed line = Pure Translation

Solid Line = Affine Transformation

m Glass window becomes occluded in middle frame
m Dissimilarity spike in affine transformation curve at frame 5 indicates

occlusion

m Affine warping tries to deform traffic sign into a window

One dissimilarity measurement
Iterative method
Leftmost column: source

Rightmost column: destination
= 16% Gaussian noise added

Source 4thiter  8thiter 19t ter

Middle cols: after 4, 8, & 19 iterations

Dest.

Convergence
m Dissimilarity looked at an entire sequgnce of frames
Many affine dissimilarity measurements computed
m Convergence: comparing the first and current frames
Fitting current frame (source) to first frame (destination)

18t Col: Dissimilarity
2" Col: Displacement Error (in pixels)
31 Col: Deformation Error

Horizontal axis: iteration number
4th Col: Displacement Tracking

5% Col: Deformation Tracking
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Convergence

m  Comparisons for True
previous slide

Computed

Deformation Deformation

1 1.409 —0.342 1,393 —0.334
0.342 0563 0.338 0569

True
Translation

Computed

[ oo ]

Translation

2

D658 —=0.342 0LGT0 —=0.343
0.342 0,658 0.319 0660
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m Blobs to Cross Example Dissimilarity
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Tracking

2.0020
0.0155

[ |

Deformation

Tracking

m Real world image sequence
26 frame sequence
Camera moves forward
Objects become larger !

Due to depth issue, the following
will occur

= Qcclusions

= Disocclusions

= Non-real points
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Monitoring Features

m Pure translation is sufficient for

inter-frame tracking
Not for monitoring

All features, except two, have

comparable dissimilarities

No way to distinguish good from

bad features

Pure Translation Dissimilarity
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dissimilarity
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m Affine Motion Dissimilarity

Good for monitoring

Seven features have high
dissimilarity, thus bad and are
discarded

Thick band of curves at bottom
represents all good features (keep)

KLT Demo
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